Lecture 13:
Computer Viewing

Objectives

* Introduce OpenGL viewing functions
- Learn how to place the camera

* Introduce the mathematics of projection
- Learn how to define orthographic and perspective projection

- gluLookAt(), glOrtho(), glFrustum(), gluPerspective()
and their mat.h counterparts

* Introduce glMatrixMode()

Computer Viewing

* There are three aspects of the viewing process, all of
which are implemented in the pipeline,

1. Positioning the camera
Setting the model-view matrix M\
2. Selecting a lens
Setting the projection matrix
3. Clipping
Setting the view volume

Wide Angle

Extreme
Wide Angle

The OpenGL Camera

* In OpenGL, initially the object and camera frames are the
same

- The default model-view matrix is an identity

* The camera Is located at the origin and points in the
negative z direction

Y, Ye |

/

Z, Z

The Default Projection

» OpenGL also specifies a default view volume that Is a
cube with sides of length 2 centered at the origin

- The default projection matrix is an identity
The default projection is orthogonal

4

A
clipped out
The default clipping volume __—
Is a cube of side = 2 centred ,2/' ‘
at the origin. - X
[t

4'/ | Projection plane , —
Z

Moving the Camera Frame

default frames frames after translation by d
whered > 0

.f, (| ‘ 0 0 0]
B 10 0

rd \ ‘ 0 1 —d

“= [\ 0 0 1 |

Translate the camera in

6

Moving the Camera Frame

oWe can move the objects in the - z direction
Moving the world frame

Yi Ye

Qﬁ ‘

\HX X

/ I\
s f \ \\
c \)

Translate the objects in -z
Default Frames direction

Moving the Camera Frame

« |f we want to visualize objects that have both positive and

negative z —values we can either
Both of these views

- Move the objects in the negative z direction are equivalent and are
Translate the world frame determined by the
- Move the camera in the positive z direction model-view matrix

Translate the camera frame

[= —X, X, (
/ A / A

Translate the objects Translate the camera in

Default Frames _ S o
in -z direction +z direction

Moving the Camera

We can move the camera to any desired position by a
sequence of rotations and translations

Example: side view at the
+x axis looking towards the origin

|l

1. Rotate the camera
P X

2. Move it away from origin
M
R

Model-view matrix C = TR

Moving the Camera — OpenGL code

« Remember that the last transformation specified Is
first to be applied

// Using mat.h

mat4d t = Translate (0.0, 0.0, -d);
mat4 ry = RotateY (90.0);
matd m = t*ry;

10

The LookAt() Function

» The GLU library contains the function gluLookAt which can be used
to form the required model-view matrix.

void gluLookAt(eyeX, eyeY, eyeZ, centreX, centreY, centreZ, upX, upY, upZ)

 \We need to define the eye (camera) position, the centre (fixation
point), and an up direction. All are of type GLdouble.

4

(at , ot , at)
ey "

Programmer defines:
seye position
T LookAtpoint (at) and
D - «Upvector (Updirection
(eye,., eye,, eye) usually (0,1,0))

(up,. up,, UP,) o

(B

11

The LookAt() Function

» Alternatively, we can use LookAt() defined in mat.h
- The function returns a mat4 matrix.
- Can concatenate with modeling transformations

« Example: Type: GLfloat

matd4d mv = LookAt (vecd4 eye, vecd at, vecd up);

(01,0 (100)

y v Y (00,1)
y '\/’

(at , of , at)
Xt YT Z

IooI:At (0,0,0)
(up,, up,,, up,) o world X
W, X z
(W The LookAt() Function:
« Forms camera (u,v,n) frame
z v points vertically upward,

(eye,. eye,, eye,))
n away from the view volume,

u at right angles to both nand v
Compose matrix to transform coordinates
(object to camera) 12

Other Camera Viewing Controls

* The LookAt() function is only for positioning the
camera

 Other ways to specify camera position are:
- Yaw, pitch, roll (angles)
- Elevation, azimuth, twist (angles)
- Direction angles

Roll Pitch Yaw

13

3D Viewing and View Volume

Previously
we set the
camera
position

‘ : 1
|

]

X

[|ef;, bottom, —near)

7 right, top, —far)
z = -far

~View volume

z=-rer How do we

set the
viewing
volume?

14

Different View Volumes

Orthogonal View Volume Perspective View Volume

Different view volume leads to different look

View volume parameters:

Projection: Perspective, orthographic etc.,
Near and far clipping planes- only the objects b/w near and far planes appear on

the image
Field of view — determines how much of the world is captured in the picture

Aspect ratio- w/h of the near plane

Slide Content Credits: Emmanuel Agu, WPI, CS543 15

Viewing Frustrum

Near plane + far plane + field of view = Viewing
Frustum

Near plane Far plane
\

Objects outside the viewing
frustrum are clipped

Slide Content Credits: Emmanuel Agu, WPI, CS 543 16

Default Orthographic Projection

 The default projection in the eye (camera) frame is orthogonal

« For a point p = (x,y,z,1)" within the default view volume, it is
projected to p,, = (x,,v,,z,, w,)", where
X,=X, YV, =Y, Zp=O,Wp=1
* I.e., we can define

1 0 0 O
101 0 O
M= 0O 0 0 O
0 0 0 1
and we can then write P, = Mp |
. Triangle
Projection of In 3D

Triangle in 2D

* In practice, we can let M = I and then set z to O

Image Credits: Emmanuel Agu, WPI, CS 543 17

Simple Perspective

In orthographic projection, the camera’s focal length Is considered
to be infinite

X
4 /.(x, Y, Z)
In perspective projection, the camera’s (|
focal length d is finite o' Vpr %p
- X
A simple perspective projection:
Center of projection is at the origin z
Projection planez = d, whered < 0
Projectors
Y

¥— Objectin 3 space

Projected image

Slide Credits: Emmanuel Agu, WPI, CS 543 18

Simple Perspective (cont.)

Consider the top and side views

(x, 2) A
(X ,d) I ()’, Z)
| - X Z -l E
z=d
y (opview) (side view)
p _ X Yo _ Y Recall: the
d z d z OpenGL synthetic
: _ X - Y — camera model In
1.e., x,, = i.e., = = Z, = d
P z/d = 5 Y an earlier lecture

19

Simple Perspective (cont.)

Consider q = Mp where

1 0 0 O X
m=(0 50 Ol anap=:
0 0 1/d 0 1.
e
sq=|
-/Z/\d I OpeGL, this is

the w term

20

Perspective Division

« However, since w = z/d # 1, so we must divide by w to
return back to inhomogeneous coordinates.

* This perspective division yields

Xy
PT2d 74T zid P

which are the desired perspective equations, as on slide
19.

21

Orthogonal Viewing

- The OpenGL orthogonal viewing function |% Type: GLdouble
void glOrtho(left, right, bottom, top, near, far)

» Alternatively, we can use Ortho() defined in mat.h:
matd4 Ortho(left,right,bottom, top,near, far)

.

X A inght, top, -ar Type: GLfloat
z=-F|:.|r

r ~View 'l.r-::|l_|ma

Z =-flgar

1

.I' -
[Ila-lli, Eafh:.lm, -near]

z near and far are measured from camera
22

Perspective Viewing

* To define a perspective transformation matrix for the
camera, we can use
matd4 Frustum(left,right,bottom, top,near, far)

defined in mat.h: N

All are of type
GLfloat

[rrgllﬂ, lop,-near]

Perspective Viewing with “Field of View”

* With Frustum() It Is often difficult to get the desired
view. Another way to get perspective projection Is:
mat4 Perspective (fovy, aspect, near, far)
which often provides a better interface

w

X s+— front plane

All are of type
GLfloat

fov

- X Note:
aspect = w/h
fovy IS an angle in degrees

24

The Complete Viewing Pipeline

* Model (orient individual objects)
*View (orient the camera OR the entire world)
* Projection

P*V*Ml’*Oi

 There IS one projection, one camera but there could
be many objects O; and hence M; where i =
1,2,3,..n

25

gluLookAt(), glOrtho(), glFrustum(), and
gluPerspective()

* D1d you notice that...

* The “gl” and “glu” versions have no return
arguments

* Whereas the mat.h versions LootAt(), Ortho(),
Frustum() and Perspective() return 4x4 matrices of
type mat4

26

glMatrixMode()

 Recall that OpenGL is a state machine

 gIMatrixMode() defines the current matrix

GL_MODELVIEW (is the initial value to start with)
GL_PROJECTION

GL_TEXTURE

GL_COLOR

*glGet(GL_MATRIX _MODE) will return the current
matrix mode

27

glMatrixMode()
* When you define MODELVIEW with gluLookAt()

- OR

* When you define PROJECTION with glOrtho(),
glFrustum(), or gluPerspective()

 The current matrix is multiplied by the new matrix

glMatrixMode(GL_PROJECTION);
glLoadldentity() /*clear the matrix*/
glFrustrum(-1.0, -1.0, -1.0, 1.5. 20.0)

28

Further Reading

“Interactive Computer Graphics — A Top-Down Approach with Shader-Based
OpenGL” by Edward Angel and Dave Shreiner, 6" Ed, 2012

 Secs. 4.1. Classical and Computer Viewing; 4.1.2. Orthographic Projections;
4.1.5 Perspective Viewing

 Sec. 4.2. Viewing with a Computer
 Sec. 4.3.1. Positioning of the Camera Frame; 4.3.3. The Look-At Function

 Sec. 4.4.1. Orthographic Projections; 4.4.2. Parallel Viewing with OpenGL;
4.4.4. Orthogonal-Projection Matrices; (optional) 4.4.6 An Interactive Viewer

» Secs. 4.5. — 4.7. Projections — Perspective-Projection Matrices

29

