
CITS3003 Graphics & Animation

Lecture 19:

Texture Mapping in
OpenGL

Objectives

• Basic strategy & OpenGL pipeline

• Introduce the OpenGL texture functions and

options

• Texture parameters

• Texture mapping in real images

2

Objectives

Texture Mapping

s

t

x

y

z

image

geometry display

3

Texture Mapping

texture mapping assigns a

unique texture point (s, t) to

each point on a surface

Texture Example

• This is a 256 x 256 image.

• It can be used as a texture map in

OpenGL

• The texture has been mapped to a

rectangular polygon which is

viewed in perspective

4

Texture Example

Texture Mapping and the OpenGL Pipeline

• Images and geometry flow through separate pipelines that

join during fragment processing

• Hence, “complex” textures do not affect geometric

complexity

geometry pipelinevertices

pixel pipelineimage

fragment

processor

5

Texture Mapping and the OpenGL

Pipeline

Texture Resolution vs Geometry

Resolution

• We can have different resolutions for texture and geometry

• Texture processing is not as complex as geometry processing

• High resolution textures give more realistic appearance

• High resolution texture mapped on low resolution geometry still looks good

while being light on the graphics pipeline

• Ground textures are perfect examples of this

6

Texture Resolution vs Geometry Resolution

Texture Resolution vs Geometry

Resolution

7

A Simple Example of Texture Mapping

In the fragment shader, we can grab the color pointed to by the

texture coordinates, and use it in our rendering (right).

Each vertex of a triangle is

given texture coordinates s,t
, which “map” each vertex

to some location in the

texture.

The texture coordinates

are then interpolated

over the triangle giving

us texture coordinates

for each pixel. Foundations of 3D Computer Graphics

S.J. Gortler

Basic Strategy

1. Create texture Object

2. Specify the texture

• read or generate image

• enable texturing

3. Assign vertices/ object corners to texture coordinates

• Proper mapping function is left to application

4. Specify texture parameters

• wrapping, filtering

5. Pass textures to shaders

6. Apply textures in shaders

8

Basic Steps to Apply Texture

Specifying a Texture Image

• OpenGL has texture objects (multiple objects possible)

- 1 object stores 1 texture image + texture parameters

- First set up texture object

-Gluint mytex;

-glGenTextures(1, mytex); // Get texture identifier

-glBindTexture(GL_TEXTURE_2D, mytex); // Form new

texture object

• Subsequent texture functions use this object

9

Step#1: Create Texture Object

Specifying a Texture Image

• Define a texture image as an array of texels (texture

elements) in CPU memory

GLubyte my_texels[512][512][3];

• Read in Scanned image or camera image

or

• Generate pattern application program

• Enable texture mapping

-glEnable(GL_TEXTURE_2D)

- OpenGL supports 1-4 dimensional texture maps

10

Step#2: Specifying a Texture Image

Define Image as a Texture

Let OpenGL know that the image is a texture

•glTexImage2D(target, level, components, w, h,

border, format, type, texels);

target: type of texture, e.g., GL_TEXTURE_2D

level: used for mipmapping (discussed later)

components: elements per texel

w, h: width and height of texels in pixels

border: used for smoothing (discussed later)

format , type: the format and type of the texels

texels: pointer to texel array

• Example:

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0,

GL_RGB, GL_UNSIGNED_BYTE, my_texels);

11

Specify Image as a Texture

Basic Strategy

1. Create texture Object

2. Specify the texture

• read or generate image

• enable texturing

3. Assign vertices/ object corners to texture coordinates

• Proper mapping function is left to application

4. Specify texture parameters

• wrapping, filtering

5. Pass textures to shaders

6. Apply textures in shaders

12

Basic Steps to Apply Texture

Texture coordinates assignment

https://www.opengl.org/archives/resources/code/samples/sig99/advanced99/notes/node52.html

Each object corner (x,y,z) => texture coordinate (s, t)

Programmer establishes this mapping

Step#3: Assign Object Corners to Texture

Corners

https://www.opengl.org/archives/resources/code/samples/sig99/advanced99/notes/node52.html

Typical Code

// pass the vertex coordinates to vertex shader

offset = 0;

GLuint vPosition = glGetAttribLocation(program,"vPosition");

glEnableVertexAttribArray(vPosition);

glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_FALSE,0,

BUFFER_OFFSET(offset));

// piggy-back the texture coordinates at the

// end of the buffer and pass it to vertex shader

offset += sizeof(points);

GLuint vTexCoord = glGetAttribLocation(program,"vTexCoord");

glEnableVertexAttribArray(vTexCoord);

glVertexAttribPointer(vTexCoord, 2, GL_FLOAT, GL_FALSE, 0,

BUFFER_OFFSET(offset));

14

Step#5: Passing Texture to Shaders

Variable names

in shader

Vertex Shader

• Vertex shader will output texture coordinates to be rasterized

- Must do all other standard tasks too

• Compute vertex position

• Compute vertex color if needed

in vec4 vPosition; //vertex position in object coordinates

in vec4 vColor; //vertex color from application

in vec2 vTexCoord; //texture coordinate from application

out vec4 color; //output color to be interpolated

out vec2 texCoord; //output texture coordinate to be

//interpolated

texCoord = vTexCoord

color = vColor

gl_Position = modelview * projection * vPosition

15

Step#6: Apply Texture in Shaders (Vertex

Shader)

Applying Textures

• Textures are applied during fragment shading by a sampler

• Samplers return a texture colour from a texture object

in vec4 color; //color from rasterizer

in vec2 texCoord; //texture coordinate from rasterizer

uniform sampler2D texture; //texture object from

application

void main() {

gl_FragColor = color * texture2D(texture, texCoord);

}

16

Step#6: Apply Texture in Shaders

(Fragment Shader)

Output color

Of fragment

Original color

of object
Lookup color of

texCoord(s,t) in

texture

Applying Textures

• Texture Mapping is performed in rasterization

17

Mapping Textures to Surfaces

• For each fragment, its texture

coordinates (s,t) are interpolated based

on corners/vertices' texture

coordinates

• The interpolated texture coordinates

(s,t) are then used to perform texture

lookup

Texture Value

Lookup:
For the given texture coordinates

(s,t), we can find a unique image

value from the texture map.

Texture Sampling

• Aliasing in textures is a major problem. When we map texture coordinates to the

texels array, we rarely get a point that is exactly at the center of the texel.

18

Texture Sampling

OpenGL supports the following options for sampling textures:

1. Point sampling – use the value of the texel that is closest to the texture

coordinates output by the rasterizer

2. Linear filtering – use the weighted average of a group of texels in

neighbourhood of the texture coordinates output by the rasterizer

Interpolation

• OpenGL uses interpolation to find proper texels from specified texture

coordinates. Distortions may result.

good selection

of tex coordinates

poor selection

of tex coordinates

texture stretched

over trapezoid

showing effects of

bilinear interpolation

19

Interpolation

Magnification and Minification (cont.)

20

Dealing with Aliasing

Point sampling of texture can lead to aliasing errors

In computer graphics, aliasing is the

stair-stepped appearance of smooth

curves and lines when there are not

enough pixels in the image or on

screen to represent them realistically.

Also called "stair-stepping" and

"jaggies."

Magnification and Minification (cont.)

21

Dealing with Aliasing

Point sampling of texture can lead to aliasing errors

point samples in texture space.

We miss blue stripes.

texture

map

3D flat

surface

Basic Strategy

1. Create texture Object

2. Specify the texture

• read or generate image

• enable texturing

3. Assign vertices/ object corners to texture coordinates

• Proper mapping function is left to application

4. Specify texture parameters

• wrapping, filtering

5. Pass textures to shaders

6. Apply textures in shaders

22

Basic Steps to Apply Texture

Texture Parameters

• OpenGL has a variety of parameters that determine how texture is

applied

- Wrapping parameters determine what happens if 𝑠 and 𝑡 are outside the

(0,1) range

- Texture sampling mode allows us to specify using area averaging instead of

point samples

- Mipmapping allows us to use textures at multiple resolutions

- Environment parameters determine how texture mapping interacts with

shading

• glTexParameter*(GLenum target, GLenum pname, GLint value);// * can be i or f

• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

23

Step#4: Specify Texture Parameters

Wrapping Mode

• Want 𝑠 and 𝑡 in the range 0⋯1. Can use clamping or repeat to force them in the
[0,1] range.

- Clamping: if 𝑠, 𝑡 > 1 use 1, if 𝑠, 𝑡 < 0 use 0

- Repeat: use 𝑠, 𝑡 > 1 then modulo 1

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)

texture

t

GL_CLAMPGL_REPEAT
24

Wrapping Mode

Wrapping Mode

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT)

https://learnopengl.com/Getting-started/Textures (source)

Wrapping Mode

https://learnopengl.com/Getting-started/Textures

Magnification and Minification

In deciding how to use the texel values to obtain the final texture value, the size of

the pixel on the screen may be larger or smaller than the texel:

• Magnification: Stretch small texture to fill many pixels

• Minification: Shrink large texture to fit few pixels

Magnification and Minification

Texture Texturepolygon polygon

Magnification Minification

More than one

texel can cover a

pixel

More than one

pixel can cover a

texel

Magnification and Minification (cont.)

The filter mode can be specified by calling:
glTexParameteri(target, type, mode)

Magnification:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);

Minification:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);

For point sampling, replace GL_LINEAR by GL_NEAREST

27

Magnification and Minification (Cont.)

Magnification and Minification (cont.)

28

Example: Texture Magnification

48 x 48 image projected (stretched) onto 320 x 320 pixels

Magnification and Minification (cont.)

29

Texture Mapping Parameters

Nearest Neighbor

(lower image quality)

Linear Interpolate the

Neighbors(better quality,

slower)

glTexParameteri(GL_TEXTURE_2D

, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D

, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);

Mipmapping

For objects that are project to a smaller area on the screen, we don’t need to keep

the original full resolution of the texel array.

OpenGL allows us to create a series of texure arrays at reduced sizes, e.g., for a

64 × 64 original array, we can set up 64 × 64, 32 × 32, 16 × 16, 8 × 8, 4 ×
4, 2 × 2, and 1 × 1 arrays by calling:

glGenerateMipmap(GL_TEXTURE_2D);

Mipmapping

Image source

https://cglearn.codelight.eu/pub/computer-graphics/textures-and-sampling#material-interpolation-1

• Mipmapping (sometimes called MIP mapping) is a technique where an

original high-resolution texture map is scaled and filtered into multiple

resolutions within the texture file

• Mipmapping allows for prefiltered texture maps of decreasing resolutions

• You need to firstly declare the mipmap level during texture definition (by

calling, e.g., glTexImage2D). Thus, the order of function calls is (e.g.):

glTexImage2D(GL_TEXTURE_2D, 0, …);

glGenerateMipmap(GL_TEXTURE_2D);

Indicates that we want to

keep all resolutions (all the

way to base level 0, i.e. the

original texel array).

MipmappingMipmapping

Mipmapping

•GL_NEAREST_MIPMAP_NEAREST: takes the nearest mipmap to match the pixel size and uses nearest

neighbor interpolation for texture sampling.

•GL_LINEAR_MIPMAP_NEAREST: takes the nearest mipmap level and samples that level using linear

interpolation.

•GL_NEAREST_MIPMAP_LINEAR: linearly interpolates between the two mipmaps that most closely

match the size of a pixel and samples the interpolated level via nearest neighbor interpolation.

•GL_LINEAR_MIPMAP_LINEAR: linearly interpolates between the two closest mipmaps and samples the

interpolated level via linear interpolation

https://learnopengl.com/Getting-started/Textures (source)

Mipmapping

https://learnopengl.com/Getting-started/Textures

Texture Object

GLuint textures[1];

glGenTextures(1, textures);

glBindTexture(GL_TEXTURE_2D, textures[0]);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, TextureSize,

TextureSize, 0, GL_RGB, GL_UNSIGNED_BYTE, image);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glActiveTexture(GL_TEXTURE0);

33
Partial code from example1.cpp in the CHAPTER07_CODE folder

Put it all Together

Checkerboard Texture

We can create our own texture map in the application.

For example, creating a checkerboard texture:

GLubyte image[64][64][3];

// Create a 64 x 64 checkerboard pattern

for (int i = 0; i < 64; i++) {

for (int j = 0; j < 64; j++) {

GLubyte c = (((i & 0x8) == 0) ^//bitwise &, Hex, ^ XOR

((j & 0x8) == 0)) * 255;

image[i][j][0] = c;

image[i][j][1] = c;

image[i][j][2] = c;

34

Partial code from example1.cpp in the CHAPTER07_CODE folder

Checkerboard Texture

Adding Texture Coordinates

void quad(int a, int b, int c, int d)

{

quad_colors[Index] = colors[a];

points[Index] = vertices[a];

tex_coords[Index] = vec2(0.0, 0.0);

index++;

quad_colors[Index] = colors[a];

points[Index] = vertices[b];

tex_coords[Index] = vec2(0.0, 1.0);

Index++;

// other vertices

}

35

Partial code from example1.cpp in the CHAPTER07_CODE folder

Adding Texture Coordinates

Texture Mapping Real Images

• If the texture to be mapped is a real image, it already has

shading and shadows

- Due to directional light sources

- Due to self occlusions and occlusions from other objects

• These shading and shadows will not correspond to the light

sources in your graphics world

• A good texture map should not include shading or shadows

- Such an image can only be captured in controlled conditions with perfect

diffused lighting i.e. light coming from all directions

- Multiple large planar light sources can approximate diffused light

36

Texture Mapping Real Images

2D Texture on 3D Objects

• Wrapping 2D texture onto a 3D object is problematic,

especially if the 3D shape is complex

• Unless the texture was on the 3D object already in the real

world and the object was scanned

• And/Or some effort was put into unwrapping the texture

37

2D Texture on 3D Objects

Texture Files

If we generate human with clothes option, we get texture files for the skin,

hair, eyes, eyelashes, eyebrow, clothes, shoes, etc.

38

Texture Files

Further Reading

“Interactive Computer Graphics – A Top-Down Approach with Shader-Based

OpenGL” by Edward Angel and Dave Shreiner, 6th Ed, 2012

• Sec. 7.6 Texture Mapping in OpenGL (including all the

subsections)

39

Further Reading

• For the aliasing problem, see Pages 370-371.

References:

• Foundations of 3D Computer Graphics Steven Gortler

• Prof. Emmanuel Agu, WPI, CS 543 Computer Graphics, Fall

Semester 2019

