Knowledge Representation Laboratory 8:
OWL

CITS3005

This laboratory will involve writing some basic OWL ontologies in Protégé . The following pages contain
an example ontology taken from Ontologies with Python Programming OWL 2.0 Ontologies with Python and
Owlready?2, by Lamy Jean-Baptiste.

Protégé is a graphical ontology editor that can be downloaded from https://protege.stanford.edu/

1.

Go through the getting started guide at http://protegeproject.github.io/protege/getting-started/
to familiarise yourself with the key elements of the interface.

. Build a pizza ontology, following the directions at

https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes

(a)
(b)

()

. Run through see the Bacteria Ontology on the following pages and the attempt the following exercises:

In the bacteria ontology, add an individual of the Staphylococcus class having a rod shape. Run the
reasoner; what do you observe?

Using the Protégé editor, extend the ontology of bacteria by adding the catalase test. This biological
test helps to identify bacteria, and its result can be positive or negative. The catalase test is positive
for Staphylococci and Pseudomonas, negative for Streptococci.

Using the Protégé editor, extend the bacteria ontology by adding the colour of the bacteria. Staphy-
lococci are white or golden (this is the famous Staphylococcus aureus), Streptococci are translucent,
and Pseudomonas are generally coloured (that is to say, not white).

Using the Protégé editor, add a new class of bacteria: Mycobacterium leprae (Hansen’s bacillus,
which causes leprosy). This species of bacteria is Gram positive, rod shape, and isolated or grouped
in pairs. The catalase test is not relevant for this bacterium because it is very difficult to grow in
vitro. The colour is yellow. Finally, all of these characteristics are sufficient to identify the bacteria.

In the Protégé editor, add an individual of the class Bacterium, rod shape, isolated, and yellow in
colour. Check that this individual is properly classified as Mycobacterium leprae.

In the ontology of bacteria, add a disjunction between the different subclasses of Bacteria (Staphylo-
cocci, Streptococci, Pseudomonas, etc.). Does this change the result of the reasoning on the unknown
bacterium?

CHAPTER 3 OWL ONTOLOGIES

3.3 Example: An ontology of bacteria

In order to illustrate the construction of an ontology and the possibilities
it can offer, we will take as an example an ontology of bacteria. This
ontology aims to describe bacteria and their physical and chemical
characteristics. We will, however, limit ourselves to a few simple
characteristics and a small number of species for obvious reasons of
brevity. I apologize in advance to my biologist readers for the sometimes
crude simplifications that we will have to carry out—the conception of a
complete and exact ontology of bacteria would constitute a real research
work in its own right!

We will only retain the following three characteristics for describing
bacteria:

1. Their shape: Bacteria can be round or rod shaped
(elongated shape).

2. Their grouping: Bacteria can be isolated from each
other or grouped in pairs, in clusters, or in chains,
which can be small or long chains.

3. Their Gram status: Gram + bacteria are colored by
the Gram test, unlike Gram - bacteria.

Figure 3-1 shows a classification of bacteria according to these
characteristics. Round bacteria are called “coccus’, and rod ones are called
“bacillus”

In addition, we will only retain the following three families of
pathogenic bacteria:

1. Staphylococcus: Round shape, grouped in clusters,
Gram +

2. Streptococcus: Round shape, grouped in small
chains but never isolated, Gram +

53

CHAPTER3 OWL ONTOLOGIES

3. Pseudomonas: Rod shape, grouped in pairs or

isolated, Gram -

Thereafter, we will consider that a bacterium can have several

groupings: indeed, the observation never relates to a single bacterium

but on several. It is therefore common to observe several groupings for

the same species of bacteria: for example, Staphylococci which group

in clusters may occasionally be present singly or in pairs. However,

Streptococci are never isolated but always grouped (in pairs, in clusters,

and, of course, preferably in chains).

Shape
Grouping round (coccus) rod (bacillus)
isolated ()] @ M.M_M—_ﬁ.w_so:mw
o Salmonella
in pair O o (Gram-)
. Staphylococcus
in cluster ‘ (Gram+)
in chain: Streptococcus
(Gram+)
- in small s) ‘
. Never isolated !
chain
-inlong o v
chain

Figure 3-1. Simple classification of bacteria according to three

criteria

54

CHAPTER 3 OWL ONTOLOGIES

Bacterium . has_shape 1

shape Elongated
gram_positive : boolean |,
nb_colonies : integer

Round
has_grouping
Coccus
'
ping Isolated
Bacillus
F InPair
Streptococcus
InCluster InsSmallChain
occus
InChain InLongChain
Pseudomonas N

Figure 3-2. UML class diagram of the bacteria ontology

Figure 3-2 gives the class diagram in UML (Unified Modeling
Language). Please note, however, that ontologies allow more information
to be represented than what appears on the class diagram. For example,
(practically) all Gram + bacteria of round form grouped in clusters are
Staphylococci. For this species, it will therefore be possible to deduce the
class of bacteria, its shape, grouping, and Gram status. On the contrary,
Pseudomonas are not the only bacteria of rod shape, isolated, or in pairs.
This is an important difference because it will impact automatic reasoning;
however, a “classic” object model (like that of Python; see 2.9) does not
allow taking it into account.

At the very beginning of this chapter, we defined an ontology as “as
independent as possible from the intended application” For example, the
ontology of bacteria could have multiple applications, such as:

o Create an encyclopedic website describing the
properties of the different bacteria (see 4.12)

o Facilitate the entry or extraction of information on
bacteria (see 5.14)

55

CHAPTER3 OWL ONTOLOGIES

e Help identify an unknown bacterium (see 7.7)

o Enrich with information on bacteria already existing
ontologies or resources, such as UMLS (see 9.10)

o Facilitate statistical studies in a hospital by allowing
the grouping of similar bacteria (to answer questions
such as “has the number of infections with anaerobic
bacteria increased in the last month?”)

Each of these applications could be achieved with a specific knowledge
base. For example, the identification of bacteria could be done with a
knowledge base composed of rules like the following one:

IF shape = round AND grouping = in cluster AND
gram ="+’
THEN staphylococcus
However, an ontology is capable of achieving all these applications
from the same source of knowledge, which greatly facilitates the
maintenance and reuse of this knowledge.

In the following sections, we will build a (small) formal ontology in
OWL from this classification of bacteria, using the Protégé editor.

3.4 Creating a new ontology

When you launch the Protégé editor, it automatically creates a new empty
ontology. The editor includes several tabs; by default, the Active Ontology
tab is displayed.

56

CHAPTER 3 OWL ONTOLOGIES

In this tab, we will define the IRI of our ontology. The IRI is the
“name” of the ontology, and this name takes the form of an Internet
address. Please note, however, the IRI must be in the form of an Internet
address, but the ontology does not need to be available on the Internet
at this address! It is thus usual to create ontologies whose IRI begins with
“http://www.semanticweb.org/” or “http://www.test.org/’ without
holding the rights to these Internet domain names.

We will call our bacteria ontology:

http://lesfleursdunormal.fr/static/_
downloads/bacteria.owl

(NB: This Internet address points to my personal site, on which you
can actually download the full ontology). You can enter this IRl in the
“Ontology IRI” field of Protégé, as shown in the following screenshot:

File Edit View Reasoner Tools Refactor Window Help

sdunormal. downloads/bacteria.ow

| > [®bacteria ttpiie

[Active ontology x| Classes x Object rties x| Dat % Annot ties x| Ind s by dass x

Ontology IRI fris
Ontology Version IRI

You can then save the ontology in RDF/XML format, in a file that
you will call “bacteria.owl” Do not forget thereafter to regularly save the
ontology during its edition.

57

CHAPTER3 OWL ONTOLOGIES

3.4.1 Classes

In Protégé, the “Classes” tab allows you to navigate through existing classes

and to create new classes. The buttons | “/ and | *| allow you to create a
new daughter or sister class of the selected class, respectively. Using these
buttons, we can create a class hierarchy corresponding to our previous

UML model, as in the following screenshot:

Active ontology | Classes | Object properties

| Class hierarchy | class hierarchy (inferred)
Class hierarchy: owl: Thing (owl: Thing)

¢ @ Bacterium
@ staphylococcus
@ Streptococcus
© Bacillus
@ Coccus
@ pPseudomonas
¢ @ Grouping
% @ InChain
@ InLongChain
InSmallChain
@ InCluster
@ InPair
@ Isolated
¢ @ Shape
@ Rod
@ Round

In ontologies, inheritance is also called “is-a relationship”: for example,
we can say that a Pseudomonas is a Bacterium.

3.4.2 Disjoints

An important difference between an ontology and an object model is

as follows: in an ontology, an individual can belong to several classes.
Therefore, a given shape could very well be both round and rod! The Open-
World assumption allows this type of interpretation: anything that is not
formally prohibited is considered possible.

58

CHAPTER 3 OWL ONTOLOGIES

In our ontology of bacteria, we want to prohibit this: a given shape is
either round or rod, but cannot be both at the same time. For this, we must
declare the two classes Round and Rod as disjoint. Two disjoint classes
cannot have individuals in common.

The disjoint classes are declared in the “Description” panel of the
“Classes” tab. We will select the Rod class and then click the “+” button to
the right of the “Disjoint with” section and choose the Round class in the
“Class hierarchy” tab of the dialog box. You should get the following result:

Description: Rod

Equivalent To

© Shape |

General class axioms

SubClass Of (Anonymous Ancestor

Target for Key

Nith
@ Round

The two classes are now disjoint. Note that it is not necessary to declare
the second class (Round) disjoint from the first (Rod): this is automatically
deduced from the previous declaration.

In the same way, the InSmallChain class must be declared disjoint
from the InLongChain class.

The Isolated, InPair, InCluster, and InChain classes must be declared
as pairwise disjoint: that is to say that any pair made up of two classes
from this list are disjoint. To do this, simply select one of the classes

59

CHAPTER3 OWL ONTOLOGIES

(e.g., Isolated), click the “+” button to the right of “Disjoint with’, and select
the other three classes simultaneously (by pressing the control key, not by
clicking three times the “+” button!). The result should be as follows:

Description: Isolated

SubClass Of

@ Grouping

General class ax

With
@ InPair, InCluster, InChain

Disjoint Union Of

Attention, concerning the subclasses of Grouping, the disjoint does
not mean that a given bacterium cannot be observed with two different
groupings (e.g., Isolated or InPair, like Pseudomonas). The disjoint only
means that a given grouping cannot be both Isolated and InPair, but it does
not prohibit a bacterium from having two distinct groupings, one of the
class Isolated and the other of the class InPair.

In the same way, the classes Bacteria, Shape, and Grouping must be
declared disjoint: for example, a geometric shape cannot be the same
thing as a bacterium! It may seem obvious to a human, but remember
that it is not to a machine. Ontologies seek to formalize knowledge
comprehensively, including the most obvious piece of knowledge.

60

CHAPTER 3 OWL ONTOLOGIES

3.4.3 Partitions

We have defined two classes of shapes, Round and Rod, which are now
disjoint. However, we have not excluded the existence of other shapes,
for example, triangular. Again, the Open-World assumption makes such
interpretations possible. However, there are only two possible shapes
for a bacterium: Round or Rod. We must declare that all Shape is either
Round or Rod: it is a partition (we will say that the classes Round and Rod
constitute a partition of the class Shape).

To do this, we select the Shape class, and, in the “Description” panel,

w,n

we click the “+” to the right of “SubClass Of” This “+” button allows you to
add superclasses to the class; these can be named classes, but also OWL
logical constructors, like here. In the dialog box that appears, we select

”

the “Class expression editor” tab, and we enter the constructor “Round or

Rod”. You should obtain the following result:

w Loccus
@ Pseudomonas
¢ @ Grouping
¢ @ InChain
@ InLongChain
@ InSmallChain i SubClass Of 7
@ InCluster ® Round or Rod
@ InPair
@ Isolated
¢ @ Shape General class axioms
@ Rod
© Round ciine ¥ Arcrpgmeous Acadi

This constructor “or” allows two classes to be linked with a logical
OR (also called a union, when we think in set logic). It means that the
Shape class is a subclass of the union of the Rod and Round classes.
Consequently, any shape is now either round or rod, and there are
therefore no other possible shapes.

In the same way, we must partition InChain (SubClass Of
“InSmallChain or InLongChain”) and Grouping (SubClass Of “Isolated or
InPair or InCluster or InChain”).

61

CHAPTER3 OWL ONTOLOGIES

3.4.4 Data properties

We will now deal with the properties. In ontologies, unlike object-oriented
programming, properties are defined independently of classes. OWL
considers three categories of properties: data properties whose values are
data (numbers, texts, dates, Booleans, etc.), object properties whose values
are entities (i.e., ontology individuals), and annotation properties which
do not intervene in semantics or reasoning and can therefore mix data and
entities without restriction.

In Protégé, the “Data Properties” tab allows you to create data
properties. OWL supports inheritance between properties, in addition to
inheritance between classes; however, we will not use it here. Using the =
and | = buttons, which work similarly to those for classes, we will create
two new data properties called “gram_positive” and “nb_colonies”. This
last property will not be really useful to describe bacteria, but it will serve
as an example of numeric data property.

You should arrive at the following result:

| Active ontology x| Classes x Object prop. * Data x 1\ prope x] by class x
CEENE O EEE N ARNEE] |Annotations |Usage |

wie PYPSRRSRI I Annotations: gram_positive

¢ = owk:topDataProperty o
== gram positive!
== nb_colonies

Characteri<[=® fDescription: gram_positive

v Functional Equv. T

@ Bacterium

@xsd:boolean

62

CHAPTER 3 OWL ONTOLOGIES

Each data property can be configured by specifying:

o Its domain (“Domains (intersection)” in Protégé): This
is the class for which the property is defined.

o Its range (“Ranges”): This is the associated datatype. It
can be an integer or a real number, Boolean, character
string, date, and so on. Please note: to work with
Python and Owlready afterward, it is preferable to use
the types integer for integer numbers and decimal for
real numbers (refer to Table 4-1 for more information).
Attention, the range of an OWL property has nothing to
do with the Python range() function which allows you
to create lists of numbers (see 2.6).

«

o Its functional status (“Functional” checkbox): When a
property is functional, a given individual can have (at
most) only one value for this property. On the contrary,
if the property is not functional, a given individual can

have several values.

Domain and range are optional. It is possible to define several
domains and ranges; however, it is the intersection of the different
domains/ranges that is considered and not their union, which is often
not the desired result. For example, consider the property “has_shape”
and two classes, Bacteria and Viruses, of which individuals can have a
shape. If we define two domains, Bacteria and Virus, only individuals
belonging to both the Bacteria class and the Viruses class can have a
shape! If one wants to say that all Viruses and all Bacteria may have a
shape, it is necessary to define the domain as being the union of classes,
that is to say, “Bacterium or Virus”.

63

CHAPTER3 OWL ONTOLOGIES

Here, we will configure our two data properties as follows:

e gram_positive: Functional (check the box), domain:
Bacteria, range: Boolean

¢ nb_colonies: Functional (check the box), domain:
Bacteria, range: integer

3.4.5 Object properties

In Protégé, the “Object Properties” tab allows you to create object
properties. Using the |™ and | = buttons, we create four new object

properties called “has_shape’; “has_grouping’, “is_shape_of’; and “is_
grouping_of’, as in the following screenshot:
Active ontology x Classes x Object prop x Data prop x| x| by class x

AN =0] |Annotations | U
LAAE-REE IR PPPeeP M) Annotations: has_shape

¢ = owktopObjectProperty
as_grouping
as_shape/
_grouping_of
_shape_of

=@ fDescription: has_shape

vl Functional

Jinverse functional
[Transitive
L symmetric mis_shape_of
] Asymmetric
[Reflexi ayi s
YIS @ Bacterium
lirreflexive

®shape

Each object property can be configured by specifying:

o Its domain (“Domains (intersection)” in Protégé): This
is the class for which the property is defined.

64

CHAPTER 3 OWL ONTOLOGIES

Its range (“Ranges (intersection)”): This is the class of
associated objects.

As before, if several domains or ranges are indicated,
it is their intersection that is considered.

Its inverse property (“Inverse Of”): The inverse property
corresponds to existing relationships when the
property is read backward; if a property exists between
A and B, then its inverse property exists between B

and A. For example, the property “is_shape_of” is the
inverse of “has_shape”: if a bacterium X has the shape
A, then A is the shape of X. These inverse properties
will be useful in Python to navigate using the relation
has_shape/is_shape_of in both directions.

Its functional status (“Functional” checkbox): When a
property is functional, a given individual can have (at
most) only one value for this property. On the contrary,
if the property is not functional, a given individual can
have several values.

Its inverse functional status (“Inverse functional”
checkbox): A property is inverse functional if the
inverse property is functional. For example, the
property is_father of is inverse functional: a man A can
be the father of several children B, C, D, and so on, but
for each of these children, A is their only father.

Its transitive status (“Transitive” checkbox): A property
is transitive if it is possible to “chain” this property on
several objects. For example, the property “is_larger_
than” is transitive: if an individual A is larger than B and
if B is himself larger than C, then we can deduce that A
is larger than C.

CHAPTER3 OWL ONTOLOGIES

Its symmetric status (“Symmetric” checkbox): A
property is symmetrical if it can be read indifferently in
both directions (it is thus its own inverse). For example,
the property “is_married_to” is symmetrical: if person
A is married to person B, then B is married to A.

Its asymmetric status (“Asymmetric” checkbox): A
property is asymmetrical if it is never symmetrical. For
example, the property “has_father” is asymmetric: if
A has for father B, then it is not possible that B has for
father A.

Its reflexive status (“Reflexive” checkbox): A property
is reflexive if it always applies between any object and
itself. For example, the property “knows” is reflexive:
each person X knows himself.

Its irreflexive status (“Irreflexive” checkbox): A property
is irreflexive if it is never reflexive. For example, the
property “is_married_to” is irreflexive: one cannot be
married to him/herself.

Here, we will configure our object properties as follows:

66

has_shape: Functional (check the box), domain:
Bacteria, range: Shape

has_grouping: Nonfunctional (do not check the box),
domain: Bacteria, range: Grouping

is_shape_of: Nonfunctional, domain: Form, range:
Bacterium, inverse: has_shape

is_grouping of: Nonfunctional, domain: Grouping,
range: Bacteria, inverse: has_grouping

CHAPTER 3 OWL ONTOLOGIES

Note that it is enough to define the inverse property of only one of the
two properties of the couple: for example, here, we do not need to specify
that has_shape has for inverse is_shape_of. This can be easily deduced
from the inverse property of is_shape_of.

3.4.6 Restrictions

Now that we have created the properties, we can go back to the classes and
add restrictions, based on these properties.

The restrictions are added in the “Classes” tab of Protégé, by clicking
the “+” button to the right of “SubClass Of” in the “Description” section.
“SubClass Of” allows you to add superclasses to the class; it can be an OWL
named class created as before but also constructors, such as partitions (see
3.4.3) but also restrictions.

For example, the bacterium Pseudomonas has a Gram negative
staining. This results in OWL by the following restriction: the Boolean
property “gram_positive” must have the false value. This restriction is
assimilated to a class: it is the class of bacteria having the false value for the
“gram_positive” property. We can therefore define the Pseudomonas class
as a subclass of this restriction class.

OWL offers several categories of restrictions. The following restrictions
are used to model the relationships between two classes:

o Existential restriction (some): It represents the class of
individuals who have at least one relation of a certain
property with an individual belonging to a certain class.

This restriction is written “property some class” in
Protégé. For example, we have seen (Figure 3-1) that
Pseudomonas all have a Rod shape. Rod is a class,
which means that there might be several subtypes

67

CHAPTER3 OWL ONTOLOGIES

of the Rod shape (e.g., we could distinguish regular
and irregular rod shapes). This restriction will
therefore be written “has_shape some Rod”.

Cardinality restrictions (exactly, min, max): It
represents the class of individuals who have a certain
number of relations of a certain property with an
individual belonging to a certain class. The number can
be exact (exactly) or a minimum (min) or maximum
(max) value.

These restrictions are written “property exactly
number class’) “property min number class’, or
“property max number class” in Protégé. It is a more
specific version of the existential restriction: an
existential restriction is equivalent to a restriction of
cardinality “min 1"

Universal restriction (only): It represents the class

of individuals who have only a relation of a certain
property with one (or more) individuals belonging to a
certain class (including its subclasses).

This restriction is written “property only class” in
Protégé. For example, the Pseudomonas is observed
only with a Rod shape, which we will write “has_
shape only Rod”.

Be careful not to confuse the universal restriction
“has_shape only Rod” with the previous existential
restriction, “has_shape some Rod”. The existential
restriction states that all Pseudomonas have at least
one Rod shape, while the universal restriction states
that all Pseudomonas have no other shape than

CHAPTER 3 OWL ONTOLOGIES CHAPTER3 OWL ONTOLOGIES

Rod. It is quite common to combine two similar To further describe the Pseudomonas class, we will add the following
restrictions, one universal and the other existential, restrictions:

with the same target class. « “has_shape some Rod”

On the other hand, we will not use a universal « »
e “has_shape only Rod
restriction for grouping, because we have seen
“ . n
previously that bacteria can occasionally present * “gram_positive value false
other groups than their typical grouping. Note that we have used an existential and a universal restriction for

The following restriction makes it possible to model a relation between the shape, since Rod is a class and not an individual or a data, and on

a class and an individual or a datatype value: the contrary a value restriction for the Gram coloring, because false is a

datatype value.
o Value restriction (value, sometimes called role-filler): It
represents the class of individuals who have a certain ¢ @ owiThing Description: Pseudomonas
. ¢ @ Bacterium =
value for a certain property. © Bacillus Equivalent To
@ Coccus

. L. . . “. © Pseudomonas e
This restriction is written “property value © staphylococcus Clasz O &)
. . L, @ streptococcus @ Bacterium
individual/datatype” in Protégé. For example, ¢ ® Grouping ® gram_positive value true

. . . ¢ @ InChain
Pseudomonas is always associated with Gram ® InLongChain @has_shaps:only Rod
InsmallChain @ has_shape some Rod
negative staining. This restriction will be written nCluster
@ InPair
“gram_positive value false”. © Isolated
¢ @ Shape
P . s P « n © Rod 5ubClass Of (Anonymo o
To add restrictions in Protégé, after clicking the “+” button, you can: © Round
tar
o Either manually enter the restriction in the “Class
Target for K

expression editor” tab (tip: the tabulation key allows
you to complete a partial entry, e.g., “Bact” for RReTRMER
“Bacteria”),

o Or use the “Object restriction creator” or “Data
restriction creator” tab (depending on the type of
property) and choose the values from the drop-down
lists.

'Attention, in OWL, false and true are written without capital letters, while in
Python they are written with (i.e., False and True; see 2.4.2).

69 70

CHAPTER 3 OWL ONTOLOGIES

3.4.7 Union, intersection, and complement

OWL also allows the use of logical operators as constructors. These
operators have different names depending on whether they are considered
from a logical point of view or from a set theory point of view; however, it is
indeed the same thing. Three operators are available:

« Logical AND or intersection: These are individuals
belonging to several classes at the same time.

The intersection is written “class1 and class2” in
Protégé. Of course, more classes can be included in
the intersection, for example, “class1 and class2 and
class3”.

o Logical OR or union: These are individuals belonging
to a class among several.

The union is written “classl or class2” in Protégé.
Similarly, unions are not limited to two classes, for
example, “class] or class2 or class3” For example,
the Pseudomonas can have two groupings: Isolated
and InPair. We can therefore build the union of
these two classes, which will be written “Isolated or

InPair”.

Furthermore, we have already used the union
previously, to express the partitions (see 3.4.3).

o Logical NOT or complement: These are individuals
who do not belong to a given class. The complement is
written “not class” in Protégé.

OWL also allows you to combine logical operators with restrictions and
classes, by grouping the different elements in parentheses.

71

CHAPTER3 OWL ONTOLOGIES

In order to refine the Pseudomonas class, we will add the following
superclass:

e “has_grouping some (Isolated or InPair)”

This restriction states that all Pseudomonas have at least one Isolated
or InPair grouping.

¢ @ owl:Thing
¢ @ Bacterium
@ Bacillus Equivalent To
@ Coccus
© Pseudomonas
@ staphylococcus

Description: Pseudomonas

ass Of
@ Bacterium

@ Streptococcus
¢ @ Grouping @ has_grouping some
¢ @ InChain (InPair or Isolated)
@ InLongChain @ has_shape only Rod

@ Insmalichain @ has_shape some Rod

@ Round

3.4.8 Definitions (equivalent-to relations)

In the previous two sections, we used restrictions and constructors to
describe the properties of the class. However, this is not a definition in the
formal sense, because we have not fully and uniquely described the class.
For example, all Pseudomonas have a Rod shape, but not all bacteria with
a Rod shape are Pseudomonas!

OWL allows you to give a class a formal equivalence definition, via
an equivalence relation. Then, the defined classes allow reclassifying
individuals during automatic reasoning (which we will see later in
section 3.5 and in Chapter 7).

72

CHAPTER 3 OWL ONTOLOGIES

For example, the Coccus class is the class of bacteria with a Round

shape (i.e., at least one Round shape and only Round shape). We can
therefore define it as follows:

¢ Coccus: “Bacterium and (has_shape some Round)

and (has_shape only Round)”

Note that, unlike the restrictions and constructors that we used
previously as a superclass for Pseudomonas, equivalences must be defined
“in one piece” We cannot divide the definition into three parts “Bacteria’,
“has_shape some Round’; and “has_shape only Round” unless we change
its meaning entirely!

To add the restriction in Protégé, click the “+” button to the right
of “Equivalent To’, then manually enter the restriction in the “Class
expression editor” tab (again, you can use the tabulation key for
completion).

¢ ® owlk:Thing (owl:Thing)

Description: Coccus

Een tTo
@ Bacterium
@ Pseudomonas and (has_shape some Round)
“ M“uurnﬁn.ncnn:m and (has_shape only Round)
reptococcus
¢ @ Grouping
¢ @ InChain SubClass of
@ InLongChain @ Bacterium
@ InsmallChain
@ InCluster
Pair General class a; ms
Isolated
¢ @ Shape
@ Rod
@ Round

Disjoint Wik

Disjoint Union Of

73

CHAPTER3 OWL ONTOLOGIES

Protégé marks the defined classes with a different icon: a brown

circle in which appears the symbol “=” which means “equivalent to” in
description logics.

Similarly, we will define the Bacillus, Staphylococcus, and
Streptococcus classes as follows:

e Bacillus: “Bacterium and (has_shape some Rod)
and (has_shape only Rod)”

e Staphylococcus: “Bacterium and (has_shape some Round)
and (has_shape only Round)
and (has_grouping some InCluster)
and (gram_positive value true)”

e Streptococcus: “Bacterium and (has_shape some Round)
and (has_shape only Round)
and (has_grouping some InSmallChain)
and (has_grouping only (not Isolated))
and (gram_positive value true)”

For Streptococcus, the restriction “has_grouping only (not Isolated)”

indicates that Streptococcus can only have groupings other than Isolated:
itis never observed isolated.

3.4.9 Individuals

The “Individuals” tab of Protégé allows you to navigate through
individuals and create new ones. In order to test our ontology, we will
create a few individuals. To do this, select the class in the “Class

74

CHAPTER 3 OWL ONTOLOGIES

hierarchy” panel and then click the [button in the “Members list”
panel (this panel lists the individuals belonging to the class). We will first
select the Round class and create a shape that we will call “roundl’, as in
the following screenshot:

Active ontology x Classes x| Object properties x Data properties x| Annotation properties x Individuals by class x

AL MNGELD] [Annotations |Usage |

e [[Fespmes Ml Annotations: roundl

wl:Thing (owl:Thing)
¢ @ Bacterium

© Bacillus

© Coccus

@ pseudomonas
© Staphylococcus il
-]

B

¢ @ Grouping
@ InChain
@ InLongChain Tyves
@ InsSmallChain @ Round
© InCluster
© Inpair A
© 1solated ,.

dbject propert

Direct instances: round1 (X0 = 5

Lk
For: ® Round
a roundl

In the same way, we create an individual called “in_clusterl’,
belonging to the class “InCluster”.

Then, we create an individual called “unknown_bacterium’, belonging
to the “Bacterium” class. Finally, in the “Property assertions” panel, we
enter the relationships of this individual by clicking the “+” buttons to the

»

right of “Object property assertions” and “Data property assertions” We

will enter the following relationships:
« Object property:
— has_shape: round1

— has_grouping: in_clusterl

75

CHAPTER 3 OWL ONTOLOGIES
o Data property:
— gram_positive: true
— nb_colonies: 6

The following screenshot shows the expected result:

Active ontology X Classes x Object % Data x| X by class x
EEENEETEIAEIECEIMOIEL] |Annotations | Usage |
el = [PPSR I Annotations: unknown_bacterium

¢ ® owl.Thing (owk:Thing) nectations =

¢ © Coccus
© staphylococcus
© Streptococcus
© pseudomonas
© staphylococcus &

© streptococcus.
@ Grouping
& @ InChain

@ InCluster o g

® InPair @ Bacterium mhas_shape roundl

© Isolated mhas_grouping in_clusterl

-

<
°
@
4
&

°
k3

mnb_colonies 6
m=gram_positive true

@ Round

Direct instances: unknowI=SE
& X Nepative chiot proparty siwert

For: & Bacterium

3.4.10 Other constructs

OWL and Protégé also offer other constructors, of less frequent use.

o The set of individuals (also called one of) allows
creating a class restricted to a set of individuals. It is
written between braces: “{individuall, individual2, ...}".
It can also be used to transform an individual into a
class (also called the singleton class because it has only
one instance/individual), as follows: “{individual}”.

76

CHAPTER 3 OWL ONTOLOGIES

o Theinverse of a property is written “inverse
(property)” For example, “inverse (has_shape)” is
equivalent to “is_shape_of” in our ontology of bacteria.
This constructor is especially useful when the ontology
does not define named inverse properties.

s A property chain is written “propertyl o property2” (the
circle corresponds to the lowercase letter “0”). They
are also called the property composition. They make it
possible to “chain” several properties, for example, “is_
shape_of o has_grouping” to pass directly from a shape
to the groupings of bacteria having this shape.

3.5 Automatic reasoning

Now our bacteria ontology is ready!

To verify the absence of inconsistency in the ontology and test the
automatic reasoning, we can use the “Reasoner » Start reasoner” menu
which will execute the automatic reasoner. Several reasoners are available;
Irecommend the use of HermiT.

Once the reasoning has been carried out, individuals are reclassified
in Protégé. For example, the individual “unknown_bacterium” that
we had created was of the class Bacteria. We can see that it has been
reclassified into a new class: Staphylococcus (the new classes appear
on a yellow background in Protégé). Indeed, this bacterium satisfies the
conditions to be a Staphylococcus (round shape, grouped in clusters,
Gram + status).

77

CHAPTER3 OWL ONTOLOGIES

Description: unknown FII=EEEF

Types
@ Bacterium
© Staphylococcus

Direct instances: unknowISEX

.0 & Same Individual As

For: & Bacterium
|® unknown_bacterium

In addition, the reasoner also reorganized the classes. To observe this,
we will return to the Classes tab and click “Class hierarchy (inferred)”
The class tree has been changed. We can see, for example, that the
Pseudomonas class has been reclassified as a subclass of the Bacillus class.
Indeed, all the individuals of this class satisfy the definition of the Bacillus
class, since Pseudomonas all have a Rod shape.

Annotation x by class x

Class Class hie hy (inferred) Annotations Usage

 Pseudomonas

¢ ©Coceus
© staphylococcus
O Streptococcus
¢ @ Grouping
¢ ®@InChain
@ InLongChain e
@ InSmallChain @®Bacterium
@ inCluster ® gram_positive value false |
@inPair @ has_grouping some [
= mﬂ._mo_..na (InPair or Isolated)
2 e ®has_shape only Rod
®Round ®has_shape some Rod
O Bacillus

You may also try the following two experiences:

1. Create an individual of the Bacterium class, with
a Rod shape, grouped in pairs and/or isolated,
and a Gram negative status. This individual will
be reclassified in the Bacillus class, but not in
Pseudomonas. Indeed, we have not given a formal

78

CHAPTER 3 OWL ONTOLOGIES

definition of the Pseudomonas class; the reasoner
cannot therefore deduce that such a bacterium

is a Pseudomonas. The absence of definition was
a desired choice when designing the ontology,
because Pseudomonas are not the only bacteria
with a rod shape, isolated or in pairs, and Gram
negative (see Figure 3-1).

Create an individual of the Bacterium class,

with a round shape, grouped in small chain, and
having a Gram positive status. This individual
will be reclassified in the Coccus class, but not in
Streptococcus. However, this class does contain
a definition! However, the individual we just
created does not fully meet the definition of the
Streptococcus class.

In fact, in the definition, we indicated “has_
grouping only (not Isolated)” In the individual,

we indicated an InSmallChain grouping; however,
the property “has_grouping” is not functional, and
therefore several values are possible. The Open-
World assumption implies that the reasoner cannot
exclude the existence of another grouping, not
mentioned in the ontology, which could be Isolated.

Consequently, to be able to deduce that our
individual is a Streptococcus, it would be necessary
to indicate in the ontology that the individual has no
other groupings than those explicitly mentioned or
that he has no grouping of the class Isolated.

79

CHAPTER3 OWL ONTOLOGIES

On the other hand, in the formal definitions, we
also used universal constraints (“only”) on the “has_
shape” property. However, this does not prevent
the classification of individuals in the Coccus,
Bacillus, and Staphylococcus classes. Why? Because
the property is functional and the Round and Rod
classes are disjoint. Therefore, when a bacterium
has a Rod shape, it is impossible for it to have a
Round shape, and vice versa. On the contrary, the
property “has_grouping” is not functional, and
therefore this reasoning is no longer possible.

We will come back to this problem, and the solution
will be provided in 7.3.

3.6 Modeling exercises

Here are some exercises to train you in ontology modeling:

1. Inthe bacteria ontology, add an individual of the
Staphylococcus class having a rod shape. Run the
reasoner; what do you observe?

2. Using the Protégé editor, extend the ontology of
bacteria by adding the catalase test. This biological
test helps to identify bacteria, and its result can be
positive or negative. The catalase test is positive
for Staphylococci and Pseudomonas, negative for
Streptococci.

3. Using the Protégé editor, extend the bacteria
ontology by adding the color of the bacteria.
Staphylococci are white or golden (this is the

80

CHAPTER 3 OWL ONTOLOGIES

famous Staphylococcus aureus), Streptococci
are translucent, and Pseudomonas are generally
colored (that is to say, not white).

Using the Protégé editor, add a new class of bacteria:
Mycobacterium leprae (Hansen's bacillus, which
causes leprosy). This species of bacteria is Gram
positive, rod shape, and isolated or grouped in pairs.
The catalase test is not relevant for this bacterium
because it is very difficult to grow in vitro. The color
is yellow. Finally, all of these characteristics are
sufficient to identify the bacteria.

In the Protégé editor, add an individual of the class
Bacterium, rod shape, isolated, and yellow in color.
Check that this individual is properly classified as
Mycobacterium leprae.

In the ontology of bacteria, add a disjunction
between the different subclasses of Bacteria
(Staphylococci, Streptococci, Pseudomonas, etc.).
Does this change the result of the reasoning on the

unknown bacterium?

An OWL ontology was carried out to structure

the drug interactions. This ontology is intended

to automatically detect interactions within
prescriptions prescribed by doctors, using a
reasoner. Could the Open-World assumption pose a
problem during the reasoning?

Using the Protégé editor, build an ontology
describing the books, the authors, and the editors.
You take inspiration from the object model
presented in 2.9.

81

