
Knowledge Representation Laboratory 8:

OWL

CITS3005

This laboratory will involve writing some basic OWL ontologies in Protégé . The following pages contain
an example ontology taken from Ontologies with Python Programming OWL 2.0 Ontologies with Python and

Owlready2, by Lamy Jean-Baptiste.
Protégé is a graphical ontology editor that can be downloaded from https://protege.stanford.edu/.

1. Go through the getting started guide at http://protegeproject.github.io/protege/getting-started/
to familiarise yourself with the key elements of the interface.

2. Build a pizza ontology, following the directions at
https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes.

3. Run through see the Bacteria Ontology on the following pages and the attempt the following exercises:

(a) In the bacteria ontology, add an individual of the Staphylococcus class having a rod shape. Run the
reasoner; what do you observe?

(b) Using the Protégé editor, extend the ontology of bacteria by adding the catalase test. This biological
test helps to identify bacteria, and its result can be positive or negative. The catalase test is positive
for Staphylococci and Pseudomonas, negative for Streptococci.

(c) Using the Protégé editor, extend the bacteria ontology by adding the colour of the bacteria. Staphy-
lococci are white or golden (this is the famous Staphylococcus aureus), Streptococci are translucent,
and Pseudomonas are generally coloured (that is to say, not white).

(d) Using the Protégé editor, add a new class of bacteria: Mycobacterium leprae (Hansen’s bacillus,
which causes leprosy). This species of bacteria is Gram positive, rod shape, and isolated or grouped
in pairs. The catalase test is not relevant for this bacterium because it is very di�cult to grow in
vitro. The colour is yellow. Finally, all of these characteristics are su�cient to identify the bacteria.

(e) In the Protégé editor, add an individual of the class Bacterium, rod shape, isolated, and yellow in
colour. Check that this individual is properly classified as Mycobacterium leprae.

(f) In the ontology of bacteria, add a disjunction between the di↵erent subclasses of Bacteria (Staphylo-
cocci, Streptococci, Pseudomonas, etc.). Does this change the result of the reasoning on the unknown
bacterium?

1

53

3.3 Exam
ple: An ontology of bacteria

In
 order to illustrate the con

struction
 of an

 ontology an
d the possibilities

it can
 offer, w

e w
ill take as an

 exam
ple an

 ontology of bacteria. T
his

ontology aim
s to describe bacteria an

d their physical an
d chem

ical
characteristics. W

e w
ill, how

ever, lim
it ourselves to a few

 sim
ple

characteristics an
d a sm

all num
ber of species for obvious reason

s of
brevity. I apologize in

 advan
ce to m

y biologist readers for the som
etim

es
crude sim

plification
s that w

e w
ill have to carry out—

the con
ception

 of a
com

plete an
d exact ontology of bacteria w

ould con
stitute a real research

w
ork in

 its ow
n

 right!
W

e w
ill only retain the follow

ing three characteristics for describing
bacteria:

1.

Their shape: B
acteria can be round or rod shaped

(elongated shape).

2.

Their grouping: B
acteria can be isolated from

 each
other or grouped in pairs, in clusters, or in chains,
w

hich can be sm
all or long chains.

3.

Their G
ram

 status: G
ram

 + bacteria are colored by
the G

ram
 test, unlike G

ram
 – bacteria.

Figure 3-1 show
s a classification of bacteria according to these

characteristics. R
ound bacteria are called “coccus”, and rod ones are called

“bacillus”.
In addition, w

e w
ill only retain the follow

ing three fam
ilies of

pathogenic bacteria:

1.

Staphylococcus: R
ound shape, grouped in clusters,

G
ram

 +

2.

Streptococcus: R
ound shape, grouped in sm

all
chains but never isolated, G

ram
 +

CHAPTER 3
 OW

L ONTOLOGIES

54

3.

Pseudom
onas: R

od shape, grouped in pairs or
isolated, G

ram
 –

Thereafter, w
e w

ill consider that a bacterium
 can have several

groupings: indeed, the observation never relates to a single bacterium

but on several. It is therefore com
m

on to observe several groupings for
the sam

e species of bacteria: for exam
ple, Staphylococci w

hich group
in clusters m

ay occasionally be present singly or in pairs. H
ow

ever,
Streptococci are never isolated but alw

ays grouped (in pairs, in clusters,
and, of course, preferably in chains).

Figure 3-1. Sim
ple classification of bacteria according to three

criteria

CHAPTER 3
 OW

L ONTOLOGIES

55

Figure 3-2 gives the class diagram
 in U

M
L (U

nified M
odeling

Language). Please note, how
ever, that ontologies allow

 m
ore inform

ation
to be represented than w

hat appears on the class diagram
. For exam

ple,
(practically) all G

ram
 + bacteria of round form

 grouped in clusters are
Staphylococci. For this species, it w

ill therefore be possible to deduce the
class of bacteria, its shape, grouping, and G

ram
 status. O

n the contrary,
Pseudom

onas are not the only bacteria of rod shape, isolated, or in pairs.
This is an im

portant difference because it w
ill im

pact autom
atic reasoning;

how
ever, a “classic” object m

odel (like that of P
ython; see 2.9) does not

allow
 taking it into account.

A
t the very beginning of this chapter, w

e defined an ontology as “as
independent as possible from

 the intended application”. For exam
ple, the

ontology of bacteria could have m
ultiple applications, such as:

•
C

reate an encyclopedic w
ebsite describing the

properties of the different bacteria (see 4.12)

•
Facilitate the entry or extraction of inform

ation on
bacteria (see 5.14)

Figure 3-2. U
M

L class diagram
 of the bacteria ontology

CHAPTER 3
 OW

L ONTOLOGIES

56

•
H

elp identify an unknow
n bacterium

 (see 7.7)

•
Enrich w

ith inform
ation on bacteria already existing

ontologies or resources, such as U
M

LS (see 9.10)

•
Facilitate statistical studies in a hospital by allow

ing
the grouping of sim

ilar bacteria (to answ
er questions

such as “has the num
ber of infections w

ith anaerobic
bacteria increased in the last m

onth?”)

Each of these applications could be achieved w
ith a specific know

ledge
base. For exam

ple, the identification of bacteria could be done w
ith a

know
ledge base com

posed of rules like the follow
ing one:

IF shape = round A
N

D
 grouping = in cluster A

N
D

gram

 = ’+’

TH
EN

 staphylococcus

H
ow

ever, an ontology is capable of achieving all these applications
from

 the sam
e source of know

ledge, w
hich greatly facilitates the

m
aintenance and reuse of this know

ledge.
In the follow

ing sections, w
e w

ill build a (sm
all) form

al ontology in
O

W
L from

 this classification of bacteria, using the Protégé editor.

3.4 Creating a new
 ontology

W
hen you launch the Protégé editor, it autom

atically creates a new
 em

pty
ontology. The editor includes several tabs; by default, the A

ctive O
ntology

tab is displayed.

CHAPTER 3
 OW

L ONTOLOGIES

57

In this tab, w
e w

ill define the IR
I of our ontology. The IR

I is the
“nam

e” of the ontology, and this nam
e takes the form

 of an Internet
address. Please note, how

ever, the IR
I m

ust be in the form
 of an Internet

address, but the ontology does not need to be available on the Internet
at this address! It is thus usual to create ontologies w

hose IR
I begins w

ith
“http://www.semanticweb.org/” or “http://www.test.org/”, w

ithout
holding the rights to these Internet dom

ain nam
es.

W
e w

ill call our bacteria ontology:

http://lesfleursdunormal.fr/static/_
downloads/bacteria.owl

(N
B

: This Internet address points to m
y personal site, on w

hich you
can actually dow

nload the full ontology). You can enter this IR
I in the

“O
ntology IR

I” field of Protégé, as show
n in the follow

ing screenshot:

You can then save the ontology in R
D

F/X
M

L form
at, in a file that

you w
ill call “bacteria.ow

l”. D
o not forget thereafter to regularly save the

ontology during its edition.

CHAPTER 3
 OW

L ONTOLOGIES

58 3.4.1 Classes
In Protégé, the “C

lasses” tab allow
s you to navigate through existing classes

and to create new
 classes. The buttons

 and
 allow

 you to create a
new

 daughter or sister class of the selected class, respectively. U
sing these

buttons, w
e can create a class hierarchy corresponding to our previous

U
M

L m
odel, as in the follow

ing screenshot:

In ontologies, inheritance is also called “is-a relationship”: for exam
ple,

w
e can say that a Pseudom

onas is a B
acterium

.

3.4.2 Disjoints
A

n im
portant difference betw

een an ontology and an object m
odel is

as follow
s: in an ontology, an individual can belong to several classes.

Therefore, a given shape could very w
ell be both round and rod! The O

pen-
W

orld assum
ption allow

s this type of interpretation: anything that is not
form

ally prohibited is considered possible.

CHAPTER 3
 OW

L ONTOLOGIES

59

In our ontology of bacteria, w
e w

ant to prohibit this: a given shape is
either round or rod, but cannot be both at the sam

e tim
e. For this, w

e m
ust

declare the tw
o classes R

ound and R
od as disjoint. Tw

o disjoint classes
cannot have individuals in com

m
on.

The disjoint classes are declared in the “D
escription” panel of the

“C
lasses” tab. W

e w
ill select the R

od class and then click the “+” button to
the right of the “D

isjoint w
ith” section and choose the R

ound class in the
“C

lass hierarchy” tab of the dialog box. You should get the follow
ing result:

The tw
o classes are now

 disjoint. N
ote that it is not necessary to declare

the second class (R
ound) disjoint from

 the first (R
od): this is autom

atically
deduced from

 the previous declaration.
In the sam

e w
ay, the InSm

allC
hain class m

ust be declared disjoint
from

 the InLongC
hain class.

The Isolated, InPair, InC
luster, and InC

hain classes m
ust be declared

as pairw
ise disjoint: that is to say that any pair m

ade up of tw
o classes

from
 this list are disjoint. To do this, sim

ply select one of the classes

CHAPTER 3
 OW

L ONTOLOGIES

60 (e.g., Isolated), click the “+” button to the right of “D
isjoint w

ith”, and select
the other three classes sim

ultaneously (by pressing the control key, not by
clicking three tim

es the “+” button!). The result should be as follow
s:

A
ttention, concerning the subclasses of G

rouping, the disjoint does
not m

ean that a given bacterium
 cannot be observed w

ith tw
o different

groupings (e.g., Isolated or InPair, like Pseudom
onas). The disjoint only

m
eans that a given grouping cannot be both Isolated and InPair, but it does

not prohibit a bacterium
 from

 having tw
o distinct groupings, one of the

class Isolated and the other of the class InPair.
In the sam

e w
ay, the classes B

acteria, Shape, and G
rouping m

ust be
declared disjoint: for exam

ple, a geom
etric shape cannot be the sam

e
thing as a bacterium

! It m
ay seem

 obvious to a hum
an, but rem

em
ber

that it is not to a m
achine. O

ntologies seek to form
alize know

ledge
com

prehensively, including the m
ost obvious piece of know

ledge.

CHAPTER 3
 OW

L ONTOLOGIES

61

3.4.3 Partitions
W

e have defined tw
o classes of shapes, R

ound and R
od, w

hich are now

disjoint. H
ow

ever, w
e have not excluded the existence of other shapes,

for exam
ple, triangular. A

gain, the O
pen-W

orld assum
ption m

akes such
interpretations possible. H

ow
ever, there are only tw

o possible shapes
for a bacterium

: R
ound or R

od. W
e m

ust declare that all Shape is either
R

ound or R
od: it is a partition (w

e w
ill say that the classes R

ound and R
od

constitute a partition of the class Shape).
To do this, w

e select the Shape class, and, in the “D
escription” panel,

w
e click the “+” to the right of “SubC

lass O
f”. This “+” button allow

s you to
add superclasses to the class; these can be nam

ed classes, but also O
W

L
logical constructors, like here. In the dialog box that appears, w

e select
the “C

lass expression editor” tab, and w
e enter the constructor “R

ound or
R

od”. You should obtain the follow
ing result:

This constructor “or” allow
s tw

o classes to be linked w
ith a logical

O
R

 (also called a union, w
hen w

e think in set logic). It m
eans that the

Shape class is a subclass of the union of the R
od and R

ound classes.
C

onsequently, any shape is now
 either round or rod, and there are

therefore no other possible shapes.
In the sam

e w
ay, w

e m
ust partition InC

hain (SubC
lass O

f
“InSm

allC
hain or InLongC

hain”) and G
rouping (SubC

lass O
f “Isolated or

InPair or InC
luster or InC

hain”).

CHAPTER 3
 OW

L ONTOLOGIES

62 3.4.4 Data properties
W

e w
ill now

 deal w
ith the properties. In ontologies, unlike object-oriented

program
m

ing, properties are defined independently of classes. O
W

L
considers three categories of properties: data properties w

hose values are
data (num

bers, texts, dates, B
ooleans, etc.), object properties w

hose values
are entities (i.e., ontology individuals), and annotation properties w

hich
do not intervene in sem

antics or reasoning and can therefore m
ix data and

entities w
ithout restriction.

In Protégé, the “D
ata Properties” tab allow

s you to create data
properties. O

W
L supports inheritance betw

een properties, in addition to

inheritance betw
een classes; how

ever, w
e w

ill not use it here. U
sing the

and
 buttons, w

hich w
ork sim

ilarly to those for classes, w
e w

ill create
tw

o new
 data properties called “gram

_positive” and “nb_colonies”. This
last property w

ill not be really useful to describe bacteria, but it w
ill serve

as an exam
ple of num

eric data property.
You should arrive at the follow

ing result:

CHAPTER 3
 OW

L ONTOLOGIES

63

Each data property can be configured by specifying:

•
Its dom

ain (“D
om

ains (intersection)” in Protégé): This
is the class for w

hich the property is defined.

•
Its range (“R

anges”): This is the associated datatype. It
can be an integer or a real num

ber, B
oolean, character

string, date, and so on. Please note: to w
ork w

ith
P

ython and O
w

lready afterw
ard, it is preferable to use

the types integer for integer num
bers and decim

al for
real num

bers (refer to Table 4-1 for m
ore inform

ation).
A

ttention, the range of an O
W

L property has nothing to
do w

ith the P
ython range() function w

hich allow
s you

to create lists of num
bers (see 2.6).

•
Its functional status (“Functional” checkbox): W

hen a
property is functional, a given individual can have (at
m

ost) only one value for this property. O
n the contrary,

if the property is not functional, a given individual can
have several values.

D
om

ain
 an

d ran
ge are optional. It is possible to defin

e several
dom

ain
s an

d ran
ges; how

ever, it is the intersection
 of the different

dom
ain

s/ran
ges that is con

sidered an
d n

ot their un
ion

, w
hich is often

n
ot the desired result. For exam

ple, con
sider the property “has_shape”

an
d tw

o classes, B
acteria an

d V
iruses, of w

hich in
dividuals can

 have a
shape. If w

e defin
e tw

o dom
ain

s, B
acteria an

d V
irus, on

ly in
dividuals

belongin
g to both the B

acteria class an
d the V

iruses class can
 have a

shape! If on
e w

ants to say that all V
iruses an

d all B
acteria m

ay have a
shape, it is n

ecessary to defin
e the dom

ain
 as bein

g the union of classes,
that is to say, “B

acterium
 or V

irus”.

CHAPTER 3
 OW

L ONTOLOGIES

64

H
ere, w

e w
ill configure our tw

o data properties as follow
s:

•
gram

_positive: Functional (check the box), dom
ain:

B
acteria, range: B

oolean

•
nb_colonies: Functional (check the box), dom

ain:
B

acteria, range: integer

3.4.5 Object properties
In Protégé, the “O

bject Properties” tab allow
s you to create object

properties. U
sing the

 and
 buttons, w

e create four new
 object

properties called “has_shape”, “has_grouping”, “is_shape_of”, and “is_
grouping_of”, as in the follow

ing screenshot:

Each object property can be configured by specifying:

•
Its dom

ain (“D
om

ains (intersection)” in Protégé): This
is the class for w

hich the property is defined.

CHAPTER 3
 OW

L ONTOLOGIES

65

•
Its range (“R

anges (intersection)”): This is the class of
associated objects.

A
s before, if several dom

ains or ranges are indicated,
it is their intersection that is considered.

•
Its inverse property (“Inverse O

f”): The inverse property
corresponds to existing relationships w

hen the
property is read backw

ard; if a property exists betw
een

A
 and B

, then its inverse property exists betw
een B

and A

. For exam
ple, the property “is_shape_of” is the

inverse of “has_shape”: if a bacterium
 X

 has the shape
A

, then A
 is the shape of X

. These inverse properties
w

ill be useful in P
ython to navigate using the relation

has_shape/is_shape_of in both directions.

•
Its functional status (“Functional” checkbox): W

hen a
property is functional, a given individual can have (at
m

ost) only one value for this property. O
n the contrary,

if the property is not functional, a given individual can
have several values.

•
Its inverse functional status (“Inverse functional”
checkbox): A

 property is inverse functional if the
inverse property is functional. For exam

ple, the
property is_father_of is inverse functional: a m

an A
 can

be the father of several children B
, C

, D
, and so on, but

for each of these children, A
 is their only father.

•
Its transitive status (“T

ransitive” checkbox): A
 property

is transitive if it is possible to “chain” this property on
several objects. For exam

ple, the property “is_larger_
than” is transitive: if an individual A

 is larger than B
 and

if B
 is him

self larger than C
, then w

e can deduce that A

is larger than C
.

CHAPTER 3
 OW

L ONTOLOGIES

66

•
Its sym

m
etric status (“Sym

m
etric” checkbox): A

property is sym

m
etrical if it can be read indifferently in

both directions (it is thus its ow
n inverse). For exam

ple,
the property “is_m

arried_to” is sym
m

etrical: if person
A

 is m
arried to person B

, then B
 is m

arried to A
.

•
Its asym

m
etric status (“A

sym
m

etric” checkbox): A

property is asym
m

etrical if it is never sym
m

etrical. For
exam

ple, the property “has_father” is asym
m

etric: if
A

 has for father B
, then it is not possible that B

 has for
father A

.

•
Its reflexive status (“R

eflexive” checkbox): A
 property

is reflexive if it alw
ays applies betw

een any object and
itself. For exam

ple, the property “know
s” is reflexive:

each person X
 know

s him
self.

•
Its irreflexive status (“Irreflexive” checkbox): A

 property
is irreflexive if it is never reflexive. For exam

ple, the
property “is_m

arried_to” is irreflexive: one cannot be
m

arried to him
/herself.

H
ere, w

e w
ill configure our object properties as follow

s:

•
has_shape: Functional (check the box), dom

ain:
B

acteria, range: Shape

•
has_grouping: N

onfunctional (do not check the box),
dom

ain: B
acteria, range: G

rouping

•
is_shape_of: N

onfunctional, dom
ain: Form

, range:
B

acterium
, inverse: has_shape

•
is_grouping of: N

onfunctional, dom
ain: G

rouping,
range: B

acteria, inverse: has_grouping

CHAPTER 3
 OW

L ONTOLOGIES

67

N
ote that it is enough to define the inverse property of only one of the

tw
o properties of the couple: for exam

ple, here, w
e do not need to specify

that has_shape has for inverse is_shape_of. This can be easily deduced
from

 the inverse property of is_shape_of.

3.4.6 Restrictions
N

ow
 that w

e have created the properties, w
e can go back to the classes and

add restrictions, based on these properties.
The restrictions are added in the “C

lasses” tab of Protégé, by clicking
the “+” button to the right of “SubC

lass O
f” in the “D

escription” section.
“SubC

lass O
f” allow

s you to add superclasses to the class; it can be an O
W

L
nam

ed class created as before but also constructors, such as partitions (see
3.4.3) but also restrictions.

For exam
ple, the bacterium

 Pseudom
onas has a G

ram
 negative

staining. This results in O
W

L by the follow
ing restriction: the B

oolean
property “gram

_positive” m
ust have the false value. This restriction is

assim
ilated to a class: it is the class of bacteria having the false value for the

“gram
_positive” property. W

e can therefore define the Pseudom
onas class

as a subclass of this restriction class.
O

W
L offers several categories of restrictions. The follow

ing restrictions
are used to m

odel the relationships betw
een tw

o classes:

•
Existential restriction (som

e): It represents the class of
individuals w

ho have at least one relation of a certain
property w

ith an individual belonging to a certain class.

This restriction is w
ritten “property som

e class” in
Protégé. For exam

ple, w
e have seen (Figure 3-1) that

Pseudom
onas all have a R

od shape. R
od is a class,

w
hich m

eans that there m
ight be several subtypes

CHAPTER 3
 OW

L ONTOLOGIES

68

of the R
od shape (e.g., w

e could distinguish regular
and irregular rod shapes). This restriction w

ill
therefore be w

ritten “has_shape som
e R

od”.

•
C

ardinality restrictions (exactly, m
in, m

ax): It
represents the class of individuals w

ho have a certain
num

ber of relations of a certain property w
ith an

individual belonging to a certain class. The num
ber can

be exact (exactly) or a m
inim

um
 (m

in) or m
axim

um

(m
ax) value.

These restrictions are w
ritten “property exactly

num
ber class”, “property m

in
 num

ber class”, or
“property m

ax num
ber class” in Protégé. It is a m

ore
specific version of the existential restriction: an
existential restriction is equivalent to a restriction of
cardinality “m

in 1”.

•
U

niversal restriction (only): It represents the class
of individuals w

ho have only a relation of a certain
property w

ith one (or m
ore) individuals belonging to a

certain class (including its subclasses).

This restriction is w
ritten “property only class” in

Protégé. For exam
ple, the Pseudom

onas is observed
only w

ith a R
od shape, w

hich w
e w

ill w
rite “has_

shape only R
od”.

B
e careful not to confuse the universal restriction

“has_shape only R
od” w

ith the previous existential
restriction, “has_shape som

e R
od”. The existential

restriction states that all Pseudom
onas have at least

one R
od shape, w

hile the universal restriction states
that all Pseudom

onas have no other shape than

CHAPTER 3
 OW

L ONTOLOGIES

69

R
od. It is quite com

m
on to com

bine tw
o sim

ilar
restrictions, one universal and the other existential,
w

ith the sam
e target class.

O
n the other hand, w

e w
ill not use a universal

restriction for grouping, because w
e have seen

previously that bacteria can occasionally present
other groups than their typical grouping.

The follow
ing restriction m

akes it possible to m
odel a relation betw

een
a class and an individual or a datatype value:

•
Value restriction (value, som

etim
es called role-filler): It

represents the class of individuals w
ho have a certain

value for a certain property.

This restriction is w
ritten “property value

individual/datatype” in Protégé. For exam
ple,

Pseudom
onas is alw

ays associated w
ith G

ram

negative staining. This restriction w
ill be w

ritten
“gram

_positive value false”.

To add restrictions in Protégé, after clicking the “+” button, you can:

•
Either m

anually enter the restriction in the “C
lass

expression editor” tab (tip: the tabulation key allow
s

you to com
plete a partial entry, e.g., “B

act” for
“B

acteria”),

•
O

r use the “O
bject restriction creator” or “D

ata
restriction creator” tab (depending on the type of
property) and choose the values from

 the drop-dow
n

lists.

CHAPTER 3
 OW

L ONTOLOGIES

70

To further describe the Pseudom
onas class, w

e w
ill add the follow

ing
restrictions:

•
“has_shape som

e R
od”

•
“has_shape only R

od”

•
“gram

_positive value false”
1

N
ote that w

e have used an existential and a universal restriction for
the shape, since R

od is a class and not an individual or a data, and on
the contrary a value restriction for the G

ram
 coloring, because false is a

datatype value.

1 A
ttention, in O

W
L, false and true are w

ritten w
ithout capital letters, w

hile in
P

ython they are w
ritten w

ith (i.e., False and True; see 2.4.2).

CHAPTER 3
 OW

L ONTOLOGIES

71

3.4.7 Union, intersection, and com
plem

ent
O

W
L also allow

s the use of logical operators as constructors. These
operators have different nam

es depending on w
hether they are considered

from
 a logical point of view

 or from
 a set theory point of view

; how
ever, it is

indeed the sam
e thing. Three operators are available:

•
Logical A

N
D

 or intersection: These are individuals
belonging to several classes at the sam

e tim
e.

The intersection is w
ritten “class1 and class2” in

Protégé. O
f course, m

ore classes can be included in
the intersection, for exam

ple, “class1 and class2 and
class3”.

•
Logical O

R
 or union: These are individuals belonging

to a class am
ong several.

The union is w
ritten “class1 or class2” in Protégé.

Sim
ilarly, unions are not lim

ited to tw
o classes, for

exam
ple, “class1 or class2 or class3”. For exam

ple,
the Pseudom

onas can have tw
o groupings: Isolated

and InPair. W
e can therefore build the union of

these tw
o classes, w

hich w
ill be w

ritten “Isolated or
InPair”.

Furtherm
ore, w

e have already used the union
previously, to express the partitions (see 3.4.3).

•
Logical N

O
T

 or com
plem

ent: These are individuals
w

ho do not belong to a given class. The com
plem

ent is
w

ritten “not class” in Protégé.

O
W

L also allow
s you to com

bine logical operators w
ith restrictions and

classes, by grouping the different elem
ents in parentheses.

CHAPTER 3
 OW

L ONTOLOGIES

72

In order to refine the Pseudom
onas class, w

e w
ill add the follow

ing
superclass:

•
“has_grouping som

e (Isolated or InPair)”

This restriction states that all Pseudom
onas have at least one Isolated

or InPair grouping.

3.4.8 Definitions (equivalent-to relations)
In the previous tw

o sections, w
e used restrictions and constructors to

describe the properties of the class. H
ow

ever, this is not a definition in the
form

al sense, because w
e have not fully and uniquely described the class.

For exam
ple, all Pseudom

onas have a R
od shape, but not all bacteria w

ith
a R

od shape are Pseudom
onas!

O
W

L allow
s you to give a class a form

al equivalen
ce defin

ition
, via

an
 equivalen

ce relation
. T

hen
, the defin

ed classes allow
 reclassifying

in
dividuals during autom

atic reason
ing (w

hich w
e w

ill see later in
section

 3.5 an
d in

 C
hapter 7).

CHAPTER 3
 OW

L ONTOLOGIES

73

For exam
ple, the C

occus class is the class of bacteria w
ith a R

ound
shape (i.e., at least one R

ound shape and only R
ound shape). W

e can
therefore define it as follow

s:

•
C

occus: “B
acterium

 and (has_shape som
e R

ound)

and (has_shape only R
ound)”

N
ote that, unlike the restrictions and constructors that w

e used
previously as a superclass for Pseudom

onas, equivalences m
ust be defined

“in one piece”. W
e cannot divide the definition into three parts “B

acteria”,
“has_shape som

e R
ound”, and “has_shape only R

ound” unless w
e change

its m
eaning entirely!

To add the restriction in Protégé, click the “+” button to the right
of “Equivalent To”, then m

anually enter the restriction in the “C
lass

expression editor” tab (again, you can use the tabulation key for
com

pletion).

CHAPTER 3
 OW

L ONTOLOGIES

74

Protégé m
arks the defined classes w

ith a different icon: a brow
n

circle in w
hich appears the sym

bol “≡
” w

hich m
eans “equivalent to” in

description logics.
Sim

ilarly, w
e w

ill define the B
acillus, Staphylococcus, and

Streptococcus classes as follow
s:

•
B

acillus: “B
acterium

 and (has_shape som
e R

od)

and (has_shape only R
od)”

•
Staphylococcus: “B

acterium
 and (has_shape som

e R
ound)

and (has_shape only R
ound)

and (has_grouping som
e InC

luster)

and (gram
_positive value true)”

•
Streptococcus: “B

acterium
 and (has_shape som

e R
ound)

and (has_shape only R
ound)

and (has_grouping som
e InSm

allC
hain)

and (has_grouping only (not Isolated))

and (gram
_positive value true)”

For Streptococcus, the restriction “has_grouping only (not Isolated)”
indicates that Streptococcus can only have groupings other than Isolated:
it is never observed isolated.

3.4.9 Individuals
T

he “In
dividuals” tab of Protégé allow

s you to navigate through
in

dividuals an
d create n

ew
 on

es. In
 order to test our ontology, w

e w
ill

create a few
 in

dividuals. To do this, select the class in
 the “C

lass

CHAPTER 3
 OW

L ONTOLOGIES

75

hierarchy” pan
el an

d then
 click the

 button
 in

 the “M
em

bers list”
pan

el (this pan
el lists the in

dividuals belongin
g to the class). W

e w
ill first

select the R
oun

d class an
d create a shape that w

e w
ill call “roun

d1”, as in
the follow

in
g screen

shot:

In the sam
e w

ay, w
e create an individual called “in_cluster1”,

belonging to the class “InC
luster”.

Then, w
e create an individual called “unknow

n_bacterium
”, belonging

to the “B
acterium

” class. Finally, in the “Property assertions” panel, w
e

enter the relationships of this individual by clicking the “+” buttons to the
right of “O

bject property assertions” and “D
ata property assertions”. W

e
w

ill enter the follow
ing relationships:

•
O

bject property:

 –
has_shape: round1

 –
has_grouping: in_cluster1

CHAPTER 3
 OW

L ONTOLOGIES

76

•
D

ata property:

 –
gram

_positive: true

 –
nb_colonies: 6

The follow
ing screenshot show

s the expected result:

3.4.10 Other constructs
O

W
L and Protégé also offer other constructors, of less frequent use.

•
The set of individuals (also called one of) allow

s
creating a class restricted to a set of individuals. It is
w

ritten betw
een braces: “{individual1, individual2, ...}”.

It can also be used to transform
 an individual into a

class (also called the singleton class because it has only
one instance/individual), as follow

s: “{individual}”.

CHAPTER 3
 OW

L ONTOLOGIES

77

•
The inverse of a property is w

ritten “inverse
(property)”. For exam

ple, “inverse (has_shape)” is
equivalent to “is_shape_of” in our ontology of bacteria.
This constructor is especially useful w

hen the ontology
does not define nam

ed inverse properties.

•
A

 property chain is w
ritten “property1 o property2” (the

circle corresponds to the low
ercase letter “o”). They

are also called the property com
position. They m

ake it
possible to “chain” several properties, for exam

ple, “is_
shape_of o has_grouping” to pass directly from

 a shape
to the groupings of bacteria having this shape.

3.5 Autom
atic reasoning

N
ow

 our bacteria ontology is ready!
To verify the absence of inconsistency in the ontology and test the

autom
atic reasoning, w

e can use the “R
easoner ➤

 Start reasoner” m
enu

w
hich w

ill execute the autom
atic reasoner. Several reasoners are available;

I recom
m

end the use of H
erm

iT.
O

n
ce the reason

ing has been
 carried out, in

dividuals are reclassified
in

 Protégé. For exam
ple, the in

dividual “un
kn

ow
n

_bacterium
” that

w
e had created w

as of the class B
acteria. W

e can
 see that it has been

reclassified into a n
ew

 class: Staphylococcus (the n
ew

 classes appear
on

 a yellow
 backgroun

d in
 Protégé). In

deed, this bacterium
 satisfies the

con
dition

s to be a Staphylococcus (roun
d shape, grouped in

 clusters,
G

ram
 + status).

CHAPTER 3
 OW

L ONTOLOGIES

78

In addition, the reasoner also reorganized the classes. To observe this,
w

e w
ill return to the C

lasses tab and click “C
lass hierarchy (inferred)”.

The class tree has been changed. W
e can see, for exam

ple, that the
Pseudom

onas class has been reclassified as a subclass of the B
acillus class.

Indeed, all the individuals of this class satisfy the definition of the B
acillus

class, since Pseudom
onas all have a R

od shape.

You m
ay also try the follow

ing tw
o experiences:

1.

C
reate an individual of the B

acterium
 class, w

ith
a R

od shape, grouped in pairs and/or isolated,
and a G

ram
 negative status. This individual w

ill
be reclassified in the B

acillus class, but not in
Pseudom

onas. Indeed, w
e have not given a form

al

CHAPTER 3
 OW

L ONTOLOGIES

79

definition of the Pseudom
onas class; the reasoner

cannot therefore deduce that such a bacterium

is a Pseudom
onas. The absence of definition w

as
a desired choice w

hen designing the ontology,
because Pseudom

onas are not the only bacteria
w

ith a rod shape, isolated or in pairs, and G
ram

negative (see Figure 3- 1).

2.

C
reate an individual of the B

acterium
 class,

w
ith a round shape, grouped in sm

all chain, and
having a G

ram
 positive status. This individual

w
ill be reclassified in the C

occus class, but not in
Streptococcus. H

ow
ever, this class does contain

a definition! H
ow

ever, the individual w
e just

created does not fully m
eet the definition of the

Streptococcus class.

In fact, in the definition, w
e indicated “has_

grouping only (not Isolated)”. In the individual,
w

e indicated an InSm
allC

hain grouping; how
ever,

the property “has_grouping” is not functional, and
therefore several values are possible. The O

pen-
W

orld assum
ption im

plies that the reasoner cannot
exclude the existence of another grouping, not
m

entioned in the ontology, w
hich could be Isolated.

C
onsequently, to be able to deduce that our

individual is a Streptococcus, it w
ould be necessary

to indicate in the ontology that the individual has no
other groupings than those explicitly m

entioned or
that he has no grouping of the class Isolated.

CHAPTER 3
 OW

L ONTOLOGIES

80

O
n the other hand, in the form

al definitions, w
e

also used universal constraints (“only”) on the “has_
shape” property. H

ow
ever, this does not prevent

the classification of individuals in the C
occus,

B
acillus, and Staphylococcus classes. W

hy? B
ecause

the property is functional and the R
ound and R

od
classes are disjoint. Therefore, w

hen a bacterium

has a R
od shape, it is im

possible for it to have a
R

ound shape, and vice versa. O
n the contrary, the

property “has_grouping” is not functional, and
therefore this reasoning is no longer possible.

W
e w

ill com
e back to this problem

, and the solution
w

ill be provided in 7.3.

3.6 M
odeling exercises

H
ere are som

e exercises to train you in ontology m
odeling:

1.

In the bacteria ontology, add an individual of the
Staphylococcus class having a rod shape. R

un the
reasoner; w

hat do you observe?

2.

U
sing the Protégé editor, extend the ontology of

bacteria by adding the catalase test. This biological
test helps to identify bacteria, and its result can be
positive or negative. The catalase test is positive
for Staphylococci and Pseudom

onas, negative for
Streptococci.

3.

U
sing the Protégé editor, extend the bacteria

ontology by adding the color of the bacteria.
Staphylococci are w

hite or golden (this is the

CHAPTER 3
 OW

L ONTOLOGIES

81

fam
ous Staphylococcus aureus), Streptococci

are translucent, and Pseudom
onas are generally

colored (that is to say, not w
hite).

4.

U
sing the Protégé editor, add a new

 class of bacteria:
M

ycobacterium
 leprae (H

ansen’s bacillus, w
hich

causes leprosy). This species of bacteria is G
ram

positive, rod shape, and isolated or grouped in pairs.
The catalase test is not relevant for this bacterium

because it is very difficult to grow

 in vitro. The color
is yellow

. Finally, all of these characteristics are
sufficient to identify the bacteria.

5.

In the Protégé editor, add an individual of the class
B

acterium
, rod shape, isolated, and yellow

 in color.
C

heck that this individual is properly classified as
M

ycobacterium
 leprae.

6.

In the ontology of bacteria, add a disjunction
betw

een the different subclasses of B
acteria

(Staphylococci, Streptococci, Pseudom
onas, etc.).

D
oes this change the result of the reasoning on the

unknow
n bacterium

?

7.

A
n O

W
L ontology w

as carried out to structure
the drug interactions. This ontology is intended
to autom

atically detect interactions w
ithin

prescriptions prescribed by doctors, using a
reasoner. C

ould the O
pen- W

orld assum
ption pose a

problem
 during the reasoning?

8.

U
sing the Protégé editor, build an ontology

describing the books, the authors, and the editors.
You take inspiration from

 the object m
odel

presented in 2.9.

CHAPTER 3
 OW

L ONTOLOGIES

