
CITS3003 Graphics & Animation

Lecture 20:

Hierarchical Modelling

• Symbols and Instances

• Introduce hierarchical models

- Tree and DAG models

- Tree Traversal

2

Objectives

Image source: link

Human Body Model for Channel Characterization Based on Ray-Tracing, IJAP, 2020.

• Most Graphic API’s only support a limited types of

primitives:
- Triangles

- Cubes

- Spheres

• A complex object can often be decomposed into simpler

primitive parts. We will refer to these primitive parts as symbols.

• To render a complex object, we can transform these parts

separately to fit the object.

3

Complex objects – How to represent them?

• We must define an instance transformation for each part,

e.g., a cylinder of radius=1 and height=1 is transformed to

give a rod, which models an arm of a robot.

4

Complex objects – How to represent them?

• The instance below can be represented by one transformation of the

form M=TRS.
mat4 instance;

mat4 model_view;

instance = Translate(dx, dy, dz)*RotateZ(rz)*RotateY(ry)*RotateX(rx)*Scale(sx, sy, sz);

model_view = model_view*instance;

cylinder(); /* or some other symbol */

5

Complex objects – How to represent them?

Symbol-Instance Table

• Non-hierarchical approach to modelling a complex object:

- Collection of symbols and their instances

• For the example before, we would probably have 6 different instances of the

cylinder to represent the head, torso, left/right arms, left/right legs of the robot.

• We can store each symbol instance into a symbol-instance table for the complex

object by assigning a number to each symbol and storing the parameters for the

instance transformation.

2nd and 3rd

instances of

symbol 1

6

Symbol-Instance Table

• The problem with a symbol-instance table is it does
not show relationships between different parts of the
complex model

• Consider the modelling of a car:

- Chassis + 4 identical wheels

- Two symbols

• Rate of forward motion determined by rotational
speed of wheels

7

Relationship of Parts in a Car ModelRelationship of Parts in a Car Model

Relationship of Parts in a Car Model (cont.)

• In pseudocode, our rendering of the car might look like this:
{

float s; /* speed */

float d[3]; /* direction */

float t; /* time */

/* determine speed and direction at time t*/

draw_right_front_wheel(s,d);

draw_left_front_wheel(s,d);

draw_right_rear_wheel(s,d);

draw_left_rear_wheel(s,d);

draw_chassis(s,d);

}

• It fails to show the relationships of the different parts of the car well

(e.g., the wheels do not rotate independently; the chassis must move

together with the wheels).

• Question: Can we use a graph to represent the relationships? 8

Relationship of Parts in a Car Model

(cont.)

Graphs

• We can represent the relationship between parts of a model with

graphs

• A graph consists of a number of nodes and edges (or links)

• An edge connects a pair of nodes

- Edges can be directed or undirected

• A cycle graph: is a directed path that has at least one loop

loop
9

Graphs

Trees

• A graph in which each node (except the root) has

exactly one parent node but

- may have multiple children

- may have no children

(such nodes are known as leaf or terminal node)

root node (has no

parent node)

leaf node

This implicitly imposes

that the graph cannot

have loops

10

Trees

Tree Model of Car

11

Tree Model of Car

Modeling with Trees

To model our complex object using a tree data structure, we

• Must decide what information to place in the nodes and what to

put in the edges

• For nodes, define

- what to draw, and

- pointers to all the child nodes

• For edges, we may have

- information on incremental changes to transformation matrices

(which can also be stored in the nodes)

12

Modeling with Trees

DAG Model

• If we use the fact that all the wheels are identical, we get

a directed acyclic graph (DAG)

- Not much different than dealing with a tree

13

DAG Model

One or more

edges

between two

nodes

Example: A Robot Arm

robot arm

parts in their own

coordinate systemslower arm
upper arm

14

Example: A Robot Arm

h1

h2
h3

base

We can model it with only two

parallelepipeds and a cylinder

Articulated Models

• The robot arm is an example of an

articulated model where,

- adjacent parts are connected at a joint,

articulated objects can be defined as

objects composed of more than one

rigid parts connected by joints

15

Articulated Models

Relationships in Robot Arm

• Base rotates independently

- Single angle determines position

• Lower arm attached to base

- Its position depends on the base

- Must also translate relative to base and rotate about
connecting joint

• Upper arm attached to lower arm

- Its position depends on both base and lower arm

- Must translate relative to lower arm and rotate about
joint connecting to lower arm

16

Relationships in Robot Arm

Required Matrices

• Rotation of base: 𝑹𝑏

- Apply 𝑴 = 𝑹𝑏 to base

• Translate lower arm relative to base: 𝑻𝑙𝑏

• Rotate lower arm around joint: 𝑹𝑙𝑎

- Apply 𝑴 = 𝑹𝑙𝑎𝑻𝑙𝑏𝑹𝑏 to lower arm

• Translate upper arm relative to lower arm: 𝑻𝑢𝑙

• Rotate upper arm around joint: 𝑹𝑢𝑎

- Apply 𝑴 = 𝑹𝑢𝑎𝑻𝑢𝑙𝑹𝑙𝑎𝑻𝑙𝑏𝑹𝑏 to upper arm

17

Required Matrices

OpenGL Code for Robot

mat4 modelMatrix;

void robot_arm()

{

modelMatrix = RotateY(theta);

base();

modelMatrix *= Translate(0.0, h1, 0.0);

modelMatrix *= RotateZ(phi);

lower_arm();

modelMatrix *= Translate(0.0, h2, 0.0);

modelMatrix *= RotateZ(psi);

upper_arm();

}

18

OpenGL Code for Robot

Tree Model of Robot

• Codes in the nodes of the tree show relationships

between parts of the model

- Can change the “look” of body parts easily without altering

relationships

• This is a simple example of tree model

• We want a general code structure for nodes

19

Tree Model of a Robotic Arm

Possible Code Structure

Code for drawing part or

pointer to drawing function

linked list of pointers to children

transformation matrix that relates the node to

its parent

20

If we store all the necessary information

in the nodes, rather than in the edges,

then each node must store at least three

items:

1. A pointer to a function that draws the

object represented by the node

2. A homogeneous-coordinate matrix that

positions, scales, and orients this

node (and its children) relative to the

node’s parent

3. Pointers to children of the node

Possible Code Structure

Generalizations

• Need to deal with multiple children

- How do we represent a more general tree?

- How do we traverse such a data structure?

• Animation

- How to use dynamically?

- Can we create and delete nodes during execution?

21

Generalizations

Humanoid Figure

The humanoid robot has 10 body parts:

torso, head, left-upper and left-lower arms,

right-upper and right-lower arms, left-upper and left-lower legs,

right-upper and right-lower legs.

22

Humanoid Figure

Building the Model

• Can build a simple implementation using quadrics:

ellipsoids and cylinders (to represent the body parts)

• Access body parts through function calls:

- torso()

- left_upper_arm()

• The transformation matrix stored in a node describes the

position of the node with respect to its parent, e.g.

- 𝑴𝑙𝑙𝑎 positions left lower arm with respect to left upper arm

23

Building the Model

Tree with Matrices

24

Tree with Matrices

Transformation Matrices

•There are 10 relevant matrices

-𝑴 positions and orients entire figure through the

torso which is the root node

-𝑴ℎ positions head with respect to torso

-𝑴𝑙𝑢𝑎, 𝑴𝑟𝑢𝑎, 𝑴𝑙𝑢𝑙, 𝑴𝑟𝑢𝑙 position upper arms and legs

with respect to torso

-𝑴𝑙𝑙𝑎, 𝑴𝑟𝑙𝑎, 𝑴𝑙𝑙𝑙, 𝑴𝑟𝑙𝑙 position lower parts of limbs

with respect to corresponding upper limbs

25

Transformation Matrices

Display and Traversal

• The pose of the robot is determined by 11 joint angles (two

for the head and one for each other part)

• Display of the tree requires a tree traversal (depth or width

first?)

26

Display and Traversal

• Visit each node once.

• Call the display function at each node that

describes the part associated with the node

This involves applying the correct

transformation matrix for the position and

orientation of the part.

Width first: 1234567

Depth first: 1245367

Further Reading

“Interactive Computer Graphics – A Top-Down Approach with Shader-Based

OpenGL” by Edward Angel and Dave Shreiner, 6th Ed, 2012

• Sec. 8.1 Symbols and Instances

• Sec. 8.1 Hierarchical Models

• Sec. 8.3 A Robot Arm

• Sec. 8.4 Trees and Traversal

• Sec. 8.5 Use of Tree Data Structures

• Sec. 8.6 Animation

27

Further Reading

