CITS3003 Graphics & Animation

Lecture 3:
Pipeline Architecture

Content

Expanding on primitives
Vertex attributes
OpenGL pipeline architecture

Understand immediate mode graphics vs
retained mode graphics

OpenGL Primitives

Recall from a previous lecture. ..

GL_POINTS /\

GL LINES GL_LINE_STRIP

GL_LINE_LOOP

P P3 Ps Pr \
A AN, GL_TRIANGLES -
‘ important
Po P2 P4 Ps

P
.]. P2

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN "' »

- A ')d1
Py

GL_TRIANGLE FAN

Polygon Issues

Graphics systems like triangles because triangles are:
o Simple: edges cannot cross

o Convex: All points on a line segment between two points in a
polygon are also in that polygon

o FElat: all vertices are in the same plane

— %

Non-simple polygon convexity

nonconvex polygon

Polygon Issues (cont.)

« |If other polygons are used, they are tessellated into
triangles (a.k.a triangulation)

* OpenGL contains a tessellator.

Tessellation (tiling) of a flat surface is the process of covering
it with one or more geometric shapes (the tiles): Wikipedia

Polygon Testing

Polygon testing refers to testing a polygon for its
simplicity and convexity

Conceptually It Is a simple procedure, however, It IS
time consuming

Earlier versions of OpenGL assumed both and left
the polygon testing to the application

OpenGL renders triangles
— Need algorithm to triangulate an arbitrary polygon

Triangulation
Good and Bad Triangles

Long thin triangles render badly

——

Equilateral triangles render well
To get good triangles for rendering
= Maximize the minimum interior angle

Delaunay triangulation (very expensive) can be
used for unstructured points

Recursive Triangulation of
Convex Polygon

 If the polygon is convex, then we can
recursively triangulate it to form d
triangles:

1. Start with abc to form the 1st
triangle, then c

2. Remove b (the resultant polygon
has one fewer vertex

3. (Recursion) Go to Step 1 to form
the 2"d triangle h

« Does not guarantee all triangles are a
good.

« Convexity helps in easy triangulation

Attributes of Primitives

Recall from a previous lecture...

 Attributes are properties associated with the primitives that give
them their different appearances, e.g.
« Color (for points, lines, polygons)
* Size and width (for points, lines)
« Stipple pattern (for lines, polygons)

« Polygon mode
Display as filled: solid color or stipple pattern
Display edges
Display vertices

RGB Colour

« Each colour component is stored separately in the frame
buffer

« Occupies 8 bits per component in the buffer

* Colour values range
o from 0 to 255 using unsigned integers, or
o from 0.0 (none) to 1.0 (all) using floats

« Use vec3 or vec4 to represent colour
vecd red = vec4(1.0, 0.0, 0.0, 1.0); R/,

G

B

Indexed Colour

 Colours are indices into tables of RGB values

* Requires less memory

o hot as important now
« Memory inexpensive
* Need more colors for shading

I‘l:

Color-
lookup table

&l

Frame buffer

Color-
lookup table

[
Green [[N
— |

Color-
lookup table

Y

Pipeline Architectures

* Pipeline architectures are very common and can be
found in many application domains. E.g., an arithmetic

pipeline:
b i
c - DR + —
-

* When two sets of a, b, and ¢ values are passed to the
system, the multiplier can carry out the 2"d
multiplication without waiting for the adder to finish -
the calculation time Is shortened!

The Graphics Pipeline

* The Graphics Pipeline adopts:

application _
program display
Vertices Vertex | (?l!pper and Rasterizer Fragment Pixels
processor primitive assembler processor

a4

* Objects passed to the pipeline are processed one at a time
In the order they are generated by the application
program

« All steps can be implemented in hardware on the
graphics card

Image credits: Author: Romain Vergne link

http://romain.vergne.free.fr/teaching/IS/SI03-pipeline.html

Vertex Processing

* Much of the work in the pipeline is in converting
object representations from one coordinate system
to another
o Object coordinates
o Camera (eye) coordinates
o Screen coordinates

« Every change of vertex coordinates is the result of
a matrix transformation being applied to the
vertices

* \ertex processor can also compute vertex colors

Vertex Clipper and . Fragment
— LPP — Rasterizer —# g
processor primitive assembler processor

%

Vertices— = 1= Pixels

Projection

* Projection Is the process that combines the 3D
viewer with the 3D objects to produce the 2D
Image

ems O Perspective projections: all projected rays meet
| at the center of projection

' 5 Parallel projection: projected rays are parallel;
centre of projection iIs at infinity. (specify the
direction of projection instead of the centre of
projection)

Vertex Clipper and Rasterizer Fragment Pixels

processor primitive assembler processor

4

Vertices —m

Projection

2D to 1D Orthographic/Parallel Projection 2D to 1D Perspective Projection
The gray box represents the part of the world that is visible to the projection; parts of the scene outside of this region are not seen

Credits: link

https://nicolbolas.github.io/oldtut/Positioning/Tut04 Perspective Projection.html

Primitive Assembly

* \ertices must be collected Into geometric

objects before clipping and rasterization can
take place.

o Line segments

o Polygons

o Curves and surfaces

are formed by the grouping of vertices in this step of
the pipeline.

Vertex Clipper and . Fragment
— LPP — Rasterizer —# g
processor primitive assembler processor

t

Vertices— = 1= Pixels

Clipping

« Just as a real camera cannot “see” the whole
world, the virtual camera can only see part of the
world or object space

o Objects that are not within this volume are said to be
clipped out of the scene

S Back
Feonit clipping

View clipping plane
plane plane

Rasterization

If an object Is not clipped out, the appropriate pixels in
the frame buffer must be assigned colors

« Rasterizer produces a set of fragments for each object

* Fragments are “potential pixels”. They .
o have a location in the frame buffer >
o have colour, depth, and alpha attributes in

« Vertex attributes (colour, transparency) are interpolated
over the objects by the rasterizer

k

Vertex Clipper and Rasterizer Fragment Pixels

processor primitive assembler processor

4

Vertices — -

https://www.enlightenment.org/_detail/evasgl_rasterization.png?id=develop%3Alegacy%3Aprogram_guide%3Aevasgl_pg

Smooth Color

We can tell the rasterizer in the pipeline how to

Default is smooth shading
o OpenGL interpolates vertex
colors across visible polygon
Alternative is flat shading
o Color of the first vertex
determines the fill color
Shading is handled in the fragment shader

Fragment Processing

* Fragments are processed to determine the colour
of the corresponding pixel in the frame buffer

* The colour of a fragment can be determined by
texture mapping or by interpolation of vertex
colours

* Fragments may be blocked by other fragments
closer to the camera

o Hidden-surface removal

Vertex Clipper and Rasterizer Fragment Pixels

processor primitive assembler processor

t

Vertices — -

Graphics Modes

* Immediate Mode API
— Immediate-mode APIs are normally procedural

— Each time a new frame is drawn, the application issues
the drawing commands.

— The library does not store a scene model between the
frames

Application |————m Graphics Library |—p~
Drawing
Undate Commands

Y F —al—

_[' ":
'_____.-"'

Scene (Model)

Image taken from docs.microsoft.com

Graphics Modes

Retained Mode API

— Aretained-mode API is declarative

— The application constructs a scene, and the library stores a model
of the scene in the memory.

— The application issues commands to update the scene (e.g., add
or remove shapes)

— The library redraws

Application

Build Scenea

-1

Graphics Library

|
Update
Y

| S
g
i !

N

scene (Model)

Drawing
Commands

-

Yo

Image taken from docs.microsoft.com

Immediate Mode with OpenGL

 Older versions of OpenGL adopted immediate mode
graphics, where

— Each time a vertex is specified in application, its location is sent
Immediately to the GPU

— Old style programming, uses gl\Vertex

Immediate Mode with OpenGL

« Advantage:

— No memory is required to store the geometric data (memory
efficient)

 Disadvantages:

— As the vertices are not stored, if they need to be displayed again,
the entire vertex creation and the display process must be repeated.

— Creates bottleneck between CPU and GPU

* Immediate mode graphics has been removed from
OpenGL 3.1

Retained Mode Graphics with OpenGL

 Put all vertex and attribute data into an array, send and
store that on the GPU

« Update when required

 Retained mode graphics is adopted in OpenGL 3.1
onward.

Comparison of the two modes

« Immediate mode graphics

main()
{
initialize the_system();
p = find_initial_point();
for (some_no_of points) {
g = generate_a_point(p);
display(q);
P=d,
}

cleanup();

}

2D Slerplnskl triangle

* Retained mode graphics
main()
{
initialize_the_system();
p = find_initial_point();
for (some_no_of_points) {
g = generate_a_point(p);
store_the point(q);
P=q,
}
display_all _points();
cleanup();

}

Pseudo code for the 2D Sierpinski triangle program for the 2 modes

Further Reading

“Interactive Computer Graphics — A Top-Down
Approach with Shader-Based OpenGL” by Edward
Angel and Dave Shreiner, 6" Ed, 2012

« Sec.1.7.2—1.7.7 Pipeline Architectures ...
Fragment Processing

« Sec. 2.1 The Sierpinski Gasket; immediate mode
graphics vs retained mode graphics

e Sec 2.4 —2.4.4 Primitives and Attributes ...
Triangulation

