CITS3003 Graphics \& Animation

Lecture 7:

Representation and
Coordinate Systems

Content

- Intro. to Geometric objects
- Intro. to scalar field, vectors spaces and affine spaces
- Dimensionality and linear independence
- Discuss change of frames and bases
- Intro. to coordinate frames

Geometric Objects

- Point (fundamental geometric object)
- Location in space/coordinate system
- Example: Point $(3,4)$
- Cannot add or scale points

- mathematical point has neither a size nor a shape
- Scalars
- Real /complex numbers
- Used to specify quantities
- Obey a set of rules
- addition and multiplication
- commutivity and associativity $/ / a+b=b+a ;(a+b)+c=a+(b+c)$
- multiplicative and additive inverses $/ / a+(-a)=0 ; a \cdot a^{-1}=1$

Geometric Objects

- Vector

- Is any quantity with direction and magnitude
- e.g., Force, velocity etc.
- Can be added, scaled and rotated
- A vector does not have a fixed location in space

Vector-Point Relationship

- Vector
- Looking at things differently, two points can be thought of defining a vector, i.e., point-pointsubtraction $\quad \boldsymbol{v}=\boldsymbol{P}-\boldsymbol{Q}$
- Subtract 2 Points $=$ vector
- Point + vector $=$ point
- Because vectors can be multiplied by scalars, expressions, below make sense

$$
\begin{array}{cc}
\boldsymbol{P}+\mathbf{3} \boldsymbol{v} & \text { Point-vector addition } \\
\mathbf{2 P}-\boldsymbol{Q}+\mathbf{3} \boldsymbol{v} & P+(P-Q)+3 v
\end{array}
$$

- But this does not $\boldsymbol{P}+\mathbf{3 Q}-\boldsymbol{v}$

Coordinate Free Geometry

Points exist in space regardless of any reference or coordinate system

Object in a Coordinate System

Object without a Coordinate System

Spaces

- Scalar field

- A pair of scalars can be combined to form another scalar
- two operations: addition and multiplication
- obey the closure, associativity, commutivity, and inverse properties
- Vector space
- Contains vectors and scalars
- Vector-scalar and vector-vector interactions
- Euclidean vector space
- is an extension of a vector space that adds a measure of size or distance
- e.g., length of a line segment
- Affine vector space
- Extension of vector space and includes "point"
- Vector-point addition and point-point subtraction are possible
- No point-point addition and point-scalar operation are possible

Dot and Cross Products

- Dot (inner) product
- Square of magnitude $|u|^{2}=u \cdot u$.
- If $u . v=0, u$ and v are orthogonal

- dot product $\cos \theta=\frac{u \cdot v}{|u| v \mid}$
- Orthogonal projection $|u| \cos \theta=u \cdot v /|v|$
- Cross (outer) product
- Given by $u \times v=|u||v| \sin (\theta)$
- Normal $n=u \times v$.

Linear Independence

- A set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is linearly independent when

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+. . a_{n} \mathbf{v}_{n}=\mathbf{0} \text { iff } a_{1}=a_{2}=\ldots=0
$$

- If a set of vectors is linearly independent, we cannot represent one vector in terms of the other vectors
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

Examples

- Independent:

$$
-\mathrm{v} 1=[1,2]^{\mathrm{T}}, \mathrm{v} 2=[-5,3]^{\mathrm{T}}
$$

- Dependent:

$$
-\mathrm{v} 1=[2,-1,1]^{\mathrm{T}}, \mathrm{v} 2=[3,-4,2]^{\mathrm{T}}, \mathrm{v} 3=[5,-5,3]^{\mathrm{T}}
$$

Linear Independence (cont.)

- For example: Let

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
5 \\
0 \\
0
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}
0 \\
0 \\
-2
\end{array}\right)
$$

then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a set of linearly independent vectors.

- What are the values of α_{1}, α_{2}, and α_{3} if we want $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\mathbf{0}$?

Linear Independence (cont.)

- What are the values of α_{1}, α_{2}, and α_{3} if we want $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\mathbf{0}$?
- That is, we want

$$
\begin{gathered}
\alpha_{1}\left(\begin{array}{l}
5 \\
0 \\
0
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right)+\alpha_{3}\left(\begin{array}{c}
0 \\
0 \\
-2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\Leftrightarrow\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\Leftrightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=0
\end{gathered}
$$

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, any vector \mathbf{w} can be written as

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots .+a_{n} \mathbf{v}_{n}
$$

where the coefficients $\left\{a_{i}\right\}$ are unique and are called representations of \mathbf{w}

Dimension (cont.)

- Let us define a basis $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
- The vector

$$
\mathbf{w}=\left(\begin{array}{c}
10.5 \\
21.3 \\
0.9
\end{array}\right)
$$

can be written as $\mathbf{w}=10.5 \mathbf{v}_{1}+21.3 \mathbf{v}_{2}+0.9 \mathbf{v}_{3}$ and the coefficients $\alpha_{1}=10.5, \alpha_{2}=21.3$, and $\alpha_{3}=0.9$ are unique

Coordinate Systems (cont.)

- Which one is correct?

- Both are correct, because vectors have no fixed location

Coordinate Systems

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- We need a frame of reference to relate points and objects to our physical world.
- For example, where is a point? We can't answer this without a reference system
- The same point can be represented in its
- World coordinates
- Camera coordinates

Coordinate Systems

- Consider a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$
- \mathbf{A} vector \mathbf{w} is written $\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{n} \mathbf{v}_{n}$
- The list of scalars $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is the representation of w with respect to the given basis
- We can write the representation as a row or column array of scalars

$$
\boldsymbol{\alpha}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

Coordinate systems (cont.)

- For example, let $\mathbf{v}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}-4 \mathbf{v}_{3}$. If

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{\mathrm{T}}, \mathbf{v}_{2}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{\mathrm{T}}, \text { and } \\
& \mathbf{v}_{3}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{\mathrm{T}} \text {, then } \alpha=\left[\begin{array}{lll}
2 & 3 & -4
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

- Note that this representation is with respect to a particular basis

Change of Coordinate System

- Let's consider transformation of two bases
$-\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ and $\{\mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\}$ are two bases.
- Each basis vector in the second set can be represented in terms of the first basis

$$
\begin{aligned}
& u_{1}=\gamma_{11} v_{1}+\gamma_{12} v_{2}+\gamma_{13} v_{3} \\
& u_{2}=\gamma_{21} v_{1}+\gamma_{22} v_{2}+\gamma_{23} v_{3}, \\
& u_{3}=\gamma_{31} v_{1}+\gamma_{32} v_{2}+\gamma_{33} v_{3}
\end{aligned} \quad \mathbf{u}=\mathbf{M}
$$

The 3×3 matrix

$$
\mathbf{M}=\left[\begin{array}{lll}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right]
$$

Change of Coordinate Systems

- Consider the same vector w with respect to two different coordinate systems having basis vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. Suppose that

$$
\begin{array}{r}
\mathbf{w}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3} \\
\mathbf{w}=\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta_{3} \mathbf{u}_{3}
\end{array}
$$

- Then the representations are:

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right]^{\mathrm{T}} \\
& \mathbf{b}=\left[\begin{array}{lll}
\beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

- Equivalently,

$$
\begin{gathered}
\mathbf{w}=\mathbf{a}^{\mathrm{T}} \mathbf{v} \\
\text { and } \mathbf{w}=\mathbf{b}^{\mathrm{T}} \mathbf{u}
\end{gathered}
$$

Change of Coordinate System

- Thus,

$$
\mathbf{w}=\mathbf{b}^{\mathrm{T}} \mathbf{u}=\quad \mathbf{b}^{\mathrm{T}} \mathbf{M} \mathbf{v}=\mathbf{a}^{\mathrm{T}} \mathbf{v}
$$

- and

$$
a=M^{T} b
$$

- Also

$$
b=\boldsymbol{T} a \quad \text { where, } \quad T=\left(M^{T}\right)^{-1}
$$

Change of Coordinate System

- Example,

Suppose \mathbf{u} and \mathbf{v} are two basis related to each other as follows: $u_{1}=v_{1}$

$$
u_{2}=v_{1}+v_{2},
$$

$$
u_{3}=v_{1}+v_{2}+v_{3}
$$

We have a representation vector a (below) that is represented in \mathbf{v}, what will be its representation in \mathbf{u}

$$
\mathbf{a}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Coordinate Frame

- We can also do all this in coordinate systems:

Further Reading

"Interactive Computer Graphics - A Top-Down Approach with Shader-Based OpenGL" by Edward Angel and Dave Shreiner, $6^{\text {th }}$ Ed, 2012

- Sec 3.3 Coordinate Systems and Frames (all subsections)
- Sec 3.4 Frames in OpenGL

