
CITS3003 Graphics & Animation

Lecture 5:

Vertex and Fragment

Shaders-1

Content

• The rendering pipeline and the shaders

• GLSL

– Data types, qualifiers, built-in variables, and

functions in shaders

• Swizzling & selection

2

GLSL – A Quick Review

• OpenGL Shading Language

• Part of OpenGL 2.0 and up

• High level C-like language

• New data types are provided, e.g.

o Matrices

o Vectors

• As of OpenGL 3.1, application programs must
provide shaders (as no default shaders are
available)

3

The Rendering Pipeline and the Shaders

Where the vertex and fragment shaders are on the rendering pipeline:

• The goal of the vertex shader is to provide the final

transformation of mesh vertices to the rendering pipeline.

• The goal of the fragment shader is to provide the colour

to each pixel in the frame buffer.
4

application

program display(Vertex shader) (Fragment shader)

- Transformations

- Vertex color

- Projection

- Polygons

- Clip to view

vol.

- Fragment

forming

- Attribute

interpolation

- Texture

mapping

- Hidden-surface

removal

Mesh

Data Types in GLSL

• Scalar (non-vector) types:
• bool

• int

• uint

• float:

• double

• Vectors: Each of the scalar types, including booleans, have 2, 3,
and 4-component vector equivalents. The n digit below can be 2, 3,
or 4:

• bvecn: a vector of booleans

• ivecn: a vector of signed integers

• uvecn: a vector of unsigned integers

• vecn: a vector of single-precision floating-point numbers

• dvecn: a vector of double-precision floating-point numbers

5

Data Types in GLSL

mat3 Matrix;

Matrix[1] = vec3(1.0, 1.0, 1.0); // Sets the second column to all 1.0.

Matrix[2][0] = 15.0; // Sets the first entry of the third column to 15.0.

0.0 1.0 15.0
0.0 1.0 0.0
0.0 1.0 0.0

Matrix =

Matrices: All matrix types are floating-points
• matn: A matrix with n columns and n rows. Shorthand

for matnxn
• matnxm: A matrix with n columns and m rows
• Double-precision matrices (OpenGL 4.0 and above) can be declared with a

dmat instead of mat

Pointers

• There are no pointers in GLSL

• We can use C structs

• Because matrices and vectors are basic types,

they can be passed into and output from

GLSL functions, e.g.

mat3 func(mat3 a);

7

GLSL Type Qualifiers

• A type qualifier is used in GLSL to modify the storage or behaviour of
variables. Qualifiers specify particular aspects of the variable, e.g., where they
will get their data from?

• GLSL has some of the same qualifiers as C/C++, e.g., const. However, more
are required due to the nature of the rendering pipeline

• Qualifiers that can be used in shader programs include:

– attribute, uniform, varying (these are storage qualifiers)

– highp, mediump, lowp (these are precision qualifiers)

– in, out (these are parameter qualifiers)

Reminder:

• We expect data exchange between the application program and shaders

• We expect data to move along in the pipeline

• vertex attributes are interpolated by the rasterizer into fragment attributes

8

Precision

qualifiers in

GLSL are

supported for

compatibility with

OpenGL ES

9

Storage Qualifiers

Qualifier Constant

• The qualifier const is used the same as in Java. It specifies that the value

assigned to a variable is constant and cannot be changed. The variable is read

only. Here are a legal and illegal statement.

// a vector assigned a value

const vec4 point = vec4(1.0, 2.0, 3.0, 1.0);

// illegal statement because the variable must be assigned a value

const float time;

• The qualifier const is used for variables that are compile-time constants or for

function parameters that are read-only.

10

Qualifier attribute

• The qualifier attribute is used to declare variables that are shared

between a vertex shader and the application program; typically

used for vertex coordinates passed to the vertex shader, e.g.,

attribute vec4 vPosition;

• Vertex attributes specify per vertex data, e.g., object space position,

the normal direction and the texture coordinates of a vertex.

• Variables declared using this qualifier must be initialized in the

application program.

11

display

(Vertex shader) (Fragment shader)

application

program

Attribute

The Qualifier uniform

• The qualifier uniform is used to declare variables that are shared

between a shader and the application program.

• Variables declared using this qualifier can appear in the vertex

shader and the fragment shader and they must have a global scope.

• Uniforms are so named because they do not change from one

shader invocation to the next within a particular rendering call

thus their value is uniform among all invocations

• Since both shaders share the same name space, if a uniform

variable is used in both shaders, its declaration must be identical in

both.
12

display

(Vertex shader) (Fragment shader)

application

program

Uniform

The Qualifier uniform (cont.)

• uniform variables are used to describe global properties that affect

the scene to be rendered, e.g., projection matrix, light source

position, etc. They can be used to describe object properties (e.g.,

colour, materials). E.g.,

uniform mat4 projection;

uniform float temperature;

• Variables declared as uniform are not changeable within the vertex

shader or the fragment shader.

• However, their values can change in the application program. For

each frame to be rendered, their new values are passed to the

shader(s).

13

The Qualifier varying

• The qualifier varying is used to declare variables that are

shared between the vertex shader and the fragment shader.

• varying variables are used to store data calculated in the

vertex shader and to pass down to the fragment shader.

Again, because of the sharing of name space of the two

shaders, varying variables must be declared identically in

both shaders.
14

display

(Vertex shader) (Fragment shader)

application

program

Varying

The Qualifier varying (cont.)

• The varying qualifier can only be used with floating point

scalar, floating point vectors and (floating point) matrices

as well as arrays containing these types.

• Example: the vertex shader can compute the color of the

incoming vertex and then pass the value forward for

interpolation. In both shaders:

varying vec4 colour;

15

16

Precision Qualifiers

The Qualifiers highp, mediump,

lowp, and precision

• Supported for compatibility with OpenGL ES

– Use is not recommended unless OpenGL ES compatibility is

required

• The highp, mediump, and lowp qualifiers are used to

specify the highest, medium, and lowest precision

available for a variable. All these qualifiers can appear in

the vertex and fragment shaders.

• All variables of a certain type can be declared to have a

precision by using the precision qualifier

17

precision precision-qualifier​ type​;

e.g., float

• The default precision is highp.

• Using a lower precision might have a positive effect on

performance (frame rates) and power efficiency but might

also cause a loss in rendering quality. The appropriate

trade-off can only be determined by testing different

precision configurations.

18

The Qualifiers highp, mediump,

lowp, and precision

19

Parameter Qualifiers

20

The Qualifiers in, out & inout

• GLSL functions are declared and defined similarly to C/C++

functions. A function declaration in GLSL looks like this

void myFunct(in float inputVal, out int outputVal, inout float inAndOutVal)

20

Parameter qualifiers

• The values passed to functions are copied into parameters when the

function is called, and outputs are copied out when the function

returns (“value-return” calling convention)

21

void myFunct(in float inputVal, out int outputVal, inout float inAndOutVal)

{

inputVal = 0.0;

outputVal = int(inAndOutVal + inputVal);

inAndOutVal = 3.0;

}

void main()

{

float in1 = 10.5;

int out1 = 5;

float out2 = 10.0;

myFunct(in1, out1, out2);

}

in1 10.5

out1 10

out2 3.0

After myFunct is called

Value not initialized

by the calling code

The Qualifiers in, out & inout

22

• A parameter declared as out will not have its value initialized by the

caller. The function will modify the parameter, and after the

function's execution is complete, the value of the parameter will be

copied out into the variable that the user specified when calling the

function.

• A parameter declared as in means that the value given to that

parameter will be copied into the parameter when the function is

called. The function may then modify that parameter, but those

changes will not affect the calling code.

• The inout declaration combines both. The parameter’s value will be

initialized by the value supplied by the calling code, and its final

value will be output.

The Qualifiers in, out & inout

• The in and out qualifiers supersede the attribute and

varying qualifiers in GLSL version 4.20 onward:

– attribute is replaced by in in the vertex shader

– varying in the vertex shader is replaced by out

– varying in the fragment shader is replace by in

23

The Qualifiers in, out & inout

– Variable declared out in vertex shader can be declared as in in

fragment shader and used

24

Passing Values

Slide Credits: Prof Emmanuel Agu, CS4731, lecture 6

• gl_Position

o Its value must be defined in the vertex shader

in vec4 vPosition;

void main()

{

gl_Position = vPosition;

}

• The input vertex’s location is given by the four-dimensional

vector vPosition whose specification includes the keyword in

to signify that its value is input to the shader when the shader

is initiated.

• gl_Position is a special state variable, which is the position that

will be passed to the rasterizer and must be output by every

vertex shader. Because gl_Position is known to OpenGL, we

need not declare it in the shader. 25

Built-in variables in Shaders

• gl_FragColor

o Now deprecated

o Its value must be defined in the fragment shader

void main()

{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

} (R, G, B, Opacity)

26

(Vertex shader) (Fragment shader)

• Each invocation of the vertex shader outputs a vertex

• Each fragment invokes an execution of the fragment shader.

• Each execution of the fragment shader must output a color for the fragment

Built-in Variables in Shaders

• Standard C functions

o Trigonometric: cos, sin, tan, etc.,

o Arithmetic: min, max, log, abs, etc.,

o Normalize, reflect, length

• Examples
• float length(TYPE x)

• float distance(TYPE x1, x2)

• TYPE normalize(TYPE x)

• Other examples are dot, cross, reflect, refract

• If you are performing an operation in GLSL that is somewhat graphics

specific, check the documentation if there is an inbuilt function for it 27

Reflection/refraction direction for an incident vector

Functions and Operators

• Operators

• Binary operators *, /, +, -, =, *=, /=. +=, -= used
between vectors of the same type, work component-
wise

28

vec3 a = vec3(1.0, 2.0, 3.0);

vec3 b = vec3(0.1, 0.2, 0.3);

vec3 c = a + b; // = vec3(1.1, 2.2, 3.3)

vec3 d = a * b; // = vec3(0.1, 0.4, 0.9)

mat2 a = mat2(1., 2., 3., 4.);

mat2 b = mat2(10., 20., 30., 40.);

mat2 c = a * b; //

= mat2(1. * 10. + 3. * 20., 2. * 10. + 4. * 20.,

1. * 30. + 3. * 40., 2. * 30. + 4. * 40.)

But * does not work for matrix multiplication like that

Functions and Operators

• For component matrix multiplication

matrixCompMult is provided

• The * operator can also be used for matrix-

vector product

29

vec2 v = vec2(10., 20.);

mat2 m = mat2(1., 2., 3., 4.);

vec2 w = m * v; // = vec2(1. * 10. + 3. * 20., 2. * 10. + 4. * 20.)

Operators and Functions

• Can refer to array elements by their indices using [] or by
selection operator (.) with

– x, y, z, w % 3D coordinates and perspective scale

– r, g, b, a % Color values and opacity

– s, t, p, q % texture coordinates (later)

– vec4 m;

– m[2], m.b, m.z, and m.p are the same

• Swizzling operator lets us manipulate components easily,
e.g.,
vec4 a; // (0.0, 0.0, 0.0, 0.0)

a.yz = vec2(1.0, 2.0); // (0.0, 1.0, 2.0, 0.0)

vec4 newColour = a.bgra; // swap red and blue // (2.0, 1.0, 0.0, 0.0)

30

Three masks

Selection and Swizzling

• Swizzling does not work with matrices. You can instead
access a matrix's fields with array syntax:

mat3 theMatrix;

theMatrix[1] = vec3(3.0, 3.0, 3.0); // Sets the 2nd column

theMatrix[2][0] = 16.0; // Sets the 1st entry of 3rd column

• However, the result of the first array accessor is a vector, so
you can swizzle that:

mat3 theMatrix;

theMatrix[1].yzx = vec3(3.0, 1.0, 2.0);

Selection and Swizzling with
Matrices

“Interactive Computer Graphics – A Top-Down Approach
with Shader-Based OpenGL” by Edward Angel and Dave
Shreiner, 6th Ed, 2012

• Sec2. 2.8.2-2.8.5 The Vertex Shader …The InitShader
Function

• Sec 3.12.2 Uniform Variables

A good reference on OpenGL shaders:
http://antongerdelan.net/opengl/shaders.html

References

