
CITS3003 Graphics & Animation

Lecture 12:

3D Hidden Surface

Removal

• Look into a more sophisticated three-

dimensional example

– Sierpinski gasket: a fractal

• Introduce hidden-surface removal

– The z-buffer algorithm

– The Painter’s algorithm

• Animation and double buffering

2

Content

• In OpenGL, two-dimensional applications are
a special case of three-dimensional graphics

• Going from 2D to 3D:
❑ 2D points have (x,y) coordinates → 3D points have (x,y,z)

coordinates

❑Use vec3, glUniform3f

❑Need to worry about the order in which primitives
are rendered, or

❑Need to do hidden-surface removal

3

Three-dimensional Applications

The recursive algorithm:

• Step 1

– Start with one equilateral triangle

• Step 2

– Cut smaller triangles out of its center

• Repeat the step#2 with each smaller Triangle

4
https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle#/media/File:Sierpinski_triangle_evolution.svg

Example: Sierpinski Gasket (2D)

• Output from five subdivisions

5

Example: Sierpinski Gasket (2D)

https://upload.wikimedia.org/wikipedia/commons/6/6b/Sierpinski_zoom_2.gif

Self-similarity

“My power flurries through the air into the ground.

My soul is spiraling in frozen fractals all around.

And one thought crystallizes like an icy blast-

I’m never going back; the past is in the past!”
Queen Elsa, Frozen

Mandlebulb

https://brilliant.org/daily-

problems/koch-snowflake/

Fractals in Graphics

• Consider the filled area (blue) and the perimeter (the length

of all the lines around the filled triangles)

o Level 0: whole triangle is filled

Area =
𝐿𝐻

2

Perimeter = 3𝐿

o Level 1: 3 quarters of the triangle are filled

Area =
3

4
×
𝐿𝐻

2

Perimeter = 3 × 3 ×
𝐿

2
=

3

2
× 3𝐿

(equilaterial triangle)

𝐻
𝐿 𝐿

𝐿

8

The Sierpinski Gasket is a Fractal

• Consider the filled area (blue) and the perimeter (the length

of all the lines around the filled triangles)

o Level 2: 3 quarters of the filled triangles at

level 1 are filled

Area =
3

4
×
3

4
×
𝐿𝐻

2
=

3

4

2 𝐿𝐻

2

Perimeter = 9 × 3 ×
𝐿

4
=

3

2

2
3𝐿

o Level 𝒏:

Area =
3

4

𝑛 𝐿𝐻

2

Perimeter =
3

2

𝑛
3𝐿

∴As 𝑛 → ∞,

Area → 0
Perimeter → ∞

9
https://www.youtube.com/watch?v=GaXn3zqfvLYKoch Snowflake Fractal: Area and Perimeter Calculation

The Sierpinski Gasket is a Fractal

• As we continue subdividing

– the area goes to zero

– but the perimeter goes to infinity

10

The Sierpinski Gasket is a Fractal

• We can easily extend the previous 2D Sierpinski triangle

concept to 3D by defining a tetrahedron with four

triangular faces.

• We then divide up each face separately and draw each of

the four faces using a different color.

11

A 3D Sierpinski Gasket

“Interactive Computer Graphics – A Top-Down Approach with Shader-
Based OpenGL” by Edward Angel and Dave Shreiner, 6th Ed, 2012,
Section 2.10

• We can subdivide each of the four faces into triangles

• It appears as if we remove a solid tetrahedron from the

centre, leaving four smaller tetrahedra

12

A 3D Sierpinski Gasket (cont.)

The result below is almost correct…

• Because the triangles are drawn in the order they are specified in

the program, the front triangles are not always rendered in front of

triangles behind them.

get this

want this

13

A 3D Sierpinski Gasket (cont.)

• We want to see only those surfaces that are in front of

other surfaces

• OpenGL uses a hidden-surface removal method called the

z-buffer algorithm, which saves the depth information of

fragments as they are rendered so that only the front

fragments appear in the image.

14

Hidden-Surface Removal

• Can hidden surface removal be done at vertex

shader?

• It involves primitives, which are not formed at

vertex processor.

No

Hidden-Surface Removal

The z-buffer algorithm

• is the most widely-used hidden-surface-removal algorithm

• has the advantages of being easy to implement, in either hardware

or software

• is compatible with the pipeline architectures, where the algorithm

can be executed at the speed at which fragments are passed

through the pipeline

• The algorithm works in the image space and determines the

visibility of each surface for each pixel position.

– Paint pixel with color of closest object to the view plane

16

The z-buffer Algorithm

Note that 𝐩 is a point

on an object in the

object space

Suppose that we are in the process of rasterizing one of the

two polygons shown on the right:

• We can compute a colour for each point on object (say

point 𝐩)

• We must check whether 𝐩 is visible. It is visible if it is

the closest point to the camera

– If we are rasterizing polygon 𝐵, then its shade

will appear at that pixel on the screen, as 𝑧2 < 𝑧1
– If we are rasterizing polygon 𝐴, then its shade won’t

appear at that pixel on the screen

17

Find depth (z) of every

polygon at each pixel

The z-buffer algorithm – How It works

for each pixel (i,j) do

Z-buffer[i,j] ← FAR

Framebuffer[i,j] ← <background color>

end for

for each polygon do

for each pixel (i,j) occupied by the polygon do

Compute depth z and shade s of that polygon at (i,j)

if z < Z-buffer[i,j] then

Z-buffer[i,j] ← z

Framebuffer[i,j] ← s

end if

end for

end for

18

The z-buffer algorithm – How It works

Slide content credits:

Emmanuel Agu, WPI, CS 543

Top View Desired Final Image

The z-buffer algorithm – Illustration

Step 1: Initialize the depth buffer, such that all values are

set to maximum depth (1.0)

Z-buffer

Slide content credits:

Emmanuel Agu, WPI, CS 543

The z-buffer algorithm – Illustration

Step 2: Process each polygon in a scene, one at a time. We start

with the blue polygon (order does not matter)

• For each projected (x,y) pixel position corresponding to the blue polygon,

calculate the depth z

• If z< Z-buffer(x,y), set Z-buffer(x,y)=z and update the color for the pixels

(corresponding to blue polygon) in frame buffer

Slide content credits:

Emmanuel Agu, WPI, CS 543

The z-buffer algorithm – Illustration

Step 3: We then draw the yellow polygon (order does not

matter)

• For each projected (x,y) pixel position corresponding to the yellow

polygon, calculate the depth z

• If z< Z-buffer(x,y), set Z-buffer(x,y)=z and update the color for the pixels

(corresponding to yellow polygon) in frame buffer

Slide content credits:

Emmanuel Agu, WPI, CS 543

The z-buffer algorithm – Illustration

• The algorithm uses an extra buffer, the z-buffer, to store depth
information as geometry travels down the pipeline

• In OpenGL, the z-buffer must be:

o requested in main()

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)

o enabled in init()

glEnable(GL_DEPTH_TEST)

o cleared in the display callback

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

23

Select window with

a depth buffer

The z-buffer algorithm – Illustration

24

Sierpinski Gasket – After Hidden Surface

Removal

• Although image-space methods are dominant in hardware due to the efficiency

and ease of implementation of the z-buffer algorithm, often object-space

methods are used in combination.

• Object-space algorithms attempt to order the surfaces of the objects in the

scene such that rendering surfaces in a particular order provides the correct

image

• The painter’s algorithm is an object-space approach to hidden surface removal.

It is one of the simplest solutions to the visibility problem in 3D computer

graphics

25

Paint

this firstPaint

this afterward

The Painter’s Algorithm

• Similar to painter layers oil paint

– The name refers to the technique (employed by many painters) of painting

distant parts of a scene before parts which are closer, thereby covering some

areas of the distant parts.

• Render polygons farthest to nearest

• The algorithm sorts all the polygons in a scene by their depths. Polygons are

painted from the furthest to the closest depth.

• Because of how the algorithm works, it is also known as a

depth-sort algorithm.

26

B

A

Viewer sees B behind A

B

A

Render B then A

The Painter’s Algorithm (cont.)

• Suppose that we have the z-extent of 5

polygons as shown on the right:

– Polygon A can be painted first;

– However, we can’t determine the order for

painting the other polygons

– The algorithm needs to run a number of

increasingly more difficult tests in order to

find the painting ordering.

(COP = centre of projection)

27

The Painter’s Algorithm (cont.)

• The simplest test is to check the x- and y-

extents of the polygons:

– If either of the x- or the y-extents do not overlap,

neither polygon can obscure the other. So they

can be painted in any order.

• If the above test fails, can still determine the

order of painting by testing if one polygon

lies completely on one side of the other.

Test for overlap in the

x-extents

Test for overlap in the

y-extents 28

The Painter’s Algorithm (cont.)

The algorithm fails in some cases, including

• Polygons that pierce (intersect) each other

• Polygons that form a cycle of depth overlap

29

Cyclic overlap Piercing polygons

The Painter’s Algorithm (cont.)

How to sort the polygons for rendering?

• Split the polygons to get the ordering→ complex process

• In an earlier lecture, we saw that using a uniform

variable opens the door to animation:
– We can call glUniform in the display callback

– We can then force a redraw through glutPostRedisplay()

Double buffering is particularly useful when the

application deals with 3D objects

30

Double Buffering

• To animate a scene smoothly, we need to prevent a

partially redrawn frame buffer from being displayed.

• A way to prevent the above issue from happening is to

use double buffering – i.e., we request two buffers:

– While drawing is performed on the back buffer, the front

buffer is being displayed

– Swap buffers after the update on the back buffer is finished

31

Double Buffering (cont.)

• Request a double buffer

– glutInitDisplayMode(GLUT_DOUBLE)

• Swap buffers

void mydisplay()
{

glClear(……);
glDrawArrays(…);
glutSwapBuffers();

}

32

Adding Double Buffering

• Complex 3D models have thousands of triangles

• We can re-use the vertices while defining triangles (for

efficiency)

• GL_ELEMENT_ARRAY_BUFFER is used for this

33

Element Buffers

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/

With IndexingWithout Indexing

• Lab 5, q4aIndex.cpp draws a cube by specifying only 8

vertices

• 8 vertices -> 6 squares -> 12 triangles

34
OpenGL Element Array Buffers https://www.youtube.com/watch?v=ZSsJbJ2hviI

Element Buffers

• 3D model file formats follow a similar

convention i.e.

– A list of vertices as floats (x, y, z)

– A list of elements as integers specifying which

vertices connect to form a triangle

• Sometimes the vertex normals are also

provided as floats

35

3D Model File Format

ply

format ascii 1.0

comment zipper output

element vertex 28980

property float x

property float y

property float z

element face 56207

property list uchar int vertex_indices

end_header

44968.501119 -43787.362630 83846.209031

46090.448700 -44321.044193 81938.091386

39593.486637 -49592.734508 86290.454426

46243.264772 -42401.503638 83047.168327

45096.493171 -42006.610299 84810.068897

.

.

3 24028 24504 24620

3 20691 20688 20755

3 19350 19371 19384

3 942 377 1297

If you open a *.ply
file in wordpad

You see this

The PLY Format

• PLY files have *.ply extension

• VRML files have a *.wrl extension

• 3D Studio files have a *.3ds extension

• Blender files have a *.blend extension

• Object files have a *.obj extension

• DirectX files have a *.x extension

Some 3D File Extensions

xof 0303txt 0032

Frame Root {

FrameTransformMatrix {

1.000000, 0.000000, 0.000000, 0.000000,

0.000000,-0.000000, 1.000000, 0.000000,

0.000000, 1.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 1.000000;;

}

Frame Grid {

FrameTransformMatrix {

1.000000, 0.000000, 0.000000, 0.000000,

0.000000, 1.000000, 0.000000, 0.000000,

0.000000, 0.000000, 1.000000, 0.000000,

0.000000, 0.000000, 0.000000, 1.000000;;

}

Mesh { // Grid mesh

324;

-0.111111;-1.000000; 0.000000;,

0.111111;-1.000000; 0.000000;,

0.111111;-0.777778; 0.000000;,

-0.111111;-0.777778; 0.000000;,

.

.

81;

4;3,2,1,0;,

4;7,6,5,4;,

4;11,10,9,8;,

4;15,14,13,12;,

DirectX format is more
complicated.

It has point, polygons, as well as
textures and animations

DirectX format

“Interactive Computer Graphics – A Top-Down Approach with Shader-Based
OpenGL” by Edward Angel and Dave Shreiner, 6th Ed, 2012

• Sec. 2.10.3 Hidden-Surface Removal (pages 96-98)

• Sec. 4.8 Hidden-Surface Removal (pages 239-241)

• Sec. 6.11.5 The Z-Buffer Algorithm (pages 335-338)

• Sec. 6.11.7 Depth Sort and the Painter’s Algorithm (pages
340-342)

Computer Graphics using OpenGL, 3rd edition, Hearn and Kelly, Chapter 9

39

Further Reading

