
CITS3003 Graphics & Animation

Lecture 2:

Programming with

OpenGL

• OpenGL Libraries

• OpenGL Architecture

• OpenGL Variable Types and Functions

• A Simple Program

2

Content

• Its an API (specifications to be precise)

– Allows accessing and dealing with the graphics card

• Where do I download OpenGL?

– Its already there in your graphics driver

• Is it open source?

– Irrelevant (its essentially just a specification)

• We still treat OpenGL as API

3

What is OpenGL

• OpenGL is one of many APIs that allow access to the

graphics card

– E.g. Vulkan, Direct 3D 11, Metal

• Why OpenGL

– Cross-platform

– Excellent entry point for Graphics learning

4

What is OpenGL (cont…)

• Legacy OpenGL uses set of pre-sets (simple but not
flexible)

• Modern OpenGL Allows the computer program to
achieve fast graphics performance by using GPU rather
than CPU

• Allows applications to control GPU through programs
known as shaders

• It is the application’s job to send data to GPU; GPU then
performs the rendering

5

Modern OpenGL

• The application programs can use GLEW, GL, GLUT functions

but not directly access to Xlib etc.

• The program can therefore be compiled with e.g., GLUT for

other operating systems.

Removes OS dependencies

High level Low level

X Window System

Provides min. functionalities

expected by windowing sys.

Provides fnc. for GLXProvides fnc.

for OpenGL

*.dll

- Need to access these.

- Retrieve fnc pointers.

6

Software Organization

OpenGL

• OpenGL’s function is Rendering (or drawing)

– Rendering– Convert geometric/mathematical object
descriptions into images

• No window management (create, resize, etc)

7

OpenGL/GLUT basics

https://web.media.mit.edu/~gordonw/OpenGL/

GLUT

• Minimal window management

• Interfaces with different windowing

systems

• Easy porting between windowing

systems. Fast prototyping

GLUT

OpenGL

Credits: Prof. Emmanuel Agu, cs4731, WPI

https://web.media.mit.edu/~gordonw/OpenGL/

• In OpenGL, we use basic OpenGL types, e.g.,

• GLfloat,

• GLdouble,

• GLint, etc

• (equivalent to float, double, and int in C/C++)

• Additional data types are supplied in header files vec.h and

mat.h from Angel and Shreiner, e.g.,

• vec2,

• vec3,

• mat2,

• mat3

• mat4, etc.

8

OpenGL Types

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES

9

What are OpenGL Primitives?

• Attributes are properties associated with the primitives that give
them their different appearances, e.g.

• Color (for points, lines, polygons)

• Size and width (for points, lines)

• Stipple pattern (for lines, polygons)

• Polygon mode

• Display as filled: solid color or stipple pattern

• Display edges

• Display vertices

10

What are Attributes?

• We can think of the entire graphics system as a black

box (finite-state machine).

• This black box has inputs coming from the application

program.

• These inputs can change the state of the machine or can cause

the machine to produce a visible output.

11

State Machine

• From the perspective of the API, there are two types of

graphics functions:

1. Functions that define primitives that flow through the state

machine. These functions:

• define how vertices are processed (the appearance of primitives are

controlled by the state of the machine)

• can cause output if the primitive is visible

2. Functions that either change the state inside the machine or

return the state information, e.g.,

• Transformation functions

• Attribute functions

12

State Machine (cont..)

• OpenGL provides a range of functions for specifying:

• Primitives

o Points

o Line Segments

o Triangles

• Attributes

• Transformations

o Viewing

o Modeling

• Control (GLUT)

• Query

13

OpenGL Functions

→ the way that a primitive appears on the display

→ the low-level objects or atomic entities that our system can display

→ to carry out transformations of objects, such as rotation,

translation, and scaling

→ to communicate with the window system, initialize our

programs, and deal with any errors during the execution

→ to get information about API i.e., how many colours are supported etc.,

• OpenGL is not object oriented so that there are multiple

functions for a given logical function, e.g., the following are the

same function but for different parameter types: (no

overloading)

o glUniform3f

o glUniform2i

o glUniform3fv

• The major reason is efficiency (Don’t wrap everything in classes

when it is not required)

14

OpenGL Functions:
Lack of Object Orientation

glUniform3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glUniform3fv(p)

p is a pointer to an array

dimensions

glUniform — Specifies the value of a uniform variable for the current program object

Uniform variables are used to communicate with vertex or

fragment shaders from outside. We will come to the details later. 15

Format of OpenGL Functions

• Most constants are defined in the include files gl.h, glu.h and

glut.h

• Note #include <GL/glut.h> should automatically include the others

• Examples: the functions glEnable and glClear are both declared in

gl.h

• The OpenGL data types GLfloat, GLdouble,…. are also

declared in gl.h

16

OpenGL #defines

GLSL is short for OpenGL Shading Language

• It is a C-like language with:

o Built-in Matrix and vector types (2, 3, 4 dimensional)

o C++ like constructors

• It is similar to Nvidia’s Cg and Microsoft HLSL

• Supports loops, if-else constructs, but recursion is not
allowed

• GLSL codes are not stand-alone applications, they
require an application program that uses OpenGL API

• More on GLSL in later lectures

17

What is GLSL

simple.cpp - Generates a white square on a black

background

18

A Simple Program

For the above task, following are the

Rendering Steps:

1. Generate vertices (2 triangle = 6 vertices)

2. Store the vertices into an array

3. Create GPU buffer for vertices

4. Move array of 6 vertices from CPU to GPU

buffer

5. Draw 6 points from array on GPU using

glDrawArray

Usually has 3 files:

• main.cpp file: containing your main function

– Does initialization, generates/loads geometry to be drawn

– simple.cpp - Generates a white square on a black
background

• Two shader files:

– Vertex shader: functions to manipulate (e.g., move) vertices

– Fragment shader: functions to manipulate pixels/fragments
(e.g change color)

19

OpenGL Program

20

A Simple Program (cont.)

• Most ‘main.cpp’ (simple.cpp in our case) files have a similar

structure that consists of the following functions:

o main(): creates the window, calls the init() function,

specifies callback functions relevant to the application, enters

event loop (last executable statement)

o A callback function is a function passed into another function as an argument,

which is then invoked inside the outer function to complete some kind of

routine or action

o init(): defines the vertices, attributes, etc. of the objects to be

rendered, specifies the shader programs

o display(): this is a callback function that defines what to

draw whenever the window is refreshed.

simple.cpp
#include <GL/glut.h>

void init() {

// code to be inserted here

}

void mydisplay(){

// need to fill in this part

// and add in shaders

}

int main(int argc, char** argv){

// create and open GLUT window;

// call init();

// register callback function;

// wait in glutMainLoop for events;

}
21

includes headers

simple.cpp
#include <GL/glut.h>

void init() {

// code to be inserted here

}

void mydisplay(){

// need to fill in this part

// and add in shaders

}

int main(int argc, char** argv){

// create and open GLUT window;

// call init();

// register callback function;

// wait in glutMainLoop for events;

}
22

includes headers

OpenGL

programs are

event driven

• Note that the program specifies a display callback

function named mydisplay

• Every glut program must have a display callback

• The display callback is executed whenever OpenGL

decides the display must be refreshed, for example when

the window is opened

• The main function ends with the program entering an

event loop

23

Display and Event Loop

simple.cpp – the complete program

#include “Angel.h”

using namespace std;

const int NumTriangles = 2; // 2 triangles to be displayed
const int NumVertices = 3 * NumTriangles;

vec3 points[NumVertices] = {
vec3(-0.5, -0.5, 0.0), vec3(0.5, -0.5, 0.0), vec3(-0.5, 0.5, 0.0),
vec3(0.5, 0.5, 0.0), vec3(-0.5, 0.5, 0.0), vec3(0.5, -0.5, 0.0)

}; // generate vertices + store in an array

void init(void)
{

// code to be inserted here}

3rd dim. is set to 0,

4 unique locations

24

You will be given file Angel.h, which includes vec.h

(-0.5, 0.5, 0.0)

(-0.5, -0.5, 0.0) (0.5, -0.5, 0.0)

(0.5, 0.5, 0.0)(-0.5, 0.5, 0.0)

(0.5, -0.5, 0.0)

x-x

y

-y

void init(void)
{

// First Create a vertex array object
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao); // make VAO active

// Create and initialize a vertex buffer object
GLuint buffer;
glGenBuffers(1, &buffer); // create one buffer object

glBindBuffer(GL_ARRAY_BUFFER, buffer);

simple.cpp – the complete program

Rendering from GPU memory significantly

faster. Move data there

GPU memory for data called Vertex Buffer

Objects (VBO)

Array of VBOs (called Vertex Array Object

(VAO)) usually created

VAO

VBO

VBO

VBO

Number of buffer objects to return

Data is array of values

simple.cpp – the complete program

void init(void)
{

// Create a vertex array object
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);

// Create and initialize a vertex buffer object
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);

// Move the six points generated earlier to VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(points), points, GL_STATIC_DRAW);

}

Data to be transferred to GPU memory (generated earlier)

buffer object data will not be changed.

Specified once by application and used

many times to draw

Need to link names of vertex and

fragment shaders to the main program
Vertex shader: functions to manipulate (e.g., move) vertices

Fragment shader: functions to manipulate pixels/fragments

(e.g change color)

simple.cpp – the complete program
void init(void)

{
// Create a vertex array object
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);

// Create and initialize a vertex buffer object
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);

// Move the six points generated earlier to VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(points), points, GL_STATIC_DRAW);

// Load shaders and use the resulting shader program
GLuint program = InitShader("vertex.glsl", "fragment.glsl");
glUseProgram(program);

// Initialize the vertex position attribute from the vertex shader
GLuint vPos = glGetAttribLocation(program, "vPosition");
glEnableVertexAttribArray(vPos);
glVertexAttribPointer(vPos, 3, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));

}

initShader() connects main

program to the shader files

Want to make 6 vertices

accessible as variable ‘vPosition’

in vertex shader

Location of vPosition
3 (x,y,z) floats per

vertex
Data starts at offset

from start of array

Data no normalized

(0-1 range)

simple.cpp – the complete program
void init(void)

{
// Create a vertex array object
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);

// Create and initialize a vertex buffer object
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);

// Move the six points generated earlier to VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(points), points, GL_STATIC_DRAW);

// Load shaders and use the resulting shader program
GLuint program = InitShader("vertex.glsl", "fragment.glsl");
glUseProgram(program);

// Initialize the vertex position attribute from the vertex shader
GLuint vPos = glGetAttribLocation(program, "vPosition");
glEnableVertexAttribArray(vPos);
glVertexAttribPointer(vPos, 3, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));

// create black background
glClearColor(0.0, 0.0, 0.0, 0.0); /* black background */

}

void display(void)
{

glClear(GL_COLOR_BUFFER_BIT); // clear screen
glDrawArrays(GL_TRIANGLES, 0, NumVertices); // draw the two triangles
glFlush(); // draw it now! // force rendering to show

}

int main(int argc, char **argv)
{

glutInit(&argc, argv); // initialises GLUT
glutInitDisplayMode(GLUT_RGBA); // sets Display mode
glutInitWindowSize(256, 256); // sets window size (Width x Height) in pixels
glutCreateWindow("simple"); // open window with title “simple”

init(); // do initializations
glutDisplayFunc(display); // register the callback function
glutMainLoop(); //wait in glutMainLoop for events

}

29

simple.cpp – the complete program

Opening
a

window

No registered callback=no action

Contents of the file vertex.glsl

attribute vec4 vPosition;

void main()
{

gl_Position = vPosition;
}

Must be the same as the name chosen in
simple.cpp (see the 2nd parameter passed to
the glGetAttribLocation function.

Built-in variable name in GLSL,
denoting the vertex
coordinates in 4-dimensions.

Application program is
simple.cpp. It must work with
two shader programs, written
in GLSL. They must work
together.

30

Vertex Shader for simple.cpp

Contents of the file fragment.glsl

void main()
{

gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

Built-in variable name in GLSL,
denoting the colour (as a 4D
vector) to be put at that vertex.

31

Fragment Shader for simple.cpp

“Interactive Computer Graphics – A Top-Down Approach with
Shader-Based OpenGL” by Edward Angel and Dave Shreiner, 6th

Ed, 2012

• Sec. 2.4 Primitives and Attributes (up to Sec. 2.4.1)

• Sec. 2.3.1 Graphics Functions

• Sec. 2.3.2 Graphics Pipeline and State Machine

• Sec. 8.10 Graphics and the Internet

• (Advanced) Appendix A.2

32

Further Reading

