
Magnitude of a Vector

• Magnitude of a

– If a =(2, 5, 6)

• Normalizing a vector 
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Breakdown of Lectures

1. Introduction & Image Formation

2. Programming with OpenGL

3. OpenGL: Pipeline Architecture

4. OpenGL: An Example Program

5. Vertex and Fragment Shaders 1

6. Vertex and Fragment Shaders 2

7. Representation and Coordinate 
Systems

8. Coordinate Frame Transformations

9. Transformations and Homogeneous 
Coordinates

10. Input, Interaction and Callbacks

11. Mid-semester Test

12. More on Callbacks

13. 3D Hidden Surface Removal

13. Computer Viewing

- Study break

15. Programming Project Discussion

16. Shading

17. Shading Models

18. Shading in OpenGL

19. Texture Mapping

20. Texture Mapping in OpenGL 

21. Hierarchical Modelling

22. 3D Modelling: Subdivision Surfaces

23. Animation Fundamentals and 
Quaternions

24. Skinning
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Content

• Learn how to define and change coordinate 

frames

• Derive homogeneous coordinate 

transformation matrices

• Introduce standard transformations

– Rotation, Translation, Scaling, Shear
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Coordinate Frame

• Basis vectors alone cannot represent points

• We can add a single point, the origin, to the 

basis vectors to form a coordinate frame

P0
v1

v2

v3
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Representation in a Coordinate Frame

• A coordinate system (or coordinate frame) is 

determined by 𝐏0, 𝐯1, 𝐯2, 𝐯3
• Within this coordinate frame, every vector v

can be written as 

v = α1v1+ α2v2 + α3v3

Every point can be written as

P = P0 + β1v1+ β2v2 + β3v3

for some 𝛼1, 𝛼2, 𝛼3, and 𝛽1, 𝛽2, 𝛽3
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Homogeneous Coordinates

• Consider the point P and the vector v, where

P = P0 + β1v1+ β2v2 + β3v3

v = α1v1+ α2v2 + α3v3

• They appear to have similar representations:

P = [β1, β2, β3]T , v =[α1, α2, α3]
T which

confuses the point with the vector

A vector has no position v

P

v

Vector can be placed anywhere

point: fixed

7



A Single Representation 

• Assuming 0 ∙ 𝐏 = 𝟎 and 1 ∙ 𝐏 = 𝐏 , we can write

𝐯 = 𝛼1𝐯1 + 𝛼2𝐯2 + 𝛼3𝐯3 = 𝛼1𝐯1 + 𝛼2𝐯2 + 𝛼3𝐯3 + 0 ∙ 𝐏0
𝐏 = 𝛽1𝐯1 + 𝛽2𝐯2 + 𝛽3𝐯3 + 𝐏0 = 𝛽1𝐯1 + 𝛽2𝐯2 + 𝛽3𝐯3 + 1 ∙ 𝐏0

• Thus, we obtain the four-dimensional homogeneous

coordinate representation

𝐯 = 𝛼1 𝛼2 𝛼3 0 𝑇

𝐏 = 𝛽1 𝛽2 𝛽3 1 𝑇
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Homogeneous Coordinates

• The homogeneous coordinate form for a three-dimensional 
point 𝑥 𝑦 𝑧 T is given as

𝐩 = 𝑥 𝑦 𝑧 1 T 𝑤𝑥 𝑤𝑦 𝑤𝑧 𝑤 T = 𝑥′ 𝑦′ 𝑧′ 𝑤 T

• We return to a three-dimensional point (for 𝑤 ≠ 0) by
𝑥 ← 𝑥′/𝑤
𝑦 ← 𝑦′/𝑤
𝑧 ← 𝑧′/𝑤

• If 𝑤 = 0, the representation is that of a vector

• Homogeneous coordinates replace points in three dimensions 
by lines through the origin in four dimensions

• For 𝑤 = 1, the representation of a point is 𝑥 𝑦 𝑧 1 T
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• Homogeneous coordinates are key to all 

computer graphics systems
– All standard transformations (rotation, translation, scaling) 

can be implemented with matrix multiplications using 4 x 4 

matrices

– Hardware pipeline works with 4 dimensional representations

– For orthographic viewing, we can maintain w = 0 for 

vectors and w = 1 for points

– For perspective we need a perspective division

10

Homogeneous Coordinates and Computer 
Graphics



Representing the Second Basis in 

Terms of the First

• How can we relate 𝐮 with 𝐯?

• Each of the basis vectors 𝐮1, 𝐮2, and 𝐮3 are vectors that 

can be represented in terms of the first set  of basis 

vectors,

i.e.,

for some 𝛾11, … , 𝛾33

𝐰
𝐮1 = 𝛾11𝐯1 + 𝛾12𝐯2+𝛾13𝐯3
𝐮2 = 𝛾21𝐯1 + 𝛾22𝐯2+𝛾23𝐯3
𝐮3 = 𝛾31𝐯1 + 𝛾32𝐯2+𝛾33𝐯3
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Representing the Second Basis in 

Terms of the First (cont.)
• 𝐮1 = 𝛾11𝐯1 + 𝛾12𝐯2+𝛾13𝐯3 can be written as:

𝐮1 = 𝐯1 𝐯2 𝐯3

𝛾11
𝛾12
𝛾13

= 𝐕

𝛾11
𝛾12
𝛾13

• Similarly, 𝐮2 = 𝛾21𝐯1 + 𝛾22𝐯2+𝛾23𝐯3 and            
𝐮3 = 𝛾31𝐯1 + 𝛾32𝐯2+𝛾33𝐯3 can be written as:

𝐮2 = 𝐕

𝛾21
𝛾22
𝛾23

𝐮3 = 𝐕

𝛾31
𝛾32
𝛾33
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Representing the Second Basis in 

Terms of the First (cont.)

• We can put the terms 𝛾11, … , 𝛾33 into a 3 × 3 matrix:

𝐌 =

𝛾11 𝛾12 𝛾13
𝛾21 𝛾22 𝛾23
𝛾31 𝛾32 𝛾33

then we have:
𝐮1 𝐮2 𝐮3 = 𝐕𝐌T

That is,

𝐔 = 𝐕𝐌T

The superscript T denotes 

matrix transpose
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The same vector w represented in two 

coordinate systems
• We can write

𝐰 = 𝛼1𝐯1 + 𝛼2𝐯2 + 𝛼3𝐯3
𝐰 = 𝛽1𝐮1 + 𝛽2𝐮2 + 𝛽3𝐮3

as follows:

𝐰 = 𝐯1 𝐯2 𝐯3

𝛼1
𝛼2
𝛼3

= 𝐕 𝐚

𝐰 = 𝐮1 𝐮2 𝐮3

𝛽1
𝛽2
𝛽3

= 𝐔 𝐛
Each 𝐯𝑖 is a 

column 

vector of 3 

components

Let’s call this 

3 × 3 matrix 𝐕
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Representing the Second Basis in 

Terms of the First (cont.)

• In this example, we have 𝐰 = 𝐕 𝐚 and 𝐰 = 𝐔 𝐛.  

• So

𝐕 𝐚 = 𝐔 𝐛

• With 𝐔 = 𝐕𝐌T, we have 

𝐕 𝐚 = 𝐕𝐌T𝐛
⇒ 𝐚 = 𝐌T𝐛

• Thus, 𝐚 and 𝐛 are related by 𝐌T

15



Representing the Second Basis in 

Terms of the First (cont.)

• In this example, we have 𝐰 = 𝐕 𝐚 and 𝐰 = 𝐔 𝐛.  

• So

𝐕 𝐚 = 𝐔 𝐛

• With 𝐔 = 𝐕𝐌T, we have 

𝐕 𝐚 = 𝐕𝐌T𝐛
⇒ 𝐚 = 𝐌T𝐛

• Thus, 𝐚 and 𝐛 are related by 𝐌T

16Representation w.r.t first basis (V)

Representation w.r.t the second basis (U)
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Change of Coordinate Frames

• We can apply a similar process in homogeneous coordinates 

to the representations of both points and vectors

• Any point or vector can be represented in either coordinate 
frame.

• We can represent (Q0, u1, u2, u3) in terms of (P0, v1, v2, v3)

Consider two coordinate 

frames:

(P0, v1, v2, v3)

(Q0, u1, u2, u3)

P0 v1

v2

v3

Q0

u1
u2

u3
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Representing One Coordinate Frame in 

Terms of the Other

• We can extend what we did with the change of basis 

vectors:

by replacing the 3 × 3 matrix 𝐌 by a 4 × 4 matrix as follows:

𝐮1 = 𝛾11𝐯1 + 𝛾12𝐯2+𝛾13𝐯3
𝐮2 = 𝛾21𝐯1 + 𝛾22𝐯2+𝛾23𝐯3
𝐮3 = 𝛾31𝐯1 + 𝛾32𝐯2+𝛾33𝐯3
𝐐0 = 𝛾41𝐯1 + 𝛾42𝐯2+𝛾43𝐯3 + 𝐏0

𝐌 =

𝛾11 𝛾12 𝛾13
𝛾21 𝛾22 𝛾23
𝛾31 𝛾32 𝛾33

0
0
0

𝛾41 𝛾42 𝛾43 1
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Working with Representations

• Within the two coordinate frames any point or vector 
has a representation of the same form:

𝐚 = 𝛼1 𝛼2 𝛼3 𝛼4 in the first frame

𝐛 = 𝛽1 𝛽2 𝛽3 𝛽4 in the second frame

where a4 = b4 = 1 for points and a4 = b4 = 0 for vectors and

𝐚 = 𝐌T𝐛

• The matrix 𝐌T is 4 × 4 and specifies an affine 
transformation in homogeneous coordinates
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Transformations in Graphics pipeline

1. Object (or model) coordinates

2. World coordinates

3. Eye (or camera) coordinates

4. Clip coordinates

5. Normalized device coordinates

6. Window (or screen) coordinates

The six frames are w.r.t. immediate-mode rendering

We had considered the following coordinate systems

Affine 

transform

Can be 

combined in 

model-view 

transform

Brings representations 

in the eye-frame



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

0
1

Camera and object frame in default positions

model-view matrix



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

Where did we get A 

(model-view matrix) from?



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

Remember?



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

Remember?

Refer to 

slide#18



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

Remember?

Representation 

w.r.t camera 

frame

Representation 

w.r.t object 

frame



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

Remember?

Representation 

w.r.t camera 

frame

Representation 

w.r.t object 

frame



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

Remember?

Representation 

w.r.t camera 

frame

Representation 

w.r.t object 

frame

Model View 

matrix (A)



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

This matrix takes a point (0, 0, d) in the 

object/world frame, whose representation is:

p =[0 0 𝑑 1]𝑇

to

p’= [0 0 0 1]𝑇

i.e., the origin in the camera frame



Moving the Camera 

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to 

the camera frame. 

This matrix takes a point (0, 0, d) in the 

object/world frame, whose representation is:

p=[0 0 𝑑 1]𝑇

to

p’= [0 0 0 1]𝑇

i.e., the origin in the camera frame

𝐩′ = 𝐀𝐩



The World and Camera Coordinate 

Frames
• When we work with representations, we work with 

n-tuples or arrays of scalars

• Changes in coordinate frame are then defined by 4 × 4
matrices

• In OpenGL, the base frame that we start with is the 
world frame 

• Eventually we represent entities in the camera frame by 
changing the world representation using the model-
view matrix

• Initially these frames are the same (i.e., M=I)

30



An Example

We consider two reference frames that have basis vector relation

Let's say the reference point does not change, so

Our matrix MT would be:

Only accounting for 

rotation



An Example

Now, we want our frames to have different reference point….

Let’s say, to the point Q0 that has the following representation in 

the original system.

The MT for such a setting will be:

Also accounting for 

translation



A Few Common Transformations

• Rigid transformation: The 4 × 4 matrix has the form:

𝑅 𝐭
𝟎T 1

where 𝑅 is a 3 × 3 rotation matrix and 𝐭 ∈ ℝ𝟑𝐱𝟏 is a 

translation vector. Rigid transformation preserves 

everything (angle (this means the shape), length, area, etc.,)

• Similarity transformation: The matrix has the form:

𝑠𝑅 𝐭
𝟎T 1

or
𝑅 𝐭
𝟎T 𝑠′

where 𝑠, 𝑠′ ≠ 1. Similarity transformation preserves angle, 

ratios of lengths and of areas.

Large (or small) 𝑠
values enlarge (or 

diminish) the object 

Small (or large) 𝑠′
values enlarge (or 

diminish) the object 
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A Few Common Transformations (cont.)

• Affine transformation: The 4 × 4 matrix has the form:

𝐴 𝐭
𝟎T 1

where 𝐴 can be any 3 × 3 non-singular matrix and      

𝐭 ∈ ℝ𝟑 is a translation vector. Affine transformation 

preserves parallelism, ratios of lengths.

• Perspective transformation: The matrix can be any non-

singular 4 × 4 matrix. Perspective transformation matrix 

preserves cross ratios (i.e., ratio of ratios of lengths).
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• Rigid transformation is equivalent to a change in 

coordinate frames. It has 6 degrees of freedom (dof) i.e., 

3 rotations + 3 translations (along each of the three axes)

• Similarity transformation has 7 dof (an additional scaling)

• Affine transformation has 12 dof
– 3 rotations + 3 translations + 3 scaling + 3 shear
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General Transformations

• A transformation maps points to other points 

and/or vectors to other vectors

Q=T(P)

v = T(u)
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Pipeline Implementation

v

transformation rasterizer

u

u

v

T

T(u)

T(v)

T(u)

T(v)

vertices
(before transformation)

vertices
(after transformation)

pixels

frame

buffer

(from application program)

T(u)

T(v)
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Further Reading

“Interactive Computer Graphics – A Top-Down Approach with 
Shader-Based OpenGL” by Edward Angel and Dave Shreiner, 6th

Ed, 2012

• Sec 3.7 to 3.9


