
CITS3003 Graphics & Animation

Lecture 17: 

Shading in OpenGL



• Introduce the OpenGL shading methods

- per vertex shading 

- per fragment shading

- where to carry out 

• Discuss polygonal shading

- Flat Shading

- Smooth Shading

• Gouraud shading

• Phong shading
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Objectives

Image source

https://adambadke.com/wp-content/uploads/2017/07/allShading.jpg


• To compute the shading values, OpenGL needs

onormal vectors (denoted by 𝐧)

omaterial properties

o light vectors (denoted by 𝐥)

• The cosine terms in lighting calculations (see the previous 

lecture) can be computed using dot product.

• Using unit length vectors simplifies calculation.

• GLSL has a built-in normalization function for normalizing 

vectors to unit length.
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OpenGL Shading



• Every surface has a front and back face

• For many objects, we never see the back face, so we don’t care how or if 

it is rendered

• If it matters, we can handle that in the shader

back faces not visible
back faces visible
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Front and Back Faces



Vertex Normals

• Complex surfaces are often represented by a triangular mesh. 

• Consider 5 adjacent triangles sharing a common vertex 𝐩.

o We can compute the normals 𝐧1, 𝐧2, ⋯ , 𝐧5 of the 5 triangles

o We can then average these normals to 

get the normal 𝐧 at 𝐩:

𝐧 = σ𝑖=1
5 𝐧𝑖 then 𝐧 ← 𝐧/ 𝐧

o This allows us to have normals

defined at vertices

o We call 𝐧 the vertex normal at 𝐩.
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n3
n4

n5

n
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Vertex Normals



• Light sources are geometric objects whose positions or directions 

are affected by the model-view matrix

• Depending on where we place the position (direction) setting 

function, we can

- move the light source(s) with the object(s)

- fix the object(s) and move the light source(s)

- fix the light source(s) and move the object(s)

- move the light source(s) and object(s) independently

• In interactive graphics, users should be able to do all of the 

above.
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Moving Light Sources



Specifying a Point Light Source

• For each light source, we can set the RGBA values for the 

diffuse, specular, and ambient components, and for the light 

source position:

vec4 light0_pos = vec4(1.0, 2.0, 3.0, 1.0);

vec4 diffuse0 = vec4(1.0, 0.0, 0.0, 1.0);

vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);

vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);

Red

(R)

Green

(G)

Blue

(B)

Opacity

(A or alpha)

x      y      z      w
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Specifying a Point Light Source



• The light source color is specified in RGBA

• The light source position is given in homogeneous coordinates:

- If 𝑤 = 1.0, we are specifying a finite location

- If 𝑤 = 0.0, we are specifying a parallel source with the given 

direction vector

• Recall from lecture 15 and 16, we can have a distance-attenuation 

coefficient so objects further from the light source receive less light. 

• The distance-attenuation coefficient is usually inversely proportional to 

the square of the distance 𝑑: 1/(𝑎 + 𝑏𝑑 + 𝑐𝑑2), where 𝑎, 𝑏, and 𝑐 are 

user-defined constants.
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Distance and Direction of

a Point Light Source



𝜃−𝜃
𝜙

0

• Spotlights are derived from point sources. Each spotlight 

thus has a distance and a colour. In addition, it has

- A direction

- A cutoff value, 𝜃

- An attenuation function, usually defined 

by cos𝑒𝜙

If 𝜃 = 1800 then the spotlight 

becomes a point source
𝐩2𝐩1

𝜙

𝐩1is illuminated by 

the light source as 

it falls inside the 

cone but 𝐩2 is not.

Large e values ⇒ attenuate faster

Small e values ⇒ attenuate slower
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Spotlights



Spotlights

• The exponent term 𝑒 in cos𝑒𝜙 determines how rapidly the 

light intensity drops off.

Note: the term e here is only a coefficient. It is not equal to exp(1). It is a 

poor choice of symbol from Angel & Shreiner.
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Spotlights

e = 1

e > 1

e  much larger than 1

𝜙0



Material Properties

• Material properties should match the terms in the light source model

• Material properties are specified via the ambient, diffuse, and 

specular reflectivity coefficients (ka, kd, and ks)

• The A value gives opacity, e.g.,

vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0);

vec4 diffuse = vec4(0.8, 0.8, 0.0, 1.0);

vec4 specular = vec4(1.0, 1.0, 1.0, 1.0);

GLfloat shine = 100.0;

R   G    B    A (opacity)

This is a yellow (not fully saturated though) object. Is it a smooth (shiny) 

object?
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Material Properties

Material Shininess



Transparency

• Material properties are specified as RGBA values.

• The A value can be used to make the surface translucent.

• The default is that all surfaces are opaque. 

• This feature can be used in combination with blending
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Transparency



Polygonal Shading Methods

There are 2 methods for shading a polygonal mesh:

1. Flat shading

2. Smooth shading 

• Gouraud shading

• Phong shading

Recall that OpenGL handles only triangles. So the terms “polygon” and 

“polygonal” from here onward should be interpreted as “triangle” and “triangular”.
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Gouraud shading and Phong shading are both smooth shading techniques.

The difference will be clear in the coming slides. 

Polygonal Shading Methods

Image credits :Emmanuel Agu, WPI, CS 543

Shading determines color of interior surface pixels of a polygon



Flat Shading

• Recall that to compute the shading value at a point, we need to know the light 

vector 𝐥, the normal vector 𝐧, and the view vector 𝐯.

• As we move from one point to the next point inside the polygon, 𝐥 and 

𝐯 should vary. In the flat shading method, they are assumed to be constant.

⇒ a single shading calculation is performed for each polygon.

⇒ the entire polygon has a single shading value.

• This technique is thus known as flat or constant shading.
𝐧
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Flat Shading



• Advantage: computationally cheap.

• Disadvantage: boundary edges of polygons 

may show up in the rendered output.

• This shading method is suitable when the 

viewer and/or light source is far away from 

the polygon.

• In OpenGL, we specify flat shading as 

follows:

glShadeModel(GL_FLAT);

• Flat shading suffers from “mach band 

effect”

An example of rendering a 

polygonal mesh using flat shading
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Flat Shading

The Machband describes an effect where the human mind subconsciously increases the contrast between two 

surfaces with different luminance. The visual system is exaggerating the difference in luminance (contrast) at 

each edge in order to detect it. source

https://mulloverthings.com/which-shading-algorithm-removes-mach-band-effect/


• In the Gouraud shading method, 

o the normal vector at each vertex of the polygon is firstly computed;

o the shading value at each vertex is then computed using the light vector 𝐥,
normal vector 𝐧, and view vector 𝐯 at that vertex;

compute the shading 

values at p1, p2, and p3.

o shading values of interior points of the 

polygon are obtained by interpolating the 

shading values at the vertices.

oAs one shading calculation is 

required for each vertex, it is also 

known as per-vertex shading.

𝐩2
𝐧1

𝐧2

𝐧3
𝐩1

𝐩3 16

Smooth Shading or Gouraud Shading



• As shading calculation is required for each vertex, it is also known as per-vertex 

shading and sometimes referred to as per-vertex lighting.

• Advantage: Compared to flat shading, the smooth shading method gives much 

better, smoother rendering results

• Disadvantage: Compared to flat shading, smooth shading is more 

computationally intensive; however, compared to Phong shading (see later), 

Gouraud shading is computationally cheap.

• Smooth shading (or Gouraud shading) is the default implementation in 

OpenGL.

• You can also explicitly set the shading mode as follows:

glShadeModel(GL_SMOOTH);
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Smooth Shading or Gouraud Shading



• Although Gouraud shading gives smooth shading, the appearance 

of Mach bands may still be found, especially at specular highlight 

regions of the scene.

• If polygon mesh surfaces have high curvatures, Gouraud shading may 

show edges

• Phong proposed that 

- Instead of interpolating vertex intensities to get the intensities of the interior 

of each polygon

- We interpolate the normals of the vertices of each polygon to get the normal 

across the interior of each polygon. 

- We then use the interpolated normal at each fragment to compute the 

intensity of the fragment.
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Phong Shading



• Similar to Gouraud shading, the Phong shading method firstly 

computes the normal vector at each vertex of the polygon.

𝐧1

𝐧2

normals are then interpolated for 

each interior point of the polygon.

𝐧3

• The differences are then:

onormals along the edges of the polygon 

are computed by interpolating the 

normals at the end-point vertices;

onormals at interior points of the 

polygon are obtained by interpolating 

normals on the edges.
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Phong Shading



• The differences are then: …

o shading value for each point of the polygon is finally computed using the normal, light 

vector, and view vector at that point.

• As shading calculation is performed for each fragment,  Phong shading is also 

known as per-fragment shading or per-fragment lighting.

• Advantage: Very good rendering results, especially at the highlight regions of 

highly specular (shiny) surfaces

• Disadvantage: Too computationally expensive. Only done in off-line processing. 

Not suitable for interactive graphics. However, it is reported that the latest 

graphics cards perform Phong shading in real-time.

Recall that a fragment is a potential pixel which carries additional information such as 

depth value, colour value, opacity, etc.
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Phong Shading



• If the polygon mesh approximates surfaces with a high curvatures, Phong

shading may look smooth while Gouraud shading may show edges.

• Both need data structures to represent meshes so we can obtain vertex 

normals.

Gouraud shading or smooth 

shading or per-vertex shading

Phong shading or per-fragment 

shading

Note the difference in the highlight region of the teapot. 

Gouraud shading gives a flat impression in the region. 21

Comparing Gouraud Shading and Phong

Shading



// vertex shader

in vec4 vPosition;

in vec3 vNormal;

out vec4 color;  //vertex shade

// light and material properties

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;

uniform mat4 ModelView;

uniform mat4 Projection;

uniform vec4 LightPosition;

uniform float Shininess;

• Here, the vertex shade (or vertex colour) is computed 

in the vertex shader. 

• The colour is then passed down the pipeline where 

the rasterizer carries out the interpolation of the 

vertex colour. 

• This is Gouraud shading or per-vertex shading.

These terms (ambient, diffuse 

and specular) are computed in the 

application (the .cpp file) and 

passed to the vertex shader as 

uniform variable.out variables will be interpolated by the rasterizer.
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Example 1: Vertex Shader for Gouraud

Shading method

(light * reflectivity)



void main()

{

// Transform vertex  position into eye coordinates

vec3 pos = (ModelView * vPosition).xyz;

vec3 L = normalize( LightPosition.xyz - pos ); \\ light vector

vec3 V = normalize( -pos ); \\ view vector

vec3 H = normalize( L + V );  \\ half-way vector

// Transform vertex normal into eye coordinates

vec3 N = normalize( ModelView*vec4(vNormal, 0.0) ).xyz;

Built-in function that can be used in 

the vertex and fragment shaders.
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Example 1: Vertex Shader for Gouraud

Shading (cont.)



// Compute terms in the illumination equation

vec4 ambient = AmbientProduct;

float Kd = max( dot(L, N), 0.0 );  \\ (l · n)
vec4  diffuse = Kd*DiffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), Shininess );  \\ n · h 𝛽

vec4  specular = Ks * SpecularProduct;

// discard the specular highlight if the light is behind the vertex

if( dot(L, N) < 0.0 ):  // since we don’t use perfect reflector “R” in Blinn-phong model, dot(V,R)  is not used here

specular = vec4(0.0, 0.0, 0.0, 1.0); 

gl_Position = Projection * ModelView * vPosition;

color = ambient + diffuse + specular;

color.a = 1.0;

}

𝛽

Recall that the total shading is (see previous lecture):

𝐼 = 𝑘𝑑 𝐼𝑑 (𝐥 · 𝐧) + 𝑘𝑠 𝐼𝑠 𝐧 · 𝐡 𝛽 + 𝑘𝑎 𝐼𝑎 24

Example 1: Vertex Shader for Gouraud

Shading (cont.)

Blinn_Phong Model



// fragment shader

in vec4 color;

void main() 

{ 

gl_FragColor = color;

} 

All the hard work has been done 

by the application code and the 

vertex shader. 

The fragment shader simply 

takes the interpolated colour and 

assigns it to the fragment.
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Example 1: Fragment Shader for Gouraud

Shading



// vertex shader

in vec4 vPosition;

in vec3 vNormal;

// output values that will be interpolated per-fragment

out vec3 fN;

out vec3 fV;

out vec3 fL;

uniform mat4 ModelView;

uniform vec4 LightPosition;

uniform mat4 Projection;

Declare variables n, v, l as out in vertex shader.

These out variables will be interpolated by the 

rasterizer further down the pipeline.

• In these examples, the vertex shader passes down fN, fV, 

and fL variables to the rasterizer to interpolate.

• The fragment colour is computed in the fragment shader

using the interpolated normal, light, and view vectors. 

• This is Phong shading or per-fragment shading.
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Example 2: Vertex Shader for the Phong

Shading Method



void main()

{

fN = (ModelView * vNormal).xyz;

fV = - (ModelView * vPosition).xyz; //notice the negative sign

fL = LightPosition.xyz – (ModelView * vPosition).xyz;

gl_Position = Projection * ModelView * vPosition;

}
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Example 2: Vertex Shader for Phong Shading 

(cont.)



// fragment shader

// per-fragment interpolated values from the vertex shader

in vec3 fN;

in vec3 fL;

in vec3 fV;

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;

uniform mat4 ModelView;

uniform vec4 LightPosition;

uniform float Shininess;
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Example 3: Fragment Shader for Phong

Shading (cont.)



Example 2: Fragment Shader for Phong

Shading (cont.)

void main() 

{ 

// Normalize the input lighting vectors

vec3 N = normalize(fN);

vec3 V = normalize(fV);

vec3 L = normalize(fL);

vec3 H = normalize( L + V );   

vec4 ambient = AmbientProduct;
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Example 3: Fragment Shader for Phong

Shading (cont.)

Use interpolated variables n, v, l

in fragment shader



Example 2: Fragment Shader for Phong

Shading (cont.)

float Kd = max(dot(L, N), 0.0);

vec4 diffuse = Kd*DiffuseProduct;

float Ks = pow(max(dot(N, H), 0.0), Shininess);

vec4 specular = Ks*SpecularProduct;

// discard the specular highlight if the light is behind the vertex

if( dot(L, N) < 0.0 ): 

specular = vec4(0.0, 0.0, 0.0, 1.0);

gl_FragColor = ambient + diffuse + specular;

gl_FragColor.a = 1.0;

} 

Recall that the total shading is (see previous lecture):

𝐼 = 𝑘𝑑 𝐼𝑑 (𝐥 · 𝐧) + 𝑘𝑠 𝐼𝑠 𝐧 · 𝐡 𝛽 + 𝑘𝑎 𝐼𝑎
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Example 3: Fragment Shader for Phong

Shading (cont.)



Exercises

Going back to the OpenGL pipeline architecture and the shaders (vertex and 

fragment) that we learned from previous lectures. Frome what we learned here, 

you should be able to answer the following questions:

• If we want to do per-vertex shading 

- Which shader should compute the colour of each pixel?

- What variables should be declared as varying in both shaders?

• If we want to do per-fragment shading

- Which shader should compute the colour of each pixel?

- What variables should be declared as varying in both shaders?

Hint: the Rasterizer of the pipeline is responsible for interpolating the output 

variables from the vertex shader. The interpolated values are passed to the 

fragment shader.
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Exercises



Further Reading

“Interactive Computer Graphics – A Top-Down Approach 

with Shader-Based OpenGL” by Edward Angel and Dave 

Shreiner, 6th Ed, 2012

• Sec. 5.5. Polygonal Shading (including all subsections, 

covering Flat Shading, Smooth or Gouraud Shading, and 

Phong Shading)

• Appendix A.7 Per-Fragment Lighting of Sphere Model
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Further Reading


