
Magnitude of a Vector

• Magnitude of a

– If a =(2, 5, 6)

• Normalizing a vector

1

CITS3003 Graphics & Animation

Lecture 8:

Coordinate Frame

Transformations

Breakdown of Lectures

1. Introduction & Image Formation

2. Programming with OpenGL

3. OpenGL: Pipeline Architecture

4. OpenGL: An Example Program

5. Vertex and Fragment Shaders 1

6. Vertex and Fragment Shaders 2

7. Representation and Coordinate
Systems

8. Coordinate Frame Transformations

9. Transformations and Homogeneous
Coordinates

10. Input, Interaction and Callbacks

11. Mid-semester Test

12. More on Callbacks

13. 3D Hidden Surface Removal

13. Computer Viewing

- Study break

15. Programming Project Discussion

16. Shading

17. Shading Models

18. Shading in OpenGL

19. Texture Mapping

20. Texture Mapping in OpenGL

21. Hierarchical Modelling

22. 3D Modelling: Subdivision Surfaces

23. Animation Fundamentals and
Quaternions

24. Skinning

3

Content

• Learn how to define and change coordinate

frames

• Derive homogeneous coordinate

transformation matrices

• Introduce standard transformations

– Rotation, Translation, Scaling, Shear

4

Coordinate Frame

• Basis vectors alone cannot represent points

• We can add a single point, the origin, to the

basis vectors to form a coordinate frame

P0
v1

v2

v3

5

Representation in a Coordinate Frame

• A coordinate system (or coordinate frame) is

determined by 𝐏0, 𝐯1, 𝐯2, 𝐯3
• Within this coordinate frame, every vector v

can be written as

v = α1v1+ α2v2 + α3v3

Every point can be written as

P = P0 + β1v1+ β2v2 + β3v3

for some 𝛼1, 𝛼2, 𝛼3, and 𝛽1, 𝛽2, 𝛽3

6

Homogeneous Coordinates

• Consider the point P and the vector v, where

P = P0 + β1v1+ β2v2 + β3v3

v = α1v1+ α2v2 + α3v3

• They appear to have similar representations:

P = [β1, β2, β3]T , v =[α1, α2, α3]
T which

confuses the point with the vector

A vector has no position v

P

v

Vector can be placed anywhere

point: fixed

7

A Single Representation

• Assuming 0 ∙ 𝐏 = 𝟎 and 1 ∙ 𝐏 = 𝐏 , we can write

𝐯 = 𝛼1𝐯1 + 𝛼2𝐯2 + 𝛼3𝐯3 = 𝛼1𝐯1 + 𝛼2𝐯2 + 𝛼3𝐯3 + 0 ∙ 𝐏0
𝐏 = 𝛽1𝐯1 + 𝛽2𝐯2 + 𝛽3𝐯3 + 𝐏0 = 𝛽1𝐯1 + 𝛽2𝐯2 + 𝛽3𝐯3 + 1 ∙ 𝐏0

• Thus, we obtain the four-dimensional homogeneous

coordinate representation

𝐯 = 𝛼1 𝛼2 𝛼3 0 𝑇

𝐏 = 𝛽1 𝛽2 𝛽3 1 𝑇

8

Homogeneous Coordinates

• The homogeneous coordinate form for a three-dimensional
point 𝑥 𝑦 𝑧 T is given as

𝐩 = 𝑥 𝑦 𝑧 1 T 𝑤𝑥 𝑤𝑦 𝑤𝑧 𝑤 T = 𝑥′ 𝑦′ 𝑧′ 𝑤 T

• We return to a three-dimensional point (for 𝑤 ≠ 0) by
𝑥 ← 𝑥′/𝑤
𝑦 ← 𝑦′/𝑤
𝑧 ← 𝑧′/𝑤

• If 𝑤 = 0, the representation is that of a vector

• Homogeneous coordinates replace points in three dimensions
by lines through the origin in four dimensions

• For 𝑤 = 1, the representation of a point is 𝑥 𝑦 𝑧 1 T

9

• Homogeneous coordinates are key to all

computer graphics systems
– All standard transformations (rotation, translation, scaling)

can be implemented with matrix multiplications using 4 x 4

matrices

– Hardware pipeline works with 4 dimensional representations

– For orthographic viewing, we can maintain w = 0 for

vectors and w = 1 for points

– For perspective we need a perspective division

10

Homogeneous Coordinates and Computer
Graphics

Representing the Second Basis in

Terms of the First

• How can we relate 𝐮 with 𝐯?

• Each of the basis vectors 𝐮1, 𝐮2, and 𝐮3 are vectors that

can be represented in terms of the first set of basis

vectors,

i.e.,

for some 𝛾11, … , 𝛾33

𝐰
𝐮1 = 𝛾11𝐯1 + 𝛾12𝐯2+𝛾13𝐯3
𝐮2 = 𝛾21𝐯1 + 𝛾22𝐯2+𝛾23𝐯3
𝐮3 = 𝛾31𝐯1 + 𝛾32𝐯2+𝛾33𝐯3

11

Representing the Second Basis in

Terms of the First (cont.)
• 𝐮1 = 𝛾11𝐯1 + 𝛾12𝐯2+𝛾13𝐯3 can be written as:

𝐮1 = 𝐯1 𝐯2 𝐯3

𝛾11
𝛾12
𝛾13

= 𝐕

𝛾11
𝛾12
𝛾13

• Similarly, 𝐮2 = 𝛾21𝐯1 + 𝛾22𝐯2+𝛾23𝐯3 and
𝐮3 = 𝛾31𝐯1 + 𝛾32𝐯2+𝛾33𝐯3 can be written as:

𝐮2 = 𝐕

𝛾21
𝛾22
𝛾23

𝐮3 = 𝐕

𝛾31
𝛾32
𝛾33

12

Representing the Second Basis in

Terms of the First (cont.)

• We can put the terms 𝛾11, … , 𝛾33 into a 3 × 3 matrix:

𝐌 =

𝛾11 𝛾12 𝛾13
𝛾21 𝛾22 𝛾23
𝛾31 𝛾32 𝛾33

then we have:
𝐮1 𝐮2 𝐮3 = 𝐕𝐌T

That is,

𝐔 = 𝐕𝐌T

The superscript T denotes

matrix transpose

13

The same vector w represented in two

coordinate systems
• We can write

𝐰 = 𝛼1𝐯1 + 𝛼2𝐯2 + 𝛼3𝐯3
𝐰 = 𝛽1𝐮1 + 𝛽2𝐮2 + 𝛽3𝐮3

as follows:

𝐰 = 𝐯1 𝐯2 𝐯3

𝛼1
𝛼2
𝛼3

= 𝐕 𝐚

𝐰 = 𝐮1 𝐮2 𝐮3

𝛽1
𝛽2
𝛽3

= 𝐔 𝐛
Each 𝐯𝑖 is a

column

vector of 3

components

Let’s call this

3 × 3 matrix 𝐕

14

Representing the Second Basis in

Terms of the First (cont.)

• In this example, we have 𝐰 = 𝐕 𝐚 and 𝐰 = 𝐔 𝐛.

• So

𝐕 𝐚 = 𝐔 𝐛

• With 𝐔 = 𝐕𝐌T, we have

𝐕 𝐚 = 𝐕𝐌T𝐛
⇒ 𝐚 = 𝐌T𝐛

• Thus, 𝐚 and 𝐛 are related by 𝐌T

15

Representing the Second Basis in

Terms of the First (cont.)

• In this example, we have 𝐰 = 𝐕 𝐚 and 𝐰 = 𝐔 𝐛.

• So

𝐕 𝐚 = 𝐔 𝐛

• With 𝐔 = 𝐕𝐌T, we have

𝐕 𝐚 = 𝐕𝐌T𝐛
⇒ 𝐚 = 𝐌T𝐛

• Thus, 𝐚 and 𝐛 are related by 𝐌T

16Representation w.r.t first basis (V)

Representation w.r.t the second basis (U)

or

Change of Coordinate Frames

• We can apply a similar process in homogeneous coordinates

to the representations of both points and vectors

• Any point or vector can be represented in either coordinate
frame.

• We can represent (Q0, u1, u2, u3) in terms of (P0, v1, v2, v3)

Consider two coordinate

frames:

(P0, v1, v2, v3)

(Q0, u1, u2, u3)

P0 v1

v2

v3

Q0

u1
u2

u3

17

Representing One Coordinate Frame in

Terms of the Other

• We can extend what we did with the change of basis

vectors:

by replacing the 3 × 3 matrix 𝐌 by a 4 × 4 matrix as follows:

𝐮1 = 𝛾11𝐯1 + 𝛾12𝐯2+𝛾13𝐯3
𝐮2 = 𝛾21𝐯1 + 𝛾22𝐯2+𝛾23𝐯3
𝐮3 = 𝛾31𝐯1 + 𝛾32𝐯2+𝛾33𝐯3
𝐐0 = 𝛾41𝐯1 + 𝛾42𝐯2+𝛾43𝐯3 + 𝐏0

𝐌 =

𝛾11 𝛾12 𝛾13
𝛾21 𝛾22 𝛾23
𝛾31 𝛾32 𝛾33

0
0
0

𝛾41 𝛾42 𝛾43 1

18

Working with Representations

• Within the two coordinate frames any point or vector
has a representation of the same form:

𝐚 = 𝛼1 𝛼2 𝛼3 𝛼4 in the first frame

𝐛 = 𝛽1 𝛽2 𝛽3 𝛽4 in the second frame

where a4 = b4 = 1 for points and a4 = b4 = 0 for vectors and

𝐚 = 𝐌T𝐛

• The matrix 𝐌T is 4 × 4 and specifies an affine
transformation in homogeneous coordinates

19

or

Transformations in Graphics pipeline

1. Object (or model) coordinates

2. World coordinates

3. Eye (or camera) coordinates

4. Clip coordinates

5. Normalized device coordinates

6. Window (or screen) coordinates

The six frames are w.r.t. immediate-mode rendering

We had considered the following coordinate systems

Affine

transform

Can be

combined in

model-view

transform

Brings representations

in the eye-frame

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

0
1

Camera and object frame in default positions

model-view matrix

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

Where did we get A

(model-view matrix) from?

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

Remember?

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

Remember?

Refer to

slide#18

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

Remember?

Representation

w.r.t camera

frame

Representation

w.r.t object

frame

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

Remember?

Representation

w.r.t camera

frame

Representation

w.r.t object

frame

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

Remember?

Representation

w.r.t camera

frame

Representation

w.r.t object

frame

Model View

matrix (A)

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

This matrix takes a point (0, 0, d) in the

object/world frame, whose representation is:

p =[0 0 𝑑 1]𝑇

to

p’= [0 0 0 1]𝑇

i.e., the origin in the camera frame

Moving the Camera

𝐀 =

1 0 0 0
0 1 0 0
0
0

0
0

1
0

−𝑑
1

• The application programmer works in the object/world coordinates (a.k.a. application frame)

Camera frame is fixed, we are placing object frame relative to

the camera frame.

This matrix takes a point (0, 0, d) in the

object/world frame, whose representation is:

p=[0 0 𝑑 1]𝑇

to

p’= [0 0 0 1]𝑇

i.e., the origin in the camera frame

𝐩′ = 𝐀𝐩

The World and Camera Coordinate

Frames
• When we work with representations, we work with

n-tuples or arrays of scalars

• Changes in coordinate frame are then defined by 4 × 4
matrices

• In OpenGL, the base frame that we start with is the
world frame

• Eventually we represent entities in the camera frame by
changing the world representation using the model-
view matrix

• Initially these frames are the same (i.e., M=I)

30

An Example

We consider two reference frames that have basis vector relation

Let's say the reference point does not change, so

Our matrix MT would be:

Only accounting for

rotation

An Example

Now, we want our frames to have different reference point….

Let’s say, to the point Q0 that has the following representation in

the original system.

The MT for such a setting will be:

Also accounting for

translation

A Few Common Transformations

• Rigid transformation: The 4 × 4 matrix has the form:

𝑅 𝐭
𝟎T 1

where 𝑅 is a 3 × 3 rotation matrix and 𝐭 ∈ ℝ𝟑𝐱𝟏 is a

translation vector. Rigid transformation preserves

everything (angle (this means the shape), length, area, etc.,)

• Similarity transformation: The matrix has the form:

𝑠𝑅 𝐭
𝟎T 1

or
𝑅 𝐭
𝟎T 𝑠′

where 𝑠, 𝑠′ ≠ 1. Similarity transformation preserves angle,

ratios of lengths and of areas.

Large (or small) 𝑠
values enlarge (or

diminish) the object

Small (or large) 𝑠′
values enlarge (or

diminish) the object

33

A Few Common Transformations (cont.)

• Affine transformation: The 4 × 4 matrix has the form:

𝐴 𝐭
𝟎T 1

where 𝐴 can be any 3 × 3 non-singular matrix and

𝐭 ∈ ℝ𝟑 is a translation vector. Affine transformation

preserves parallelism, ratios of lengths.

• Perspective transformation: The matrix can be any non-

singular 4 × 4 matrix. Perspective transformation matrix

preserves cross ratios (i.e., ratio of ratios of lengths).

34

• Rigid transformation is equivalent to a change in

coordinate frames. It has 6 degrees of freedom (dof) i.e.,

3 rotations + 3 translations (along each of the three axes)

• Similarity transformation has 7 dof (an additional scaling)

• Affine transformation has 12 dof
– 3 rotations + 3 translations + 3 scaling + 3 shear

35

A Few Common Transformations (cont.)

General Transformations

• A transformation maps points to other points

and/or vectors to other vectors

Q=T(P)

v = T(u)

36

Pipeline Implementation

v

transformation rasterizer

u

u

v

T

T(u)

T(v)

T(u)

T(v)

vertices
(before transformation)

vertices
(after transformation)

pixels

frame

buffer

(from application program)

T(u)

T(v)

37

Further Reading

“Interactive Computer Graphics – A Top-Down Approach with
Shader-Based OpenGL” by Edward Angel and Dave Shreiner, 6th

Ed, 2012

• Sec 3.7 to 3.9

