
CITS3003 Graphics & Animation

Lecture 9: Transformations

and Homogeneous

Coordinates

Content

• Look in more detail into standard

transformations

– Rotation

– Translation

– Scaling

– Shear

• Learn to build arbitrary transformation

matrices from simple transformations

2

Matrix Multiplication

1 1.1
2
3

2.2
3.3

x
𝑎
𝑏

1
2
3

=

a +
1.1
2.2
3.3

b=

1𝑎 + 1.1𝑏

2𝑎 + 2.2𝑏

3𝑎 + 3.3𝑏

a = b = 1

=
2.1
4.2
6.3

=
2.1
4.2
6.3

• Consider a rotation about the origin by θ degrees

– radius stays the same, angle increases by θ

𝑥 = 𝑟 cos𝜙
𝑦 = 𝑟 sin𝜙

𝑥′ = 𝑟 cos(𝜙 + 𝜃)
𝑦′ = 𝑟 sin(𝜙 + 𝜃)

(Old point p before rotation)

(New point 𝐩′ after rotation)

4

Representing x,y

in the Polar form

sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

cos(A+B) = cos(A) cos(B) – sin(A) sin(B)

Rotation (2D)

Two-dimensional

rotation

Rotation (2D)

𝑥′ = 𝑥 cos 𝜃 – 𝑦 sin 𝜃
𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃

• Consider a rotation about the origin by θ degrees

– radius stays the same, angle increases by θ

𝑥′ = 𝑟 cos𝜙 cos 𝜃 – 𝑟 sin𝜙 sin 𝜃
𝑦′ = 𝑟 cos𝜙 sin 𝜃 + 𝑟 sin𝜙 cos 𝜃

𝑥 = 𝑟 cos𝜙
𝑦 = 𝑟 sin𝜙

𝑥′ = 𝑟 cos(𝜙 + 𝜃)
𝑦′ = 𝑟 sin(𝜙 + 𝜃)

sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

cos(A+B) = cos(A) cos(B) – sin(A) sin(B)

Two-dimensional

rotation

Rotation about the z-axis

• Rotation in two dimensions is equivalent to rotation

about the 𝑧 axis in three dimensions.

• Rotation about the 𝑧 axis in 3D leaves the 𝑧
components of all the points unchanged:

𝑅𝑧 𝜃 =

cos 𝜃 −sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0
0
0

0
0

1
0

0
1

6

Rotation about the z-axis

𝑅𝑧 𝜃 =

cos 𝜃 −sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0
0
0

0
0

1
0

0
1

x

𝑥
𝑦
0
1

𝑥′ = 𝑥 cos 𝜃 - y sin 𝜃 + 0 + 0 = 𝑥 cos 𝜃 - y sin 𝜃
𝑦′ = 𝑥 sin 𝜃 + y cos 𝜃 + 0 + 0 = 𝑥 sin 𝜃 + y cos 𝜃
𝑧′ = 0 + 0 + 0 + 0 = 0

𝑤′ = 0 + 0 + 0 + 1 = 1

In homogeneous coordinates

𝐩′ = 𝐑𝒁(𝜃)𝐩

Rotation about the z-axis (cont.)

• Consider the example

𝑥 = 𝑟 cos𝜙
𝑦 = 𝑟 sin𝜙

𝑧 = 0
we have

𝑥′
𝑦′

𝑧′
1

= 𝑅𝑧(𝜃)

𝑟 cos𝜙
𝑟 sin𝜙

0
1

=

cos 𝜃 −sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0
0
0

0
0

1
0

0
1

𝑟 cos𝜙
𝑟 sin𝜙

0
1

=

𝑟 cos 𝜃 cos𝜙 − 𝑟 sin 𝜃 sin𝜙
𝑟 sin 𝜃 cos𝜙 + 𝑟 cos 𝜃 sin𝜙

0
1

8

Representing x,y

in the Polar form

Rotation about the z-axis (cont.)

• Applying the rule:

cos(𝜃 + 𝜙) = cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙
sin 𝜃 + 𝜙 = sin 𝜃 cos𝜙 + cos 𝜃 sin𝜙

we get

𝑥′
𝑦′

𝑧′
1

= 𝑅𝑧(𝜃)

𝑟 cos𝜙
𝑟 sin𝜙

0
1

=

𝑟 cos(𝜃 + 𝜙)
𝑟 sin(𝜃 + 𝜙)

0
1

• Thus, More commonly,
▪ 𝑥′ = 𝑥 cos 𝜃 – 𝑦 sin 𝜃
▪ 𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃
▪ 𝑧′ = 𝑧

▪ 𝑥′ = 𝑟 cos(𝜃 + 𝜙)
▪ 𝑦′ = 𝑟 sin(𝜃 + 𝜙)
▪ 𝑧′ = 0 9

Rotation about x and y axes

• Same argument as for rotation about z axis

– For rotation about x axis, x is unchanged

– For rotation about y axis, y is unchanged

R = Rx(q) =

R = Ry(q) =

1000

0 cos sin0

0 sin- cos0

0001

1000

0 cos0 sin-

0010

0 sin0 cos

Note the negative

sign here

10

Translation

• Move (translate, displace) a point to a new
location

• Displacement determined by a vector d
– Three degrees of freedom

𝐏′ = 𝐏 + 𝐝

𝐏

𝐏′

d

11

The whole object moves

• Although we can move a point to a new location in an

infinite number of ways, when we move many points of

a rigid object there is usually only one way

object translation: every point displaced

by same vector
12

• Using the homogeneous coordinate
representation in some frame

▪ 𝐩 = [𝑥 𝑦 𝑧 1]T

▪ 𝐩′ = [𝑥′ 𝑦′ 𝑧′ 1]T

▪ 𝐝 = [𝑑𝑥 𝑑𝑦 𝑑𝑧 0]T

• Hence 𝐩′ = 𝐩 + 𝐝 or

▪ 𝑥′ = 𝑥 + 𝑑𝑥
▪ 𝑦′ = 𝑦 + 𝑑𝑦
▪ 𝑧′ = 𝑧 + 𝑑𝑧

note that this expression is in

four dimensions and expresses

point = vector + point

13

Translation using Representations

Translation Matrix

• We can also express translation using a 4 × 4 matrix T in
homogeneous coordinates

𝐩′ = 𝐓𝐩 where

𝐓 = 𝐓(𝑑𝑥, 𝑑𝑦, 𝑑𝑧) =

1 0 0 𝑑𝑥
0 1 0 𝑑𝑦
0
0

0
0

1 𝑑𝑧
0 1

• This form is better for implementation because all affine
transformations can be expressed this way and multiple
transformations can be concatenated together

14

Translation

• Translate object= Move each vertex by the same

distance d =(𝑑𝑥 , 𝑑𝑦, 𝑑𝑧)

15

𝐓 = 𝐓(𝑑𝑥, 𝑑𝑦, 𝑑𝑧) =

1 0 0 𝑑𝑥
0 1 0 𝑑𝑦
0
0

0
0

1 𝑑𝑧
0 1

If we translate a point (2,2,2) by displacement (2,4,6), new location

of point is (4,6,8)

Slide Credits :

Emmanuel Agu

WPI CS543

Where
• 𝑥′ = 𝑥 + 𝑑𝑥
• 𝑦′ = 𝑦 + 𝑑𝑦
• 𝑧′ = 𝑧 + 𝑑𝑧

Scaling (non-rigid transform)

𝐒 = 𝐒(𝑠𝑥, 𝑠𝑦, 𝑠𝑧) =

1000

000

000

000

z

y

x

s

s

s

𝑥′ = 𝑠𝑥𝑥
𝑦′ = 𝑠𝑦𝑦
𝑧′ = 𝑠𝑧z

𝐩′ = 𝐒𝐩

• Expand or contract along each axis (fixed point of origin)

16

Uniform

Non-uniform

Reflection

corresponds to negative scale factors

originalsx = -1

sy = 1

sx = -1

sy = -1

sx = 1

sy = -1

17

1000

000

000

000

z

y

x

s

s

s

Shear

• It is helpful to add one more basic transformation, the

shearing transformation, to the collection of

transformation we have learnt

• Shearing is equivalent to pulling faces in opposite

directions

18

Shear Matrix
Consider a simple shear along the x axis

▪ 𝑥′ = 𝑥 + 𝑦 cot 𝜃
▪ 𝑦′ = 𝑦
▪ 𝑧′ = 𝑧

1000

0100

0010

00cot 1

=> H() =

19

Shear

𝑥′ − 𝑥 = 𝑦 cot 𝜃

Shear Matrix

Consider a simple shear along the x axis

▪ 𝑥′ = 𝑥 + 𝑦 cot 𝜃
▪ 𝑦′ = 𝑦
▪ 𝑧′ = 𝑧

1000

0100

0010

00cot 1

=> H() =

20

Shear

Inverses

• Although we could compute inverse matrices by general

formulas, we can use simple geometric observations

– Translation: 𝐓−1(𝑑𝑥 , 𝑑𝑦, 𝑑𝑧) = 𝐓(−𝑑𝑥 , −𝑑𝑦, −𝑑𝑧)

– Rotation: 𝐑−1(𝜃) = 𝑹(−𝜃)

• Holds for any rotation matrix

• Note that since cos(−𝜃) = cos(𝜃) and sin(−𝜃) =
− sin(𝜃)

𝐑−1(𝜃) = 𝐑T(𝜃)

– Scaling: 𝐒−1(𝑠𝑥, 𝑠𝑦, 𝑠𝑧) = 𝐒(1/𝑠𝑥, 1/𝑠𝑦, 1/𝑠𝑧)

– Shear:

21

Concatenation

• We can form arbitrary affine transformation matrices by

multiplying together rotation, translation, scaling and

shear matrices

• Because the same transformation is applied to many

vertices, the cost of forming a matrix 𝐌 = 𝐀𝐁𝐂𝐃 is

not significant compared to the cost of computing 𝐌𝐩
for many vertices 𝐩

• The difficult part is how to form a desired transformation

from the specifications in the application

22

Order of Transformations

• Note that matrix on the right is the first applied

• Mathematically, the following are equivalent

𝐩′ = 𝐀𝐁𝐂𝐩 = 𝐀(𝐁(𝐂𝐩))

• Note many references use row vectors to
represent points. For such references:

𝐩′T = 𝐩T𝐂T𝐁T𝐀T

23

General Rotation About the Origin

q

x

z

y

v

A rotation angle of 𝜃 about an arbitrary axis

can be decomposed into the concatenation

of rotations about the 𝑥, 𝑦, and 𝑧 axes

𝑹(𝜃) = 𝑹𝑧(𝜃𝑧) 𝑹𝑦(𝜃𝑦) 𝑹𝑥(𝜃𝑥)

𝜃𝑥 , 𝜃𝑦, and 𝜃𝑧 are called the Euler angles

Note that rotations do not commute

We can use rotations in another order but

with different angles

24

Rotation About a Fixed Point other

than the Origin

1. Move the origin to the fixed point

2. Rotate

3. Move the origin back to fixed point back

=> M = T(pf) R(q) T(-pf)

After Step 1 After Step 2 After Step 3

25

• A 2D example:

Objective: want to rotate a square 45 degrees about its
own center, 𝐩.

This is the same as rotating about the 𝑧-axis (pointing out
of the page) in 3D.

x0

y

Before rotation Output wanted after rotation

y

0 x

𝐩

26

Rotation About a Fixed Point other

than the Origin (cont.)

Rotation About a Fixed Point other

than the Origin (cont.)

• Our aim is to construct a matrix 𝐌 so that when the four

vertices of the square are pre-multiplied by we get the

desired output.

• Step 1: apply a translation so that the origin is at 𝐩.

x0

y

x0

y

𝐌 = 𝐓(−𝐩)

𝐩

27

Rotation About a Fixed Point other

than the Origin (cont.)

• Step 2: apply a 45 degree rotation about the 𝑧-axis at the

origin.

x0

y

𝐌 = 𝐑z 𝜽 𝐓(−𝐩)

x0

y

28

Rotation About a Fixed Point other

than the Origin (cont.)

• Step 3: move the origin back to where it was before.

x0

y

𝐌 = 𝐓 𝐩 𝐑z 𝜽 𝐓(−𝐩)

y

0 x

29

Instancing

• In modeling, we often start with a simple

object centered at the origin, oriented with the

axis, and at a standard size

• We apply an instance transformation to its

vertices to
– Scale

– Orient

– Locate

30

Further Reading

“Interactive Computer Graphics – A Top-Down Approach with Shader-Based
OpenGL” by Edward Angel and Dave Shreiner, 6th Ed, 2012

• Sec 3.7 Affine Transformations (all subsections)

• Sec 3.8 Translation, Rotation, and Scaling

• Sec 3.9 Transformations in Homogeneous
Coordinates

• Sec 3.10 Concatenation of Transformations

31

On Mid-term test

• When
– Monday 04.04.2022 (01:00PM – 02:00PM)

• Where
– Online (LMS + MSTeams)

• Mid test will be released on LMS

• Join MSTeams meeting (for attendance)

• Mode
– Open-book, invigilated

• Types of Questions
– Multiple Choice Questions (MCQ’s)

– True/False

• Test duration
– 40 minutes

– Expect to answer 1 – 1.5 questions per minute.

On Mid-term test

• If you have a clash with the test schedule,

contact UC within this week

Example questions

Select all the correct statements

a) In a graphics pipeline, objects are processed one at a time, as

passed by the application program

b) In parallel projection, all projected rays meet at the center of

projection

c) Clipping must be performed before ‘primitive assembly’ in

graphics pipeline because it can make ‘primitive assembly’ more

efficient by reducing the number of primitives

d) Immediate mode graphics APIs are generally procedural

Example questions

Considering the common OpenGL program structure that

consists of main(), init() and display(), which of the

following statement(s) you would not expect to be present in

the main() function when using GLUT

a) glutMainLoop();

b) glInitWindowSize(256,256);

c) init();

d) glutCreateWindow("anyName");

e) glDrawArrays(GL_TRIANGLES, 0, NumVertices);

Example questions

Minimizing the maximum interior angles of

triangles makes triangles more suitable for

rendering.

a) True

b) False

This is true because minimizing the max interior angle

has the same effect as maximizing the minimum angle

when the sum of the angles is always 180.

