Magnitude of a Vector

- Magnitude of \mathbf{a}

$$
\begin{gathered}
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2} \ldots \ldots \ldots .+a_{n}^{2}} \\
- \text { If } \mathrm{a}=(2,5,6) \quad|\mathbf{a}|=\sqrt{2^{2}+5^{2}+6^{2}}=\sqrt{65}
\end{gathered}
$$

- Normalizing a vector

$$
\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\text { vector }}{\text { magnitude }}
$$

$$
\hat{\mathbf{a}}=\left(\frac{2}{\sqrt{65}}, \frac{5}{\sqrt{65}}, \frac{6}{\sqrt{65}}\right)
$$

CITS3003 Graphics \& Animation

Lecture 8:
Coordinate Frame Transformations

Breakdown of Lectures

1. Introduction \& Image Formation
2. Programming with OpenGL
3. OpenGL: Pipeline Architecture
4. OpenGL: An Example Program
5. Vertex and Fragment Shaders 1
6. Vertex and Fragment Shaders 2
7. Representation and Coordinate Systems
8. Coordinate Frame Transformations
9. Transformations and Homogeneous Coordinates
10. Input, Interaction and Callbacks
11. Mid-semester Test
12. More on Callbacks
13. 3D Hidden Surface Removal
14. Computer Viewing

- Study break

15. Programming Project Discussion
16. Shading
17. Shading Models
18. Shading in OpenGL
19. Texture Mapping
20. Texture Mapping in OpenGL
21. Hierarchical Modelling
22. 3D Modelling: Subdivision Surfaces
23. Animation Fundamentals and Quaternions
24. Skinning

Content

- Learn how to define and change coordinate frames
- Derive homogeneous coordinate transformation matrices
- Introduce standard transformations
- Rotation, Translation, Scaling, Shear

Coordinate Frame

- Basis vectors alone cannot represent points
- We can add a single point, the origin, to the basis vectors to form a coordinate frame

Representation in a Coordinate Frame

- A coordinate system (or coordinate frame) is determined by $\left(\mathbf{P}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$
- Within this coordinate frame, every vector \mathbf{v} can be written as

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}
$$

Every point can be written as

$$
\mathbf{P}=\mathbf{P}_{0}+\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\beta_{3} \mathbf{v}_{3}
$$

for some $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and $\beta_{1}, \beta_{2}, \beta_{3}$

Homogeneous Coordinates

- Consider the point \mathbf{P} and the vector \mathbf{v}, where

$$
\begin{aligned}
& \mathbf{P}=\mathbf{P}_{0}+\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\beta_{3} \mathbf{v}_{3} \\
& \mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}
\end{aligned}
$$

- They appear to have similar representations:
$\mathbf{P}=\left[\beta_{1}, \beta_{2}, \beta_{3}\right]^{\mathrm{T}}, \mathbf{v}=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]^{\mathrm{T}}$ which confuses the point with the vector
A vector has no position
Vector can be placed anywhere

A Single Representation

- Assuming $0 \cdot \mathbf{P}=\mathbf{0}$ and $1 \cdot \mathbf{P}=\mathbf{P}$, we can write

$$
\begin{aligned}
& \mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+0 \cdot \mathbf{P}_{0} \\
& \mathbf{P}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\beta_{3} \mathbf{v}_{3}+\mathbf{P}_{0}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\beta_{3} \mathbf{v}_{3}+1 \cdot \mathbf{P}_{0}
\end{aligned}
$$

- Thus, we obtain the four-dimensional homogeneous coordinate representation

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & 0
\end{array}\right]^{T} \\
& \mathbf{P}=\left[\begin{array}{llll}
\beta_{1} & \beta_{2} & \beta_{3} & 1
\end{array}\right]^{T}
\end{aligned}
$$

Homogeneous Coordinates

- The homogeneous coordinate form for a three-dimensional point $\left[\begin{array}{lll}x & y & z\end{array}\right]^{\mathrm{T}}$ is given as

$$
\mathbf{p}=\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]^{\mathrm{T}} \rightarrow\left[\begin{array}{llll}
w x & w y & w z & w
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{llll}
x^{\prime} & y^{\prime} & z^{\prime} & w
\end{array}\right]^{\mathrm{T}}
$$

- We return to a three-dimensional point (for $w \neq 0$) by

$$
\begin{aligned}
& x \leftarrow x^{\prime} / w \\
& y \leftarrow y^{\prime} / w \\
& z \leftarrow z^{\prime} / w
\end{aligned}
$$

- If $w=0$, the representation is that of a vector
- Homogeneous coordinates replace points in three dimensions by lines through the origin in four dimensions
- For $w=1$, the representation of a point is $\left[\begin{array}{llll}x & y & z & 1\end{array}\right]^{\mathrm{T}}$

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
- All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4×4 matrices
- Hardware pipeline works with 4 dimensional representations
- For orthographic viewing, we can maintain $w=0$ for vectors and $w=1$ for points
- For perspective we need a perspective division

Representing the Second Basis in Terms of the First

- How can we relate u with v?
- Each of the basis vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} are vectors that can be represented in terms of the first set of basis vectors, i.e.,

$$
\begin{aligned}
& \mathbf{u}_{1}=\gamma_{11} \mathbf{v}_{1}+\gamma_{12} \mathbf{v}_{2}+\gamma_{13} \mathbf{v}_{3} \\
& \mathbf{u}_{2}=\gamma_{21} \mathbf{v}_{1}+\gamma_{22} \mathbf{v}_{2}+\gamma_{23} \mathbf{v}_{3} \\
& \mathbf{u}_{3}=\gamma_{31} \mathbf{v}_{1}+\gamma_{32} \mathbf{v}_{2}+\gamma_{33} \mathbf{v}_{3}
\end{aligned}
$$

for some $\gamma_{11}, \ldots, \gamma_{33}$

Representing the Second Basis in Terms of the First (cont.)

- $\mathbf{u}_{1}=\gamma_{11} \mathbf{v}_{1}+\gamma_{12} \mathbf{v}_{2}+\gamma_{13} \mathbf{v}_{3}$ can be written as:

$$
\mathbf{u}_{1}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]\left[\begin{array}{l}
\gamma_{11} \\
\gamma_{12} \\
\gamma_{13}
\end{array}\right]=\mathbf{V}\left[\begin{array}{l}
\gamma_{11} \\
\gamma_{12} \\
\gamma_{13}
\end{array}\right]
$$

- Similarly, $\mathbf{u}_{2}=\gamma_{21} \mathbf{v}_{1}+\gamma_{22} \mathbf{v}_{2}+\gamma_{23} \mathbf{v}_{3}$ and

$$
\mathbf{u}_{3}=\gamma_{31} \mathbf{v}_{1}+\gamma_{32} \mathbf{v}_{2}+\gamma_{33} \mathbf{v}_{3} \text { can be written as: }
$$

$$
\begin{aligned}
& \mathbf{u}_{2}=\mathbf{V}\left[\begin{array}{l}
\gamma_{21} \\
\gamma_{22} \\
\gamma_{23}
\end{array}\right] \\
& \mathbf{u}_{3}=\mathbf{V}\left[\begin{array}{l}
\gamma_{31} \\
\gamma_{32} \\
\gamma_{33}
\end{array}\right]
\end{aligned}
$$

Representing the Second Basis in Terms of the First (cont.)

- We can put the terms $\gamma_{11}, \ldots, \gamma_{33}$ into a 3×3 matrix:

$$
\mathbf{M}=\left[\begin{array}{lll}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right]
$$

then we have:

$$
\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right]=\mathbf{V} \mathbf{M}^{\mathrm{T}}
$$

That is,

$$
\mathbf{U}=\mathbf{V} \mathbf{M}^{\mathrm{T}}
$$

The superscript T denotes matrix transpose

The same vector w represented in two coordinate systems

- We can write

$$
\begin{aligned}
& \mathbf{w}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3} \\
& \mathbf{w}=\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta_{3} \mathbf{u}_{3} \\
& \text { Let's call this } \\
& 3 \times 3 \text { matrix } \mathbf{v}
\end{aligned}
$$ as follows:

$$
\mathbf{w}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\mathbf{V} \mathbf{a}
$$

Each \mathbf{v}_{i} is a column vector of 3 components

Representing the Second Basis in Terms of the First (cont.)

- In this example, we have $\mathbf{w}=\mathbf{V}$ a and $\mathbf{w}=\mathbf{U} \mathbf{b}$.
- So

$$
\mathbf{V} \mathbf{a}=\mathbf{U} \mathbf{b}
$$

- With $\mathbf{U}=\mathbf{V} \mathbf{M}^{\mathrm{T}}$, we have

$$
\begin{gathered}
\mathbf{V} \mathbf{a}=\mathbf{V} \mathbf{M}^{\mathrm{T}} \mathbf{b} \\
\Rightarrow \mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b}
\end{gathered}
$$

- Thus, \mathbf{a} and \mathbf{b} are related by \mathbf{M}^{T}

Representing the Second Basis in Terms of the First (cont.)

- In this example, we have $\mathbf{w}=\mathbf{V}$ a and $\mathbf{w}=\mathbf{U} \mathbf{b}$.
- So

$$
\mathbf{V} \mathbf{a}=\mathbf{U} \mathbf{b}
$$

- With $\mathbf{U}=\mathbf{V} \mathbf{M}^{\mathrm{T}}$, we have

$$
\begin{array}{lll}
\mathrm{V} \mathbf{a}=\mathbf{V M T}^{\mathrm{T}} \mathbf{b} & \\
\Rightarrow \mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b} & \text { or } & \begin{array}{l}
b=\boldsymbol{T} \boldsymbol{a} \\
\\
\\
\text { where, } \\
\text { elated by } \mathbf{M}^{\mathrm{T}}
\end{array} \\
\boldsymbol{T}=\left(\boldsymbol{M}^{\boldsymbol{T}}\right)^{\mathbf{1}}
\end{array}
$$

- Thus, a and \mathbf{b} are related by \mathbf{M}^{T}

Representation w.r.t the second basis (U)

Change of Coordinate Frames

- We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two coordinate frames:
$\left(\mathbf{P}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$
$\left(\mathbf{Q}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$

- Any point or vector can be represented in either coordinate frame.
- We can represent $\left(\mathbf{Q}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ in terms of $\left(\mathbf{P}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$

Representing One Coordinate Frame in Terms of the Other

- We can extend what we did with the change of basis vectors:

$$
\begin{aligned}
& \mathbf{u}_{1}=\gamma_{11} \mathbf{v}_{1}+\gamma_{12} \mathbf{v}_{2}+\gamma_{13} \mathbf{v}_{3} \\
& \mathbf{u}_{2}=\gamma_{21} \mathbf{v}_{1}+\gamma_{22} \mathbf{v}_{2}+\gamma_{23} \mathbf{v}_{3} \\
& \mathbf{u}_{3}=\gamma_{31} \mathbf{v}_{1}+\gamma_{32} \mathbf{v}_{2}+\gamma_{33} \mathbf{v}_{3} \\
& \mathbf{Q}_{0}=\gamma_{41} \mathbf{v}_{1}+\gamma_{42} \mathbf{v}_{2}+\gamma_{43} \mathbf{v}_{3}+\mathbf{P}_{0}
\end{aligned}
$$

by replacing the 3×3 matrix \mathbf{M} by a 4×4 matrix as follows:

$$
\mathbf{M}=\left[\begin{array}{llll}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{array}\right]
$$

Working with Representations

- Within the two coordinate frames any point or vector has a representation of the same form:
$\mathbf{a}=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4}\end{array}\right]$ in the first frame $\mathbf{b}=\left[\begin{array}{llll}\beta_{1} & \beta_{2} & \beta_{3} & \beta_{4}\end{array}\right]$ in the second frame where $a_{4}=b_{4}=1$ for points and $a_{4}=b_{4}=0$ for vectors and

$$
\begin{array}{lll}
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b} \quad \text { or } & \begin{array}{l}
b=\boldsymbol{T} \boldsymbol{a} \\
\text { where, } \\
T=\left(\boldsymbol{M}^{\boldsymbol{T}}\right)^{\mathbf{1}}
\end{array}
\end{array}
$$

- The matrix \mathbf{M}^{T} is 4×4 and specifies an affine transformation in homogeneous coordinates

Transformations in Graphics pipeline

We had considered the following coordinate systems
\(\left.$$
\begin{array}{l}\begin{array}{c}\text { Can be } \\
\text { combined in } \\
\text { model-view } \\
\text { transform }\end{array}\end{array}
$$\left\{$$
\begin{array}{ll}1 . & \text { Object (or model) coordinates } \\
2 . & \text { World coordinates } \\
3 . & \text { Eye (or camera) coordinates }\end{array}
$$\right] \begin{array}{c}Affine

4.\end{array}\right]\)| Clip coordinates |
| :--- |
| 5. |

Brings representations
in the eye-frame

Moving the Camera

Camera and object frame in default positions

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& \begin{array}{l}
\text { model-view matrix }
\end{array}
\end{aligned}
$$

(a)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Where did we get A (model-view matrix) from?

(b)

- The application programmer works in the object/world coordinates (a.k.a. application frame)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Remember?

$$
\begin{aligned}
& b=T a \\
& \text { where, } \\
& T=\left(\boldsymbol{M}^{\boldsymbol{T}}\right)^{-\mathbf{1}}
\end{aligned}
$$

(b)

- The application programmer works in the object/world coordinates (a.k.a. application frame)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Remember?

$$
\begin{array}{ll}
b=\boldsymbol{T} \boldsymbol{a} & \text { Refer to } \\
\text { where, } & \text { slide\#18 } \\
\boldsymbol{T}=\left(\boldsymbol{M}^{\boldsymbol{T}}\right)^{-\mathbf{1}} &
\end{array}
$$

- The application programmer works in the object/world coordinates (a.k.a. application frame)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b)

- The application programmer works in the object/world coordinates (a.k.a. application frame)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b)

- The application programmer works in the object/world coordinates (a.k.a. application frame)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b)

- The application programmer works in tne object/world coordinates (a.k.a. application frame)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This matrix takes a point $(0,0, d)$ in the object/world frame, whose representation is:

$$
\begin{aligned}
& \mathbf{p}=\left[\begin{array}{llll}
0 & 0 & d & 1
\end{array}\right]^{T} \\
& \text { to } \\
& \mathbf{p}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
\end{aligned}
$$

(b)
i.e., the origin in the camera frame

- The application programmer works in the object/world coordinates (a.k.a. application frame)

Moving the Camera

Camera frame is fixed, we are placing object frame relative to the camera frame.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This matrix takes a point $(0,0, d)$ in the object/world frame, whose representation is:

$$
\begin{aligned}
& \mathbf{p}=\left[\begin{array}{llll}
0 & 0 & d & 1
\end{array}\right]^{T} \\
& \text { to } \\
& \mathbf{p},=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
\end{aligned}
$$

$$
\mathbf{p}^{\prime}=\mathbf{A p}
$$

(b)
i.e., the origin in the camera frame

- The application programmer works in the object/world coordinates (a.k.a. application frame)

The World and Camera Coordinate

Frames

- When we work with representations, we work with n-tuples or arrays of scalars
- Changes in coordinate frame are then defined by 4×4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the modelview matrix
- Initially these frames are the same (i.e., $M=I$)

An Example

We consider two reference frames that have basis vector relation

$$
\begin{aligned}
& u_{1}=v_{1} \\
& u_{2}=v_{1}+v_{2} \\
& u_{3}=v_{1}+v_{2}+v_{3} .
\end{aligned}
$$

Let's say the reference point does not change, so

$$
Q_{0}=P_{0}
$$

Our matrix M^{T} would be:

$$
\mathbf{M}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \longrightarrow \mathbf{M}^{T}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \longleftrightarrow \quad \begin{gathered}
\text { Only accounting for } \\
\text { rotation }
\end{gathered}
$$

An Example

Now, we want our frames to have different reference point.... Let's say, to the point Q_{0} that has the following representation in the original system.

$$
Q_{0}=P_{0}+v_{1}+2 v_{2}+3 v_{3},
$$

The M^{T} for such a setting will be:

$$
\mathbf{M}^{T}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \longleftarrow \begin{gathered}
\text { Also accounting for } \\
\text { translation }
\end{gathered}
$$

A Few Common Transformations

- Rigid transformation: The 4×4 matrix has the form:
$\left[\begin{array}{cc}R & \mathrm{t} \\ \mathbf{0}^{\mathrm{T}} & 1\end{array}\right]$
where R is a 3×3 rotation matrix and $\mathbf{t} \in \mathbb{R}^{3 \times 1}$ is a
 translation vector. Rigid transformation preserves everything (angle (this means the shape), length, area, etc.,)
- Similarity transformation: The matrix has the form: \square
Large (or small) s
values enlarge (or
diminish) $\quad\left[\begin{array}{ll}S R & \mathbf{t} \\ 0^{\mathrm{T}} & 1\end{array}\right]$ or $\left[\begin{array}{cc}R & \mathbf{t} \\ 0^{\mathrm{T}} & S^{\prime}\end{array}\right]$

Small (or large) s^{\prime} values enlarge (or diminish) the object
 where $s, s^{\prime} \neq 1$. Similarity transformation preserves angle, ratios of lengths and of areas. \square

A Few Common Transformations (cont.)

- Affine transformation: The 4×4 matrix has the form:
$\left[\begin{array}{cc}A & \mathrm{t} \\ \mathbf{0}^{\mathrm{T}} & 1\end{array}\right]$
where A can be any 3×3 non-singular matrix and $t \in \mathbb{R}^{3}$ is a translation vector. Affine transformation preserves parallelism, ratios of lengths.
- Perspective transformation: The matrix can be any nonsingular 4×4 matrix. Perspective transformation matrix preserves cross ratios (i.e., ratio of ratios of lengths).

A Few Common Transformations (cont.)

- Rigid transformation is equivalent to a change in coordinate frames. It has 6 degrees of freedom (dof) i.e., 3 rotations +3 translations (along each of the three axes)
- Similarity transformation has $7 \operatorname{dof}$ (an additional scaling)
- Affine transformation has 12 dof
-3 rotations +3 translations +3 scaling +3 shear

General Transformations

- A transformation maps points to other points and/or vectors to other vectors

Pipeline Implementation

T (from application program)

Further Reading

"Interactive Computer Graphics - A Top-Down Approach with Shader-Based OpenGL" by Edward Angel and Dave Shreiner, $6^{\text {th }}$ Ed, 2012

- Sec 3.7 to 3.9

