
CITS3003 Graphics & Animation

Lecture 3: 

Pipeline Architecture



Content

• Expanding on primitives

• Vertex attributes 

• OpenGL pipeline architecture

• Understand immediate mode graphics vs 

retained mode graphics



OpenGL Primitives

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES

Recall from a previous lecture…

important



Polygon Issues

• Graphics systems like triangles because triangles are:

o Simple: edges cannot cross

o Convex: All points on a line segment between two points in a 

polygon are also in that polygon

o Flat: all vertices are in the same plane

Non-simple polygon
nonconvex polygon

convexity



Polygon Issues (cont.)

• If other polygons are used, they are tessellated into

triangles (a.k.a triangulation)

• OpenGL contains a tessellator.

Tessellation (tiling) of a flat surface is the process of covering 

it with one or more geometric shapes (the tiles): Wikipedia 



Polygon Testing

• Polygon testing refers to testing a polygon for its

simplicity and convexity

• Conceptually it is a simple procedure, however, it is

time consuming

• Earlier versions of OpenGL assumed both and left

the polygon testing to the application

• OpenGL renders triangles

– Need algorithm to triangulate an arbitrary polygon



Triangulation 
Good and Bad Triangles

• Long thin triangles render badly

• Equilateral triangles render well

• To get good triangles for rendering

➔Maximize the minimum interior angle

• Delaunay triangulation (very expensive) can be
used for unstructured points



Recursive Triangulation of

Convex Polygon

• If the polygon is convex, then we can 
recursively triangulate it to form 
triangles:
1. Start with abc to form the 1st

triangle, then

2. Remove b (the resultant polygon 
has one fewer vertex

3. (Recursion) Go to Step 1 to form 
the 2nd triangle

• Does not guarantee all triangles are 
good.

• Convexity helps in easy triangulation

a

c

b

d



Attributes of Primitives

• Attributes are properties associated with the primitives that give 
them their different appearances, e.g.

• Color (for points, lines, polygons)

• Size and width (for points, lines)

• Stipple pattern (for lines, polygons)

• Polygon mode

• Display as filled: solid color or stipple pattern

• Display edges

• Display vertices

Recall from a previous lecture…



RGB Colour

• Each colour component is stored separately in the frame 

buffer

• Occupies 8 bits per component in the buffer

• Colour values range

o from 0 to 255 using unsigned integers, or

o from 0.0 (none) to 1.0 (all) using floats

• Use vec3 or vec4 to represent colour

vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
R

G

B



Indexed Colour

• Colours are indices into tables of RGB values

• Requires less memory

o not as important now

• Memory inexpensive

• Need more colors for shading



Pipeline Architectures

• Pipeline architectures are very common and can be 
found in many application domains. E.g., an arithmetic 
pipeline:

• When two sets of a, b, and c values are passed to the 
system, the multiplier can carry out the 2nd

multiplication without waiting for the adder to finish →
the calculation time is shortened!



The Graphics Pipeline

• The Graphics Pipeline adopts:

• Objects passed to the pipeline are processed one at a time 
in the order they are generated by the application 
program

• All steps can be implemented in hardware on the 
graphics card

display
application 

program

Image credits: Author: Romain Vergne link

http://romain.vergne.free.fr/teaching/IS/SI03-pipeline.html


Vertex Processing

• Much of the work in the pipeline is in converting 

object representations from one coordinate system 

to another

o Object coordinates

o Camera (eye) coordinates

o Screen coordinates

• Every change of vertex coordinates is the result of 

a matrix transformation being applied to the 

vertices

• Vertex processor can also compute vertex colors



Projection

• Projection is the process that combines the 3D

viewer with the 3D objects to produce the 2D

image

o Perspective projections: all projected rays meet

at the center of projection

o Parallel projection: projected rays are parallel;

centre of projection is at infinity. (specify the

direction of projection instead of the centre of

projection)



Projection

• Example

2D to 1D Orthographic/Parallel Projection

The gray box represents the part of the world that is visible to the projection; parts of the scene outside of this region are not seen

2D to 1D Perspective Projection

Credits: link

https://nicolbolas.github.io/oldtut/Positioning/Tut04 Perspective Projection.html


Primitive Assembly

• Vertices must be collected into geometric

objects before clipping and rasterization can

take place.

o Line segments

o Polygons

o Curves and surfaces

are formed by the grouping of vertices in this step of 

the pipeline.



Clipping

• Just as a real camera cannot “see” the whole

world, the virtual camera can only see part of the

world or object space

o Objects that are not within this volume are said to be 

clipped out of the scene



Rasterization

• If an object is not clipped out, the appropriate pixels in 

the frame buffer must be assigned colors

• Rasterizer produces a set of fragments for each object

• Fragments are “potential pixels”. They

o have a location in the frame buffer

o have colour, depth, and alpha attributes

• Vertex attributes (colour, transparency) are interpolated 

over the objects by the rasterizer

link

https://www.enlightenment.org/_detail/evasgl_rasterization.png?id=develop%3Alegacy%3Aprogram_guide%3Aevasgl_pg


Smooth Color

• We can tell the rasterizer in the pipeline how to

interpolate the vertex colours across the vertices

• Default is smooth shading

o OpenGL interpolates vertex

colors across visible polygon

• Alternative is flat shading

o Color of the first vertex 

determines the fill color

• Shading is handled in the fragment shader



Fragment Processing

• Fragments are processed to determine the colour

of the corresponding pixel in the frame buffer

• The colour of a fragment can be determined by 

texture mapping or by interpolation of vertex 

colours

• Fragments may be blocked by other fragments 

closer to the camera 

o Hidden-surface removal 



Graphics Modes

• Immediate Mode API 
– Immediate-mode APIs are normally procedural

– Each time a new frame is drawn, the application issues 
the drawing commands.

– The library does not store a scene model between the 
frames

Image taken from docs.microsoft.com



Graphics Modes

• Retained Mode API 
– A retained-mode API is declarative

– The application constructs a scene, and the library stores a model 
of the scene in the memory.

– The application issues commands to update the scene (e.g., add 
or remove shapes)

– The library redraws

Image taken from docs.microsoft.com



Immediate Mode with OpenGL

• Older versions of OpenGL adopted immediate mode 

graphics, where

– Each time a vertex is specified in application, its location is sent 

immediately to the GPU

– Old style programming, uses glVertex



Immediate Mode with OpenGL

• Advantage: 

– No memory is required to store the geometric data (memory 

efficient)

• Disadvantages:

– As the vertices are not stored, if they need to be displayed again, 

the entire vertex creation and the display process must be repeated.

– Creates bottleneck between CPU and GPU

• Immediate mode graphics has been removed from 

OpenGL 3.1



Retained Mode Graphics with OpenGL

• Put all vertex and attribute data into an array, send and 

store that on the GPU

• Update when required

• Retained mode graphics is adopted in OpenGL 3.1 

onward.



Comparison of the two modes

• Immediate mode graphics

main()

{

initialize_the_system();

p = find_initial_point();

for (some_no_of_points) {

q = generate_a_point(p);

display(q);

p = q;

}

cleanup();

}

• Retained mode graphics

main()

{

initialize_the_system();

p = find_initial_point();

for (some_no_of_points) {

q = generate_a_point(p);

store_the_point(q);

p = q;

}

display_all_points();

cleanup();

}

Pseudo code for the 2D Sierpinski triangle program for the 2 modes

2D Sierpinski triangle



Further Reading

“Interactive Computer Graphics – A Top-Down 
Approach with Shader-Based OpenGL” by Edward 
Angel and Dave Shreiner, 6th Ed, 2012

• Sec. 1.7.2 – 1.7.7 Pipeline Architectures … 
Fragment Processing

• Sec. 2.1 The Sierpinski Gasket; immediate mode 
graphics vs retained mode graphics

• Sec 2.4 – 2.4.4 Primitives and Attributes … 
Triangulation


