
Lecture 13:

Computer Viewing

CITS3003 Graphics & Animation

• Introduce OpenGL viewing functions

- Learn how to place the camera

• Introduce the mathematics of projection

- Learn how to define orthographic and perspective projection

- gluLookAt(), glOrtho(), glFrustum(), gluPerspective()

and their mat.h counterparts

• Introduce glMatrixMode()

2

Objectives

• There are three aspects of the viewing process, all of

which are implemented in the pipeline,

1. Positioning the camera

• Setting the model-view matrix

2. Selecting a lens

• Setting the projection matrix

3. Clipping

• Setting the view volume

3

Computer Viewing

Image credits : https://www.bhphotovideo.com/explora/photography/tips-and-solutions/faq-wide-

angle-lenses

• In OpenGL, initially the object and camera frames are the

same

- The default model-view matrix is an identity

• The camera is located at the origin and points in the

negative 𝑧 direction

4

The OpenGL Camera

• OpenGL also specifies a default view volume that is a

cube with sides of length 2 centered at the origin

- The default projection matrix is an identity

The default projection is orthogonal

clipped out

𝑧 = 0

2
The default clipping volume

is a cube of side = 2 centred

at the origin.

5

The Default Projection

default frames frames after translation by 𝑑
where 𝑑 > 0

6

Moving the Camera Frame

Default Frames
Translate the camera in

+z direction Translate(0.0,0.0,-d);

oWe can move the objects in the – 𝑧 direction

o Moving the world frame

Default Frames
Translate the objects in -z

direction

Moving the Camera Frame

• If we want to visualize objects that have both positive and

negative 𝑧 −values we can either

- Move the objects in the negative 𝑧 direction

• Translate the world frame

- Move the camera in the positive 𝑧 direction

• Translate the camera frame

Default Frames Translate the camera in

+z direction

Translate the objects

in -z direction

Moving the Camera Frame

Both of these views

are equivalent and are

determined by the

model-view matrix

We can move the camera to any desired position by a

sequence of rotations and translations

9

Example: side view at the

+𝑥 axis looking towards the origin

1. Rotate the camera

2. Move it away from origin

Model-view matrix 𝐶 = 𝑇𝑅

Moving the Camera

• Remember that the last transformation specified is

first to be applied

// Using mat.h

mat4 t = Translate (0.0, 0.0, -d);

mat4 ry = RotateY(90.0);

mat4 m = t*ry;

10

Moving the Camera – OpenGL code

• The GLU library contains the function gluLookAt which can be used

to form the required model-view matrix.

void gluLookAt(eyeX, eyeY, eyeZ, centreX, centreY, centreZ, upX, upY, upZ)

• We need to define the eye (camera) position, the centre (fixation

point), and an up direction. All are of type GLdouble.

11

The LookAt() Function

Programmer defines:

•eye position

•LookAtpoint (at) and

•Upvector (Updirection

usually (0,1,0))

• Alternatively, we can use LookAt() defined in mat.h

- The function returns a mat4 matrix.

- Can concatenate with modeling transformations

• Example:

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);

Type: GLfloat

12

The LookAt() Function

The LookAt() Function:

• Forms camera (u,v,n) frame
• v points vertically upward,

• n away from the view volume,

• u at right angles to both n and v

• Compose matrix to transform coordinates

(object to camera)

• The LookAt() function is only for positioning the

camera

• Other ways to specify camera position are:

- Yaw, pitch, roll (angles)

- Elevation, azimuth, twist (angles)

- Direction angles

13

Other Camera Viewing Controls

14

Previously

we set the

camera

position

How do we

set the

viewing

volume?

3D Viewing and View Volume

15Slide Content Credits: Emmanuel Agu, WPI, CS 543

Orthogonal View Volume Perspective View Volume

Different view volume leads to different look

View volume parameters:
• Projection: Perspective, orthographic etc.,

• Near and far clipping planes- only the objects b/w near and far planes appear on

the image

• Field of view – determines how much of the world is captured in the picture

• Aspect ratio- w/h of the near plane

Different View Volumes

16Slide Content Credits: Emmanuel Agu, WPI, CS 543

Near plane + far plane + field of view = Viewing

Frustum

Far planeNear plane

Objects outside the viewing

frustrum are clipped

Viewing Frustrum

• The default projection in the eye (camera) frame is orthogonal
•

• For a point 𝐩 = 𝑥, 𝑦, 𝑧, 1 T within the default view volume, it is

projected to 𝐩𝑝 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑤𝑝)
T, where

𝑥𝑝 = 𝑥, 𝑦𝑝 = 𝑦, 𝑧𝑝 = 0,𝑤𝑝 = 1

• i.e., we can define

- 𝐌 =

1 0 0 0
0 1 0 0
0
0

0
0

0
0

0
1

and we can then write 𝐏𝑝 = 𝐌𝐩

• In practice, we can let 𝐌 = 𝐈 and then set 𝑧 to 0

17Image Credits: Emmanuel Agu, WPI, CS 543

Default Orthographic Projection

In orthographic projection, the camera’s focal length is considered

to be infinite

18

In perspective projection, the camera’s

focal length 𝑑 is finite

A simple perspective projection:
Center of projection is at the origin

Projection plane 𝑧 = 𝑑, where 𝑑 < 0

Slide Credits: Emmanuel Agu, WPI, CS 543

Simple Perspective

Consider the top and side views

(top view)
(side view)

Recall: the

OpenGL synthetic

camera model in

an earlier lecture

𝑥𝑝

𝑑
=
𝑥

𝑧

i.e., 𝑥𝑝 =
𝑥

𝑧/𝑑

𝑦𝑝
𝑑
=
𝑦

𝑧

i.e., 𝑦𝑝 =
𝑦

𝑧/𝑑
𝑧𝑝 = 𝑑

19

Simple Perspective (cont.)

Simple Perspective (cont.)

Consider 𝒒 = 𝐌𝒑 where

𝐌 =

1 0
0 1

0
0

0
0

0 0 1 0
0 0 1/𝑑 0

and 𝐩 =

𝑥
𝑦
𝑧
1

⇒ 𝐪 =

𝑥
𝑦
𝑧
𝑧/𝑑

In OpeGL, this is

the w term

20

Simple Perspective (cont.)

Perspective Division

• However, since 𝑤 = Τ𝑧 𝑑 1, so we must divide by w to

return back to inhomogeneous coordinates.

• This perspective division yields

𝑥𝑝 =
𝑥

𝑧/𝑑
𝑦𝑑 =

𝑦

𝑧/𝑑
𝑧𝑝 = 𝑑

which are the desired perspective equations, as on slide

19.

21

Perspective Division

Orthogonal Viewing

• The OpenGL orthogonal viewing function is:

void glOrtho(left, right, bottom, top, near, far)

• Alternatively, we can use Ortho() defined in mat.h:

mat4 Ortho(left,right,bottom,top,near,far)

near and far are measured from camera

Type: GLfloat

Type: GLdouble

22

Orthogonal Viewing

Perspective Viewing

• To define a perspective transformation matrix for the

camera, we can use

mat4 Frustum(left,right,bottom,top,near,far)

defined in mat.h:

All are of type

GLfloat

23

Perspective Viewing

Perspective Viewing with “Field of View”

• With Frustum() it is often difficult to get the desired

view. Another way to get perspective projection is:

mat4 Perspective(fovy, aspect, near, far)

which often provides a better interface

Note:
aspect = w/h

fovy is an angle in degrees

front plane

All are of type

GLfloat

24

Perspective Viewing with “Field of View”

The Complete Viewing Pipeline

• Model (orient individual objects)

• View (orient the camera OR the entire world)

• Projection

𝑃 ∗ 𝑉 ∗ 𝑀𝑖 ∗ 𝑂𝑖

• There is one projection, one camera but there could

be many objects 𝑂𝑖 and hence 𝑀𝑖 where 𝑖 =
1,2,3, …𝑛

25

The Complete Viewing Pipeline

• Did you notice that…

• The “gl” and “glu” versions have no return

arguments

• Whereas the mat.h versions LootAt(), Ortho(),

Frustum() and Perspective() return 4x4 matrices of

type mat4

26

gluLookAt(), glOrtho(), glFrustum(), and

gluPerspective()

glMatrixMode()

• Recall that OpenGL is a state machine

• glMatrixMode() defines the current matrix
• GL_MODELVIEW (is the initial value to start with)

• GL_PROJECTION

• GL_TEXTURE

• GL_COLOR

• glGet(GL_MATRIX_MODE) will return the current

matrix mode

27

glMatrixMode()

glMatrixMode()

• When you define MODELVIEW with gluLookAt()

- OR

• When you define PROJECTION with glOrtho(),

glFrustum(), or gluPerspective()

• The current matrix is multiplied by the new matrix

28

glMatrixMode()

glMatrixMode(GL_PROJECTION);

glLoadIdentity() /*clear the matrix*/

glFrustrum(-1.0, -1.0, -1.0, 1.5. 20.0)

Further Reading

“Interactive Computer Graphics – A Top-Down Approach with Shader-Based
OpenGL” by Edward Angel and Dave Shreiner, 6th Ed, 2012

• Secs. 4.1. Classical and Computer Viewing; 4.1.2. Orthographic Projections;
4.1.5 Perspective Viewing

• Sec. 4.2. Viewing with a Computer

• Sec. 4.3.1. Positioning of the Camera Frame; 4.3.3. The Look-At Function

• Sec. 4.4.1. Orthographic Projections; 4.4.2. Parallel Viewing with OpenGL;

4.4.4. Orthogonal-Projection Matrices; (optional) 4.4.6 An Interactive Viewer

• Secs. 4.5. – 4.7. Projections – Perspective-Projection Matrices

29

Further Reading

