
CITS3402 Assignment 1 2019: Sparse Matrices

Nicholas Pritchard

August 2019

1 Details

• Due Date: 25th September 2019

• Worth: 25%

This assignment is designed to provide students with experience implementing
some fundamental mathematical codes. You are encouraged to read further
than the provided notes on sparse matrices in order to complete the assignment.
Please set aside enough time to complete the assignment as all functionality will
require time to test, analyse and report upon.

Your ability to investigate code-performance is of more interest to us than your
code’s performance. (We care more about what you do, not your machine).

2 Description

Matrix algebra underpins many compute intense applications in many fields
(most fields of Engineering, Machine Learning, Scientific Modelling etc.); com-
puters were originally used to crunch numbers so numbers we shall crunch.

Your goal, broadly speaking, is to:

• Create a piece of software implementing a variety of sparse matrix opera-
tions

• Ensure this software conforms to our input/output specification

• Performance test your software and comment on any speedup you observe
(or lack thereof) in a brief report.

1

3 Sparse Matrix Introduction

3.1 What is a Matrix

A mathematical matrix is a rectangular array of numbers arranged in rows and
columns. For simplicity we use the convention of (rows, columns) when giving
dimensions. An example of a 3× 2 matrix (read ’three by two’) is

A =

2 6
2 −3
0 1

 (1)

In many practical cases involving matrix algebra, many elements will contain
zero as their value. Storing all elements at all times wastes a potentially vast
amount of memory in these cases. For a given machine this heavily restricts the
size of problem able to be computed and so sparse matrices were developed to
save space at the cost of more time. Loosely speaking, a matrix is considered
’sparse’ if it contains ≈ 10% non-zero elements.

The general idea is to save space by storing fewer zero elements (since they
generally do not matter in any calculation). There are three broadly accepted
sparse matrix representations used:

3.2 Coordinate Format (COO)

The most intuitive sparse matrix format specifies each non-zero element as a
triple

Ai,j = (i, j, val) (2)

For example, the matrix,

X =

0 0 1
3 0 2
0 0 0

 (3)

becomes
X = [(0, 2, 1), (1, 0, 3), (1, 2, 2)] (4)

This representation while simple can be cumbersome when wanting to look for
all values in a particular row or column.

3.3 Compressed Sparse Row Format (CSR)

The compressed sparse row format stores a matrix with three arrays:

• NNZ: The non-zero values stored in row-major order (left to right, top to
bottom)

• IA: The number of elements in each row. An extra element IA[0] = 0 is
used by convention. This array can be used to index into the NNZ array
for each i-th row

2

• JA: Stores the column index of each non-zero element.

For example, the matrix,

X =

0 0 1
3 0 2
0 0 0

 (5)

becomes

NNZ = [1, 3, 2] (6)

IA = [0, 1, 3, 3] (7)

JA = [2, 0, 2] (8)

3.4 Compressed Sparse Column Format (CSC)

The compressed sparse column format is very similar to CSR format except
the non-zero values are stored in a column-wise ordering, the IA array corre-
sponds to the extent of each column and the JA array provides row indices. For
example, the matrix,

X =

0 0 1
3 0 2
0 0 0

 (9)

becomes

NNZ = [3, 1, 2] (10)

IA = [0, 1, 1, 3] (11)

JA = [1, 0, 1] (12)

3

4 Tasks

Your code will be a simple command-line application that will:

• Read in up to two dense matrix files

• Convert this matrix (these matrices) to a suitable sparse format.

• Perform a single matrix algebra routine specified by command-line

• Time the whole process and log the results to a file

• Cleanup all memory usage and terminate

We elaborate on the tasks required of you (and your code) below:

4.1 Reading in Files

Depending on the algebra operation requested one or two matrices will be re-
quired. These should be provided by command-line as .in files (see Section
B).

4.2 Sparse Matrix Representation

You have a choice of using any of the three sparse matrix representations pre-
sented in Section 3. There will be pros and cons to each representation depend-
ing on what operation is requested; you will need to comment on this in your
report.

4.3 Matrix Algebra Routines

We request five different operations to be implemented. They range in difficulty
(and are presented in roughly increasing difficulty). Marks are distribution
accordingly.

4.3.1 Scalar Multiplication

Type: Single matrix
Command-line argument: --sm \%f

For a matrix A and scalar (float) α compute:

Y = α ·A (13)

i.e. multiply each element of A by α.
The command line argument expects the scalar to be supplied immediately after
(either an int or float). You only need to consider a floating point scalar when
using floating-point matrices.

4

4.3.2 Trace

Type: Single matrix
Command-line argument: --tr
The trace(t) of a matrix A is given as:

t =
∑
i=1,n

(Ai,i) (14)

i.e. the sum of each diagonal element. Note: the Trace is only well defined for
square matrices.

4.3.3 Matrix Addition

Type: Double matrix
Command-line argument: --ad
For two matrices A and B (of identical dimensions (n,m) their pair-wise sum
is:

Yi,j = Ai,j +Bi,j∀i, j|i ≤ n, j ≤ m (15)

i.e. add each element of both matrices together.

4.3.4 Transpose

Type: Single matrix
Command-line argument: --ts
The transpose of matrix A (denoted A′) is given by:

A′
j,i = Ai,j∀i ≤ n, j ≤ m (16)

i.e. The rows of A become the columns of A′ and vice-versa for the columns.

4.3.5 Matrix Multiplication

Type: Double matrix
Command-line argument: --mm

Note: Sparse matrix multiplication is a notorious bottle-neck in many codes;
achieving speedup will be difficult and that is okay. Focus on implementing a
simple, correct solution and working from there.

4.4 Timing and Logging

Your code is required to time the following events (in seconds)

• The time to load in and convert any matrix files.

• Time to execute the requested operation

5

This information must be logged to a .out file with the a header containing the
following information:

• Operation requested

• File1

• File2 (if needed)

• Number of threads used

Followed by the result of your computation (single value or dense-matrix de-
pending on the operation).

4.5 Report

Your report should be fairly brief but covers the following:

• The operation system used in your submission.

• The sparse matrix representation(s) used

• For each matrix operation implemented:

– Description of the parallelism implemented

– Some informal reasoning about expected run-time and scalability

– Testing results

– Comment on the performance observed

We expect the report to be around six pages (including figures).

4.6 Restrictions

We place a number of restrictions on the type of matrix your solution will
encounter and the design of your solution. They are briefly summarised below
as a reminder

• Input File format - See App. B for a detailed description of the matrix
file-type we use.

• Log-File format - See App. D for an example. Some further clarifications:

– Operation requested - Provide the command line argument fed to the
program as the label

– Input Filenames - Provide the command line argument fed to the
program as the label

– Number of threads - Given as an integer

– Output filename - Provide the date and time of execution plus your
student number(s) .out as the filename

6

– Computation result - Finally, output the result of the requested op-
eration on the provided matrix (matrices). Floating point results will
be tested up to 1e− 6 difference

– We provide example output files for all types of operations for refer-
ence

• Matrix Datatype

– Integers

– Floats

– You will never be required to perform operations involving matrices
of different data-types

• Command-Line Arguments - See App. C for a detailed description. We
guarantee that we will test your solution with arguments presented in the
order described and will only provide valid command line arguments.

• Input matrices - We provide a number of guarantees in our test matrices

– All command line arguments provided will be valid

– All input files will be well-formed, valid and of a single data-type

– The dimensions of tested matrices will range in powers of two in the
range [2, 16, 384]

– Input matrices are not guaranteed to be square

– Input matrices are not guaranteed to be the correct dimensions for
the requested operation (e.g. we may ask for the Trace of a non-
square matrix or addition of two matrices differing in dimension(s))

7

Marking Rubric
Critera Highly

Satisfactory
Satisfactory Unsatisfactory

File Reading (5) Successfully reads
in matrix files in
the format
specified.
Implements
arguments as
specified.

Reads in matrix
files correctly.

Attempts to read
matrix files and
attempts to
implement
command line
arguments.

Fails to read
matrix files and
does not
implement correct
command line
arguments.

Sparse matrix
representation
(10)

Implements
suitable sparse
matrix formats
and coverts from
dense to sparse
formats correctly.

Uses appropriate
sparse matrix
formats and
converts from
dense to sparse
formats correctly.

Attempts to
convert from
dense to sparse
formats but is not
always correct.

Does not convert
from dense to
sparse matrix
formats correctly.

Scalar
multiplication (5)

Able to multiply
both integer and
floating point
sparse matrices by
a floating point
scalar appropriate
threading.

Is able to multiply
both integer and
floating point
maitrices by a
floating point
scalar correctly.

Is able to multiply
one type of sparse
matrix by one type
of scalar correctly.

Is unable to
multipy a sparse
matrix by a scalar.

Trace (5) Computes the
trace of both
integer and
floating point
sparse matrices
using appropriate
threading.

Can compute the
trace of integer
and floating point
matrices correctly.

Computes the
trace of one type
of sparse matrix
correctly.

Is unable to
compute the trace
of a sparse matrix.

Matrix addition
(10)

Correctly adds
two sparse
matrices together.
Exits if not
possible using
appropriate
thredaing.

Adds two integer
or two floating
point matrices
together correctly.
Exits gracefully if
addition is not
possible.

Correctly adds
sparse matrices
together. Does not
exit gracefully if
not possible.

Is unable to add
two sparse
matrices together
correctly.

Transpose (10) Computes the
transpose of
integer and
floating point
sparse matrices
using appropriate
threading.

Computes the
transpose of
integer and
floating point
matrices correctly.

Computes the
transpose of one
type of sparse
matrix correctly.

In unable to
compute the
transpose of a
sparse matrix
correcly.

Matrix
multiplication (15)

Correctly
multiplies two
matrices together
using appropriate
threading. Exits
gracefully if not
possible

Correctly
multiplies two
integer or two
floating point
matrices. Exits
gracefully if
multiplication is
not possible.

Attempts to
multiply two
sparse matrices
together. Does not
exit gracefully if
not possible.

Is unable to
multiply two
sparse matrices
together.

Log file format
(10)

Output files
conform to the
assignment
specification

Output files
contain the correct
header and content
in all cases.

Produces output
files containing
most information.
Some minor
formatting issues
present.

Does not write
correct content to
output files.

Report (30) Addresses all
required points
and is presented
clearly. Testing is
thorough and
clear.

Report addresses
all points
effectively and is
presented clearly.
Performance
testing is thorough
and meaningful.

Report does not
address all points
required or some
minor readiblity
issues.

Report addresses
few points or is
very difficult to
read.

A Some words of advice

Writing, testing and reporting on a piece of threaded software will feel slightly
different to your previous projects. Here are some humbly offered tips to get
started:

• Start early - Said with every project but is especially true here. You will
need time to test your final solution

• Practice good code management - Write your code in multiple files, com-
ment as you go, use a good text editor and a debugger etc. Make life easy
for yourself

• On sparse matrices - Start by thinking carefully about how you will man-
age your data separate to the matrix functions

• On matrix functions - Focus on correctness to begin with. A ’sub-optimal’
solution that exists will be more useful to you than a fantastic solution
that you have not finished. Get something simple working, then make it
fast.

• On command-line-arguments and log files - Read the specification carefully
and clear up any possible confusions early.

• On the report - We are most concerned with your testing method and
results. Again, start early while writing your code.

Finally, feel free to ask the lab demonstrators and lecturer for advice if you get
stuck.

B Dense Matrix File Format

There exist many sophisticated methods to store matrices in industry. For the
sake of simplicity however we will use a plain-text representation of the data.
Our format is quite simple

• Datatype: ”int” or ”float”

• Number of rows: An integer n > 0

• Number of columns: An integer m > 0

• n×m space-separated integers/floats representing each value

For example int1.in

int

4

4

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

10

This file represents the identity matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (17)

For an example of a float matrix float1.in

float

4

4

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.75

This file represents the following matrix
1 0 0 0
0 0 0 0
0 1.0 0.5 0
0 0 0 0.75

 (18)

C Command Line Arguments Glossary

To give direction in how to design your solution we require that your solution
implements specific command line arguments (CLAs). You are allowed to im-
plement more than these but these are a required minimum.

• Several operators, determines what matrix operation will be performed
(have been discussed previously)

– --sm - Scalar multiplication

– --tr - Trace

– --ad - Addition

– --ts - Transpose

– --mm - Matrix multiplication

• -f %s (%s) depending on the operation requested, one or more matrix
files will need to be passed

– Example: ./mysolution.exe --sm 2.0 -f matrix1.in

– Example: ./mysolution.exe --mm -f matrix1.in matrix2.in

• -t %d Threads. If present specifies the number of execution threads to
use.

• -l Log. If present, results will be logged to file

Again, you are allowed to add extra command line arguments but for full marks,
our specified options must be implemented.

11

D Log-file Format

In addition to the specified command line arguments we also have specific re-
quirements for the .out files your solution must produce. Timing values are
not accurate and are merely there for example. The following file would be the
result of calling

./mysolution.exe --tr -f int1.in -t 4

at 11 : 59pm on the 22nd of August.
Filename: 21726929_22082019_2359_tr.out

tr

int1.in

4

4

0.001

0.0001

The following file would be the result of calling

./mysolution.exe --mm -f float1.in float2.in -t 4

at 12 : 00am on the 23rd of August.
Filename: 21726929_23082019_0000_mm.out

mm

float1.in

float2.in

4

float

4

4

0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.75 0.375 0.0 0.0 0.0 0.0 0.5625

0.002

0.003

We have included a number of other example output files for your interest.

12

