Magnitude of a \Vector

* Magnitude of a

2
\a\:\/al 2 a

—1fa=(2,56) |al=v2>+5+6> =165

» Normalizing a vector =2 - Yeior

]a| magnitude

ﬁ_[ 2 5 6 ]
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CITS3003 Graphics & Animation

|_ecture 8:
Coordinate Frame
Transformations




Breakdown of Lectures

1. Introduction & Image Formation

2. Programming with OpenGL

3.  OpenGL.: Pipeline Architecture

4.  OpenGL: An Example Program

5. Vertex and Fragment Shaders 1

6. \ertex and Fragment Shaders 2

7. Representation and Coordinate
Systems

8.  Coordinate Frame Transformations

9. Transformations and Homogeneous
Coordinates

10. Input, Interaction and Callbacks

11. Mid-semester Test

12. More on Callbacks

13. 3D Hidden Surface Removal

13. Computer Viewing

Study break

15,
16.
17,
18.
19.
20.
21,
22.
23.

24,

Programming Project Discussion
Shading

Shading Models

Shading in OpenGL

Texture Mapping

Texture Mapping in OpenGL
Hierarchical Modelling

3D Modelling: Subdivision Surfaces

Animation Fundamentals and
Quaternions

Skinning



Content

 Learn how to define and change coordinate
frames

* Derive homogeneous coordinate
transformation matrices

* Introduce standard transformations
— Rotation, Translation, Scaling, Shear



Coordinate Frame

 Basis vectors alone cannot represent points

* \We can add a single point, the origin, to the
basis vectors to form a coordinate frame

Vs




Representation In a Coordinate Frame

* A coordinate system (or coordinate frame) Is
determined by (Py, v, vy, V3)

* Within this coordinate frame, every vector v
can be written as

V=o0o.Vi+ oV, + 03V,
Every point can be written as
P =P+ fivi+ SV, + faVs
for some a4, a,, a3, and By, 55, B2



Homogeneous Coordinates

 Consider the point P and the vector v, where

P =Py + v+ oV, + favs

V=0Vt oV, T a3V,

« They appear to have similar representations:

P =188, Bsl" . v =[ay, a,

confuses the point with the vector

A vector has no position

o] Twhich

|~ QP

/V

/

Vector can be placed anywhere/*

-

point: fixed




A Single Representation

 Assuming0-P =0and1-P = P, we can write

VvV = alvl -+ szVZ -+ a3V3 = a1V1 + a2V2 -+ a3V3 + 0 . PO
P=p(vy + [V, + B3v3 + Py = [1vy + v, + B3vs +1-P

* Thus, we obtain the four-dimensional homogeneous
coordinate representation

VvV = [al (049 a3 O]T

P=[ﬁ1 B2 B3 1]T



Homogeneous Coordinates

The homogeneous coordinate form for a three-dimensional
point [x ¥ Z|'isgivenas

p=[x vy z 1]'swx wy wz wll=[x y 2 w]'
We return to a three-dimensional point (for w + 0) by
x < x'/w
y <y /w
z <z [w
If w = 0, the representation is that of a vector

Homogeneous coordinates replace points in three dimensions
by lines through the origin in four dimensions

For w = 1, the representation of a pointis [x v =z 1]'



Homogeneous Coordinates and Computer
Graphics

« Homogeneous coordinates are key to all

computer graphics systems

— All standard transformations (rotation, translation, scaling)
can be implemented with matrix multiplications using 4 x 4
matrices

— Hardware pipeline works with 4 dimensional representations

— For orthographic viewing, we can maintain w = 0O for
vectors and w = 1 for points

— For perspective we need a perspective division

10



Representing the Second Basis In
Terms of the First

* How can we relate u with v?

 Each of the basis vectors u,, u,, and u, are vectors that
can be represented in terms of the first set of basis

vectors, A
i.e v 4

e., w
U; =V¥Y11V1 T+ V12V21Y13V3
U; = V¥21V1 T V22V21Y23V3 P o
U3 = Y31V1 T V32V21Y33V3 —

for some v+, ..., V33

11



Representing the Second Basis In
Terms of the First (cont.)

® u1 — )/11V1 + ]/12V2 +]/13V3 can be ertten as.

V11 V11
u, =[Vi V2 V3| V12| =V |V12
V13 V13

« Similarly, u, = vy,,vqy + v,,V,+y,3v5 and

U; = Y31V + V32V, +)Y33V5 €an be written as:

V21
V22

V23
V31

V32
V33

u2:V

U3:V

12



Representing the Second Basis In
Terms of the First (cont.)

« We can put the terms v+, ..., V35 Into a 3 X 3 matrix:

V11 Y12 V13’
M=1[V21 V22 V23
V31 V32 V33l

then we have:
[u; u; uz]=vMmrt
That is,
U=vm!
The superscript T denotes
matrix transpose
13



The same vector w represented In two

coordinate systems

 We can write
W= a.V a-,V A2V
B 1%1 S 373 Let’s call this
W = :81“1 Ll :82“2 Ll :83‘13 3 X 3matrixV

as follows: -
r ! \ 1
w=|[|V1 Vy V3] |az|=Va
%3
Eachv; Isa b1
column =[u;y u; uz] |[B,|=Ub
vector of 3 'g
components 3

14



Representing the Second Basis In
Terms of the First (cont.)

* Inthis example, we have w = Vaandw = U b.

e SO

Va=Ub
« WithU =V M" we have

Va=VMp
=a=MTb

 Thus, a and b are related by M "

15



Representing the Second Basis In
Terms of the First (cont.)

In this example, we have w = Vaand w = U b.
* SO

Va=Ub
With U = VM ', we have

Va=VM'b

=>a=M'Tb or b=Ta
where,
T=M")"1

Thus, a and b are related by M"*
\ ™~ Representation w.r.t the second basis (U)

Representation w.r.t first basis (V) 16



Change of Coordinate Frames

* We can apply a similar process in homogeneous coordinates
to the representations of both points and vectors

vy
Consider two coordinate
frames:
I:)o
(Pg, V1, Vo, V3)
(QO! u11 u21 u3) V3

* Any point or vector can be represented in either coordinate
frame.

* We can represent (Q,, u,, U,, Us) in terms of (P, v, v,, V3)

17



Representing One Coordinate Frame In
Terms of the Other

* We can extend what we did with the change of basis
vectors:
U; = Y11V1 T Y12V21Y13V3
Uy = Y21V1 +V22V21Y23V3
Uz = Y31Vy +¥32V21Y33V3
Qo = V41V1 + VazVatyazvs + Py

by replacing the 3 x 3 matrix M by a 4 X 4 matrix as follows:

(V11 Y12 Y13 O]
Y21 VY22 VY23

Y31 V32 V33
Va1 Va2 Va3

o O



Working with Representations

« Within the two coordinate frames any point or vector
has a representation of the same form:

a= |0 az az a4 inthe first frame
b= 0L, [z P inthesecond frame
where a,=h, = 1 for points and a, = b, = 0 for vectors and

b=Ta
where,
T=M")"1

a=M'Db o

» The matrix M" is 4 x 4 and specifies an affine
transformation in homogeneous coordinates

19



Transformations in Graphics pipeline

We had considered the following coordinate systems

Canbe [ 1. Object (or model) coordinates i
combinedin_ 5 " \world coordinates s
model-view _ transform

transform  — 3. EYye (or camera) coordinates J

Clip coordinates
Normalized device coordinates
Window (or screen) coordinates

o

Brings representations
In the eye-frame

The six frames are w.r.t. immediate-mode rendering



Moving the Camera

Camera and object frame in default positions

1 0 0 0

1o 1 0 o
A=19 0 1 0 ﬂo

0 0 0 1

model-view matrix o



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

1 0 0 0
10 1 0 O
A_001—d
0o 0 0 1

\

Where did we get A
(model-view matrix) from?

» The application programmer works in the object/world coordinates (a.k.a. application frame)



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

1 0 0 0
0 1 0 0
0 0 1 —d
0o 0 0 1.

Remember?

b=Ta
where,
T=mM""1

» The application programmer works in the object/world coordinates (a.k.a. application frame)



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

1 0 0 0
0 1 0 0
0 0 1 —d
0o 0 0 1.

Remember?
b=Ta Refer to
where, slide#18

T=mM""1

» The application programmer works in the object/world coordinates (a.k.a. application frame)



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

1 0 0 0] y
A=|0 1 00 = O
0O 0 1 -—-d
0o 0 0 1| O
Remember? d
Representation T : 7@'\ Represe:ntation
W.r.t camera where, — w.r.t object ey
frame T— ( MT)_l frame )

» The application programmer works in the object/world coordinates (a.k.a. application frame)



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

1 0 0 0] y
A=|0 1 00 = O
0O 0 1 -—-d
0o 0 0 1| O
Remember? d
Representation T : 7@'\ Represe:ntation
W.r.t camera where, — w.r.t object ey
frame T— ( MT)_l frame )

» The application programmer works in the object/world coordinates (a.k.a. application frame)



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

Representation /': 7@'\ Representation

W.r.t camera
frame

1 O 0
0 1 0
0O 0 1

0O 0 O
Remember?

0 y

; ® .0
—d
1

where,
(MhH~

Model View
matrix (A)

— w.r.t object
frame

» The application prograrmmimer works in uie object/world coordinates (a.k.a. application frame)



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

1 0 0 0 ,V
A—|0 1 00 ﬂO

0 0 1 —d

0 0 0 1

This matrix takes a point (0, 0, d) in the
object/world frame, whose representation is:
p=[00d1]"

to 2 d
p’: [0 00 1]T (b}
I.e., the origin in the camera frame

» The application programmer works in the object/world coordinates (a.k.a. application frame)



Moving the Camera

Camera frame is fixed, we are placing object frame relative to
the camera frame.

1 0 0 O
101 0 O
A_O 0 1 -d

0 0 0 1|

This matrix takes a point (0, 0, d) in the
object/world frame, whose representation is:
p=[00d1]" :
to , b)
p’=[0001]" p = Ap

I.e., the origin in the camera frame

» The application programmer works in the object/world coordinates (a.k.a. application frame)



The World and Camera Coordinate

Frames

When we work with representations, we work with
n-tuples or arrays of scalars

Changes In coordinate frame are then defined by 4 X 4
matrices

In OpenGL, the base frame that we start with is the
world frame

Eventually we represent entities in the camera frame by
changing the world representation using the model-
view matrix

Initially these frames are the same (i.e., M=)

30



An Example

We consider two reference frames that have basis vector relation

I{l — vl)

Uy = V) + Vs,

“3 = 1‘1 —+— 1)2 —l'_ V}.

Let's say the reference point does not change, so

Our matrix MT would be;

0
0
1
0

0
0
0
1_

s M=

QU=P&

s

e TR s T S W

_— o O O

«— Only accounting for
rotation



An Example

Now, we want our frames to have different reference point....
Let’s say, to the point Q, that has the following representation in
the original system.

QU — PU ‘I— 1’1 —+— 21’2 —l_ 31*"3]:,

The MT for such a setting will be:

Also accounting for
translation

L I s R s

L B e ]
—

— (LT —




A Few Common Transformations

* Rigid transformation: The 4 x 4 matrix has the form:

or 1
0" 1
where R is a 3 x 3 rotation matrix and t € R**! is a Q

translation vector. Rigid transformation preserves
everything (angle (this means the shape), length, area, etc.,)

« Similarity transformation: The matrix has the form:

Large (or small) s sR ¢t R t Small (or large) s’
values enlarge (or OT 1 r OT g’ values enlarge (or

diminish) the object diminish) the object
where s, s" # 1. Similarity transformation preserves angle,

ratios of lengths and of areas.

33



A Few Common Transformations (cont.)

o Affine transformation: The 4 X 4 matrix has the form:
At

0T 1]

where A can be any 3 X 3 non-singular matrix and

t € R? is a translation vector. Affine transformation

preserves parallelism, ratios of lengths.

« Perspective transformation: The matrix can be any non-
singular 4 x 4 matrix. Perspective transformation matrix
preserves cross ratios (i.e., ratio of ratios of lengths).

34



A Few Common Transformations (cont.)

 Rigid transformation is equivalent to a change In
coordinate frames. It has 6 degrees of freedom (dof) I.e.,
3 rotations + 3 translations (along each of the three axes)

« Similarity transformation has 7 dof (an additional scaling)

 Affine transformation has 12 dof
— 3 rotations + 3 translations + 3 scaling + 3 shear

35



General Transformations

A transformation maps points to other points
and/or vectors to other vectors

36



Pipeline Implementation

T (from application program)

l frame
u T(u) buffer
transformation »  rasterizer ——

v T(v)

yo T(v) T(v)
" U (), T(u),/
vertices >~ vertices > pixels
(before transformation) (after transformation)

37



Further Reading

“Interactive Computer Graphics — A Top-Down Approach with

Shader-Based OpenGL” by Edward Angel and Dave Shreiner, 6™
Ed, 2012

e Sec3.7t03.9



