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a b s t r a c t 

In this paper we describe and characterize the largest Wi-Fi network trace ever published: spanning 

seven years, approximately 30 0 0 distinct access points, 40,0 0 0 authenticated users, and 60 0,0 0 0 distinct 

Wi-Fi stations. The 7TB of raw data are pre-processed into connection sessions, which are made available 

for the research community. We describe the methods used to capture and process the traces, and char- 

acterize the most prominent trends and changes during the seven-year span of the trace. Furthermore, 

this Wi-Fi network covers the campus of Dartmouth College, the same campus detailed a decade earlier 

in seminal papers about that network and its users’ network behavior. We thus are able to comment on 

changes in patterns of usage, connection, and mobility in Wi-Fi deployments. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Now a mature technology, Wi-Fi (IEEE 802.11) plays an essen-

ial role at the edge of the Internet. Despite countless studies about

ts capabilities, behavior under various network conditions and use

ases, much remains unknown about how large enterprise Wi-Fi

etworks behave when faced with the traffic demands of thou-

ands of daily users. Although researchers have characterized early

i-Fi networks [1–4] , the technology and usage has evolved dra-

atically in the two decades since 802.11 was first introduced. 

In this paper, therefore, we publish and describe a massive trace

f a live, production Wi-Fi network, on the same campus that was

rst documented in the Dartmouth traces from 2001 [1,2] and

003 [3,4] , to provide new insights into the changes resulting from

he evolution of mobile client technology, Wi-Fi network technol-

gy, and user behavior. We describe a foundational characteriza-

ion of a seven-year capture of the Dartmouth campus, providing a

latform on which others can explore deeply in a variety of direc-

ions. Understanding and forecasting user behavior and connectiv-

ty patterns in Wi-Fi is important for network managers, protocol

esigners and software developers, to improve current practices of

etwork design and improve network performance [5,6] . 

Specifically, this paper makes four primary contributions: 
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E-mail address: josecamacho@ugr.es (J. Camacho). 

d  

t  

f  

c  

S  

D  

ttps://doi.org/10.1016/j.comnet.2020.107103 

389-1286/© 2020 Published by Elsevier B.V. 
• We analyze a trace with a 7-year span of time that in-

cludes 5 billion records regarding the activity of approxi-

mately 30 0 0 distinct access points (APs), 40,0 0 0 authenti-

cated users, and 60 0,0 0 0 distinct Wi-Fi stations. Unfortu-

nately, we found a gap of approximately two years where

a significant amount of information was missing. Therefore,

the actual period useful for most analyses is 5 years. 

• We identify active device-connection sessions across time, a

process fundamental to the proper interpretation of connec-

tion patterns. 

• We discuss in detail current usage patterns and trends in the

campus Wi-Fi, both in terms of users and devices, includ-

ing user mobility and device manufacturer distribution. We

derive updated models for the realistic simulation of Wi-Fi

environments. 

• We release a data set with anonymized information about

connection sessions in 2018, for which the amount of traf-

fic and duration of connection sessions is available, and an-

other data set with anonymized information about associa-

tion traps in 2012–2018. 

The next section introduces the network and our methods for

ata capture and analysis. Section 3 describes our method to iden-

ify connection patterns, and Section 4 analyzes the network in-

rastructure and number of connections over time. Section 5 fo-

uses on usage patterns and Section 6 analyzes mobility patterns.

ection 7 contrasts results with those in previous papers on the

artmouth Wi-Fi and present models of usage of the network,

https://doi.org/10.1016/j.comnet.2020.107103
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107103&domain=pdf
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Table 1 

General statistics across papers reporting on the Dartmouth Wi-Fi network. 

Concept Kotz & Essien ’05 [2] Henderson et al. ’08 [4] Camacho et al. ’19 

Capture Features 

Year 2001 2003–2004 2012–2018 

Length 11 weeks 17 weeks 7 years 

Syslog + SNMP polling Syslog + SNMP polling 

Measurement technologies + tcpdump sniffers + tcpdump sniffers SNMP traps 

+ IP telephony records 

# Entities 

Stations (/week) 1706 (155) 7134 (420) 624,903 (1716) 

Users < 1706 (estimated) < 7134 (estimated) 38,096 (authenticated) 

APs 476 566 3330 

Buildings 161 188 200 

SSIDs 1 1 20 

Average Density 

APs/Building 3.0 3.0 16.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Number of traps per day, over time. In this and following figures, the ver- 

tical dashed lines identify the period where data loss was experienced, and circles 

represent yearly averages. 
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which can be used in simulation. Section 8 discusses related work,

and Section 9 summarizes our conclusions. The Appendices discuss

technical details on the analysis of the capture and the data sets

released. 

2. Environment and data capture 

Dartmouth College is a small liberal-arts university in a rural

part of northeastern United States, on a campus comprising over

200 buildings on 200 acres. At the end of 2018 there were approx-

imately 650 0 students, 330 0 staff, and 10 0 0 academic faculty affili-

ated. The preceding seven-year period saw over 12,0 0 0 Dartmouth-

affiliated users connecting to the Wi-Fi network. Dartmouth in-

stalled the first-ever campus-wide Wi-Fi network in 2001 by de-

ploying 476 APs, and researchers reported on its usage in a 2002

paper [1,2] . In late 2003 there were 566 APs in the network, and

researchers reported on the changing usage patterns [3,4] . These

early networks were relatively simple, with no authentication re-

quired and only a single Service Set Identifier (SSID). By the end

of 2018 the Dartmouth network included over 30 0 0 APs, sophisti-

cated authentication, and up to 20 different SSIDs. In our seven-

year capture, the dominant SSIDs include Dartmouth Secure (the

WPA2-Enterprise authenticated college network), Dartmouth Public

(an unsecured public-access network), and eduroam [7] (for stu-

dents and faculty visiting from other universities). Dartmouth Se-

cure was entirely replaced by eduroam at the end of the capture,

allowing us to analyze this evolution. We chose to limit our study

to the recent seven-year period because the network infrastructure

(comprising Cisco network controllers and access points) was rea-

sonably consistent throughout those seven years. 

Table 1 compares the main features of our capture with those

in the previous papers. This comparison is limited, though, by

the fact that the papers used different measurement technologies

and analysis strategies. For example, the recent capture has lim-

ited information about traffic volumes (bytes in/out per station or

per AP), whereas the early papers had detailed data about traf-

fic volume. The recent capture has no information about the mix

of application types, whereas the early papers used tcpdump to

capture packet headers on a representative subset of the campus.

The recent capture has information about user identity (username)

whereas the early papers had only network identity (MAC and IP

addresses). Overall, the recent trace is much larger: longer time

duration, greater number of APs and client stations, and there are

even more buildings covered by the network. 

To collect the recent trace, the Dartmouth network operators

configured the Cisco network controllers to forward a record of

network activity to the research team’s servers in the form of Sim-

ple Network Management Protocol (SNMP) traps [8] . Unfortunately,

a significant number of traps were not captured from the fourth
uarter of 2015 to the third quarter of 2017. Dartmouth’s network

taff confirmed that, during this period, most of the Wi-Fi con-

rollers were misconfigured and were not sending traps. Although

e must omit this period for most of our analysis, we present the

vailable data for completeness; in relevant figures, the affected

eriod is marked with two vertical dashed lines. The same figures

lso present trends in yearly averages using both a dashed curve

connecting all years) and a solid curve (omitting this period of

ata loss). Note that figures have varying scales on their x- and y-

xes, some with large magnitudes indicated with exponential no-

ation. 

Fig. 1 depicts the evolution of the number of traps in the cap-

ure; over seven years the network created an average of approx-

mately three million traps per day, although the number grew

teadily from 2012 through 2018. Within each year it is also pos-

ible to see coarse fluctuations corresponding to the academic cal-

ndar: periods with a high number of traps corresponding to win-

er, spring, and fall terms, and a quieter period corresponding to

ummer term. Deeper dips are sometimes visible around the late-

ecember holidays. 

The seven-year capture is thus a trace comprising a sequence

f records (“traps”); each record includes a trap type (TT) and a

et of fields labeled with object identifiers (OIDs). (For details, see

ppendix A .) We use this data to identify who associated to the

etwork, when the association took place, the device and APs in-

olved in the connection and, thus, the approximate location and

ovement of each device and user throughout the capture. We fur-
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Fig. 2. Heatmap of SessionIDs in terms of duration and bytes of traffic. 
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her use the data to extract a sequence of network sessions , as de-

cribed below; for a subset of sessions we can identify the amount

f traffic generated. No information about the traffic content or

rotocols is available. 

. Connection sessions 

To identify usage patterns and understand the data, we require

 rigorous definition of a connection session , that is, some notion

f the period when a user’s station is connected to the network.

hen using WPA2, stations are first authenticated to the network

nd then associated to an AP. In this process, there is an exchange

f protocol messages, as defined in the 802-11i and 802-11r stan-

ards [9,10] . When the session is finished, a station may disassoci-

te and deauthenticate from the network. In the event that it does

ot, the AP (or its controller) terminates the session after a config-

rable period of inactivity. 

While the association process is clear, detecting sessions in a

ata capture can be challenging, particularly in a multi-SSID envi-

onment. Further, not all steps may trigger a SNMP trap, or the trap

ay not reach the collecting server, and it is difficult to distinguish

he establishment of new sessions from roaming events within the

ame session. 

To overcome this problem, previous work estimated that a ses-

ion starts every time an association message is received, provided

t least 30s has elapsed since the previous such message [1–4] .

owever, there was no sound justification of this specific time

hreshold. 

In this work, we leverage an OID called SessionID , which

ppears in certain types of traps. According to Cisco’s defini-

ion [11] the “Session ID feature allows a single session identifier to

e used for all ... authenticated sessions ”. Thus, the SessionID is ex-

ected to unequivocally identify an authenticated session. Unfortu-

ately, SessionID traps were not regularly produced prior to 2018

nd, even then, there were many missing traps. Instead, we use the

ssociation trap type, available throughout the seven-year capture,

nd track sessions by noting the station MAC in each such trap. 

We thus use the SessionID traps to analyze the duration and

mount of traffic and number of connections in 2018, and then the

tation MAC in association traps to generalize the analysis to the

rior years. This are also the two data sets that we put available

or the community. 

.1. Traffic and duration of SessionIDs in 2018 

Fig. 2 shows the number of SessionIDs in terms of duration and

olume of traffic. The analysis is limited to SessionIDs in 2018 with

vailable starting and end times in the capture. Interestingly, a ma-

ority of SessionIDs have a duration between 5 and 7 min and con-

ume tens of KBytes of traffic. We can also see very short connec-

ions of between 10 and 30 s and with no reported traffic, and

onger SessionIDs, with a duration of several hours and high traffic

olumes. 

We can achieve a better understanding of the previous figure

f we distinguish according to the main values of “Reason Code”

n the disassociation trap: 64% of SessionIDs finish with Reason

ode 4 (“Disassociation due to inactivity”) and 24% with Reason

ode 2 (“Previous Authentication no longer Valid”). Fig. 3 shows

he percentages of SessionIDs separately in terms of duration and

olume of traffic, including SessionIDs with Reason Code equal to 2

nd 4. If we focus on the SessionIDs terminated due to inactivity in

ig. 3 (a), there is a clear boost at 5 min, suggesting that the inac-

ivity threshold for most SSIDs was configured to be 5 min. We can

lso see in Fig. 3 (b) that the vast majority of connections with no

raffic have Reason Code 2, and thus are attributed to an authen-

ication problem. We conclude that these ‘sessions’ do not repre-
ent true, active connections. In a separate analysis (not shown),

e also observed that some devices generate several overlapping

essionIDs with no traffic, particularly if the device roams between

wo APs during association. This effect may be related to the ag-

ressive association behavior observed in earlier work [2] . Since

nsuccessful connection attempts generate traps, and sessions gen-

rate multiple traps, the number of traps is much higher than the

umber of active sessions. 

The large majority of connections were terminated due to in-

ctivity and were, therefore, shorter than their calculated dura-

ion because the station had to be inactive for at least five min-

tes before the disassociation occurred. In Fig. 4 we present a

lose-up view of the distribution of SessionIDs with durations be-

ween 5 and 10 min. We can see that the number of SessionIDs

re more evenly distributed than in Fig. 2 , as a result of the use

f shorter bins. This even distribution is more realistic consider-

ng the disparate ways of using the network, and leads us to the

onclusion that the true duration of most user sessions is actually

 min shorter than the corresponding duration of the SessionID,

iven that 5 min has been determined as the inactivity threshold.

f we subtract 5 min from the SessionIDs with longer duration and

erminated due to inactivity, we observe that about 29% of these

re shorter than one minute. Furthermore, some longer SessionIDs

ay be masking the appearance of several shorter user sessions.

his would happen when the time between sessions is below the

 min threshold, so that the device is not disassociated. 

We hypothesize that these short sessions are caused by smart-

hone applications (or systems) that need to make quick connec-

ions to Internet services, e.g., to check for new messages or to

pdate their status. Although our traces do not contain the infor-

ation needed to verify this hypothesis, there is ample evidence

n the research literature that smartphones and other mobile de-

ices often make short Wi-Fi network connections. For example,

he 2012 DozyAP paper found long inter-packet arrival times in a

tudy that led them to optimize Wi-Fi energy consumption [12] . A

011 study of handheld (and non-handheld) Wi-Fi devices found

mall flow sizes were common [13] . This was also confirmed in a

ecent 2018 study [14] . 

.2. Characterizing connection sessions in the entire capture 

Inspired by the previous analysis, we analyze the sessions in the

ntire capture using the following definition: a session is a period

f time during which the station appears frequently in the trace,

uch that the temporal gap between any two adjacent occurrences
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Fig. 3. Histogram of percentages of SessionIDs in terms of duration (a) and bytes of traffic (b). Plots include all SessionIDs and those with Reason Code 2 (“Previous 

Authentication no longer Valid”) and 4 (“Disassociation due to inactivity”). Each bin contains the number of SessionIDs with duration or volume of traffic between the 

marked one and the one in the next bin. 

Fig. 4. Heatmap of SessionIDs in terms of duration and bytes of traffic: zoom be- 

tween 5 and 10 min. 

Fig. 5. Number of sessions per day, over time. 
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is no more than some constant d ; we set d to 5 min. Here we limit

our analysis to association traps, which were consistently produced

across the seven years. 

In Fig. 5 we show the evolution of the number of sessions in

time. The plot shows an almost steady number of sessions since
014, despite a jump in the number of traps (as noted in Fig. 1 ).

ndeed, the network staff confirmed that there was a 2017 change

n trap configuration, which caused the increase in the number of

raps per session. This variability in trap configurations emphasizes

hy it was essential to consider sessions , rather than traps , to prop-

rly interpret connection patterns. 

Fig. 6 compares the daily evolution of active sessions between

eekdays and weekends for two representative years. Contrast

his plot with the results from 2003–04, which show a similar

aily profile on weekdays and weekends for active cards (sta-

ions) [3,4] . Active cards per hour are not exactly the same as ac-

ive sessions per hour, but both numbers are expected to be sim-

lar, given that the hourly median of sessions per station was be-

ow 1. Fig. 6 shows that the daily activity approached a minimum

uring the night, consistently across the week. It also reached a

eekday maximum, with around 15,0 0 0 sessions on average, at

idday. In 2001 and 2003, respectively, there were only 500 and

400 active cards in the busiest hour, and 200 and 400 in the least

ctive hour [4] . This 10-fold increase in the last 15 years reflects an

ncrease in the number of users and number of devices per user,

ut there are other reasons. Modern mobile devices, such as smart-

hones, transparently connect to Wi-Fi even when not in use – e.g.,

o download new mail or to receive inbound Messages – whereas

001–04 devices (laptops) only connected to Wi-Fi when their user

as seated with laptop opened for work. 

. Infrastructure analysis 

Fig. 7 presents the number of active APs across the capture, and

rovides more information on the data loss in 2015–17. During that

nterval, the collected traps correspond to a reduced set of APs. If

e discount that interval, we can observe the increased incorpora-

ion of APs to the network. 

On average, there were fewer than 100 sessions per AP and day

not shown), and this number dropped in 2018, as expected, due to

he deployment of a large number of APs in 2016–17. We ranked

he APs according to their average number of sessions per day in

ig. 8 (a). The ranking was performed for each year, so all years

how a monotonic decrease. The figure shows the 500 highest-

anked APs. Because each AP is assigned to a campus building,

e repeated the same computation for the buildings in Fig. 8 (b),

here the 100 highest ranked-buildings are shown. The number of

bserved sessions depends on the location and role of the building

here the AP is deployed, with some APs and buildings much bus-

er than others (notably, libraries and student centers). The load of
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Fig. 6. Average number and standard deviation of sessions per hour during the day. 

Fig. 7. Number of APs per day, over time. 
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Table 2 

Average number of sessions per day of the 10 highest ranked APs in 2018. 

AP Building Type 2012 2013 2014 2018 

Collis-2-4-AP Student Center 0 642 2527 4733 

Baker-3-4-AP Library 1301 964 2113 3,356 

Carson-3-2-AP Academic/library 126 490 1613 2,723 

Thayer-113-10 Academic 0 0 0 2,648 

Baker-2-11-AP Library 0 0 0 2,483 

Baker-2-2-AP Library 2092 1135 867 2,281 

53commons-2-6-AP Dining Hall 716 375 991 2,075 

53commons-2-4-AP Dining Hall 753 424 1082 2,051 

BerryLib-3-7-AP Library 1488 959 1643 2,041 

BerryLib-3-13-AP Library 0 0 0 2,009 

i  

(  

t  

c  

c  

t  

t

 

e  

S  

t  

t  

s  

l  

n  

L

F

s

he busiest APs (in terms of number of sessions per day) has dou-

led since 2014. 

Combining Figs. 5, 7 and 8 we can see that the number of ses-

ionIDs increased over time – first from 2012 to 2014 and then

ore steadily. At the same time, more APs were deployed. This

dditional deployment served to reduce the load in most locations,

ut not for the busiest APs, which continued to increase their load.

herefore, we can conclude that the deployment may not have

een effective in managing load in those locations. 

The busiest APs and buildings, according to their 2018 rank-

ng, are listed in Tables 2 and 3 , which also show the change for

hose APs and buildings across the capture. Libraries and the stu-

ent center top both lists, as expected. Several of the busiest APs

ave been recently deployed, as indicated by their lack of sessions
ig. 8. Busiest (a) 500 APs and (b) 100 buildings, according to their average number of se

essions in a single AP and 12,200 sessions in a single building, both seen in 2018. 
n earlier years. In Fig. 9 , we show the cumulative density function

CDF) of the number of sessions, distributed across APs, for each of

he busiest buildings. We can see that the distribution of the load

an be heavily skewed in some buildings, and that the distribution

an be very different from building to building. In some buildings,

he deployment appears to have been focused on coverage rather

han the demand. 

In Fig. 10 we show the ranking of SSIDs according to the av-

rage number of sessions. Basically, traffic is dominated by three

SIDs: Dartmouth Secure, Dartmouth Public and eduroam. The lat-

er was in its infancy in the campus in 2014, but by the end of

he capture it had completely replaced Dartmouth Secure. We can

ee a clear dominance of the two authenticated networks in the

ast four years (74% of sessions) in comparison to the main public

etworks (below 19%, including Dartmouth Public and Dartmouth

ibrary Public). 
ssions per day. The ranking is performed for each year, with the maximum of 4733 
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Table 3 

Average number of sessions per day of the 10 highest ranked buildings in 2018. ∗In 

2012 it appears that the logging infrastructure may not have yet included Collis, which 

certainly had Wi-Fi coverage. 

Building Type 2012 2013 2014 2018 

BerryLib Library 7844 7875 8967 12,204 

Baker Library 6519 6008 8124 10,976 

Collis Student Center 0 ∗ 3754 6315 9,132 

53commons Dining Hall 3481 3690 5868 7910 

Hopkins Arts/Dining/Student Center 4715 4746 5734 7,430 

Webster Library 1540 4694 6763 6,521 

Topliff Residence 2522 2916 4126 5,668 

Kemeny Academic 2075 3080 3341 5,514 

Alumni Gymnasium 433 2304 3097 4,614 

Cummings Academic 2895 2535 3767 4,527 

Table 4 

Type of authenticated users in the network from 

2012 to 2018. 

Type Number 

Dartmouth NetIDs 25,112 

Other eduroam identifiers 12,984 

Estimated Authenticated Users 38,096 

Table 5 

Type of users as in 2018 (User ID Dartmouth). 

Type Number 

Total GR Student 675 

Total UG Student 4,272 

Total Student 4947 

Total Staff 2,429 

Total Faculty 1365 

Total Other 2,738 

Total 11,479 
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5. User and station analysis 

Many of the SNMP traps include information about the network

user (person) and network station (mobile device) connected to

the network. This section presents statistics about those users and

their stations. 

5.1. User statistics 

The SNMP trace uses several means for identifying users. Re-

garding free-access networks (SSID Dartmouth Public or Dartmouth

Library Public ), user names in the trace can be either a name

freely selected by the user during log-in (in the first years) or

the reserved word ‘Guest’. The access-controlled networks (SSID

Dartmouth Secure and, later, eduroam ) use Dartmouth identifica-

tion numbers (‘NetIDs’). The eduroam SSID also allowed guests

from other eduroam universities to authenticate with their email

address [7] . Table 4 depicts the major types of user identifiers

we found in the authenticated networks, including almost 13,0 0 0

email addresses from an institution other than Dartmouth 

1 

The Dartmouth IT staff provided a 2018 database that mapped

NetID to user type. Table 5 presents a summary of that database. A

total of nearly 11,500 users are listed, including around 50 0 0 stu-

dents, 2400 staff, and 1400 academic faculty. 

Fig. 11 presents the number of active users per day, over seven

years. There is a clear yearly pattern, with three large periods of

usage corresponding to the three terms in the academic year. It
1 A negligible number of other ”User” identifiers, including errors and PC identi- 

fiers, was also found. 

g  

l  

u  

D  
lso shows an abnormally high peak at the end of 2017 and the

rst half of 2018, where the number of users far exceeded the

umber specified in Table 5 , and then an unexpectedly low num-

er in the latter half of 2018. This particular pattern is an artifact

esulting of the process of replacing Dartmouth Secure by eduroam ,

s explained in detail in Appendix A , Users. 

More broadly, we found a steady average of 25 sessions per

ser per day in the network (not shown). Considering the daily

verage of 100 sessions per AP, we observe that the deployment

oughly includes 1 AP for every 4 users. 

.2. Station statistics 

We counted 60 0,0 0 0 distinct MAC addresses in the seven year

apture. We wondered whether these represented actual stations,

r whether some of the MAC addresses were dynamically chosen,

s discussed in a recent paper [15] . Typically, MAC addresses are

xed and unequivocal. Manufacturers purchase contiguous blocks

f MAC addresses with the same three-byte prefix, referred to as

n Organizationally Unique Identifier (OUI) . Then, they assign a sin-

le MAC in the block for each station they manufacture. Therefore,

n principle, a MAC address unequivocally and permanently iden-

ifies station and manufacturer. The list of OUIs is publicly avail-

ble [16] . 

A mobile station may actively search for APs by sending probe

equest messages that include the station MAC. This means that an

nterested observer could track the movements of a station (and,

o, of its user) by collecting the probe requests in the wireless

edium. Notice this is possible without requiring access to net-

ork services, or the knowledge or permission of users. One use

ase could be a shopping mall, which may profit from personal-

zed marketing by identifying customer shopping habits. To avoid

his form of tracking, some devices employ MAC address random-

zation (MAR). 

Martin et al. notes that “Nearly all randomization schemes uti-

ize locally assigned MAC addresses to perform randomization ” and

99.12% of all locally assigned MAC addresses are randomized ad-

resses ” [15] . More importantly, “When a mobile station attempts

o connect to an AP, however, it reverts to using its globally unique

AC address. As such, tracking smartphones becomes trivial while

hey are operating in an associated state.... If we find matching lo-

ally assigned MAC addresses in authentication, association, or data

rames,...the randomization scheme is likely Windows 10 or Linux. ”

Table 6 shows the number of station MACs found in the cap-

ure, arranged by the type of MAC. As expected, the number of

lobal (unique and unicast) MACs is dominant, with only 70 0 0

ocal MACs out of the total 632,0 0 0. Indeed, when we matched

nique MACs against the public list of OUIs [16] , we found that

artmouth’s campus is dominated by Apple laptops, smartphones,
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Fig. 9. CDF of APs per building in terms of the number of sessions for the busiest buildings. 

Table 6 

Type of station MACs in the network. 

Type Number 

Global MACs 624,903 

Local MACs 7062 

Unicast MACs 631,965 

Multicast MACs 5 

Total 631,970 

a  

t

d

i

i

n

c

nd tablets; see Table 7 . No other vendor OUI represented more
2 
han 7% of stations. 

2 It is sometimes difficult to map from OUI to vendor name, because some ven- 

ors use multiple brands of Wi-Fi chips, and some brands of Wi-Fi chips are used 

n multiple vendors’ products. Apple purchases chips from multiple vendors (includ- 

ng Murata) but assigns the chips Apple OUIs – at least, most of the time. Table 7 is 

ecessarily an approximation of the population of specific brands of hardware on 

ampus. 
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Fig. 10. The highest-ranked SSIDs, according to their average number of sessions 

per day. 

Fig. 11. Number of users per day, over time. 

Table 7 

Stations according to OUI. 

Manufacturer Percentage 

Apple, Inc. 72.07 

Intel Corporate 6.65 

Samsung Electronics Co.,Ltd 4.96 

Murata Manufacturing Co., Ltd. 2.24 

Hon Hai Precision Ind. Co.,Ltd. 1.69 

LG Electronics (Mobile Communications) 1.58 

Motorola Mobility LLC, a Lenovo Company 1.45 

HTC Corporation 1.33 

 

 

 

 

 

 

 

 

 

Fig. 12. Number of stations per day, over time. 

Fig. 13. Number of sessions per day of the 10,0 0 0 highest ranked stations according 

to their average number of sessions per day. The ranking is performed for each year, 

with the maximum of 230.5 (average sessions per day) exhibited by one station in 

2018. Median values are highlighted with circles. 
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Fig. 12 presents the number of stations per day, showing a

moderate and steady increase throughout the capture. Although

(not shown) we found a steady average of 12 sessions per day,

per station, the number of sessions per day varied widely across

stations. We ranked the station MACs according to their average

number of sessions per day in Fig. 13 . Stations, unlike APs, may be

inactive for long periods. For this reason, to compute the averages,

we only consider the days on which a station was active. The fig-

ure shows medians between 1 and 5 sessions per day, but some

stations average well above 100 sessions per day. 
. Mobility analysis 

There are two types of mobility that are of interest in this pa-

er. On the one hand, the mobility within sessions is interest-

ng from the network-management perspective: stations that roam

ithin a session require the network infrastructure to perform fast,

eliable hand-offs as a station roams. On the other hand, the geo-

raphical mobility of a user, estimated from the mobility of a sta-

ion over time, is interesting to researchers who study patterns in

he ebb and flow of people around campus. An understanding of

atterns of user location can also be helpful in planning network

nfrastructure. In this section we study the mobility across APs and

uildings, the latter in order to avoid being distracted by fine-grain

obility or the ‘ping-pong’ effect (when a station rapidly roams to

nd from adjacent APs) observed in previous papers [1,2] . 

In Fig. 14 , we rank the sessions by the number of APs

 Fig. 14 (a)) and buildings ( Fig. 14 (b)) they traversed, and average

he result across all days, representing a distribution of mobility of

he set of sessions occurring during a day. Medians (not shown)

ere 1 AP and building per session, which means most stations

emained in the same area during a session. However, there was a

arge number of sessions roaming to more than one AP and build-

ng, with a maximum daily average of 70 APs and 36 buildings in

018. We can also see that the mobility has significantly increased

rom 2014 to 2018 for the sessions with higher mobility within a
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Fig. 14. Mobility in number of APs (a) and buildings (b) per session. The top 10,0 0 0 sessions are ranked by mobility, with the maximum of 70/36 seen in 2018. The median 

number of APs and buildings visited by a session was 1. 

Fig. 15. Station mobility, ranked by average number of APs (a) and buildings (b) per day. The top 10,0 0 0 stations are ranked by mobility, with the maximum daily average 

of 184 APs and 70 buildings seen in 2018. 
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3 It is difficult to draw precise conclusions because of changes in the network 

technology and configuration. In this paper we were able to derive a session- 

ending threshold (five minutes) from evidence related to the network configura- 

tion – whereas the earlier papers used a threshold (30 min) that was less clearly 

related to network configuration.) 
ay, likely reflecting an increase in smartphones and wearable Wi-

i devices. 

The mobility of stations during the day is shown in Fig. 15 . Sta-

ion mobility increased significantly from 2014 to 2018 for top-

anked stations. The yearly median (not shown) rose from 4 APs

nd 1–2 buildings in the period 2012–14, to 8 APs and 4 buildings

n 2018. This change is likely due to an increased prevalence of

martphones and similar devices that users carry while they move.

We were surprised to find that some stations associated with

ore than 70 buildings in a single day ; a study of the detailed

rack for some of these station-days indicates these numbers are

lausible, if exceptional. We speculate the tracks were caused by

 smartphone carried by a security guard or mail-delivery person

aking the rounds of buildings on campus, passing by (if not en-

ering) as many as 70 buildings. 

. Deriving updated connectivity models in Wi-Fi 

Table 8 compares the connection statistics reported by papers

bout the Dartmouth Wi-Fi network. We can see that main traf-

c characteristics are consistent throughout the entire life of the

ampus network: diurnal dominance in traffic, daily and weekly

yclostationarity, and skewed distribution of the load (in terms of

raffic or number of sessions) in APs and buildings. The present

apture also shows the yearly pattern of traffic, which could not
e observed in previous works due to the limited time span. We

ave also seen an increase of mobility. 

We have seen a maintained session duration. 3 In 2018, almost

ne third of the sessions were shorter than one minute, when

omputed only for sessions terminated due to inactivity and by

ubtracting the 5-min estimated inactivity threshold. Fewer than

5% of sessions were longer than one hour, but an indeterminate

umber of them may have been formed by shorter sessions sep-

rated by less than the inactivity threshold. One potential expla-

ation for the low session length is that modern devices generate

 huge number of short sessions. Smartphones, in particular, will

eriodically ping a server to determine whether any new messages

r mail has arrived, and that requires them to be online, initiating

 quick session. Devices may be terminating these sessions to save

nergy, leading to very short sessions. 

As discussed above, the number of sessions (or active cards)

er hour has increased by an order of magnitude, but daily pat-

erns remain very similar: minimum at night, maximum shortly

fter noon. The number of active stations in a single day has also

ncreased by an order of magnitude. Finally, even after increasing
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Table 8 

Connection statistics reported in papers about the Dartmouth Wi-Fi network. Notes: ∗These intervals were described in 

[4] for the captures published in 2005 and 2008. The interval for this paper corresponds to the yearly averages in Fig. 12 . 
∗∗Computed for SessionIDs with Reason Code 4 and corrected with the inactivity threshold. 

Concept Kotz & Essien ’05 [2] Henderson et al. ’08 [4] Camacho et al. ’19 

Traffic/Connection Patterns 

Diurnal � � � 

Daily/Weekly � � � 

Yearly � 

Load skewed across APs � � � 

Load skewed across Buildings � � � 

Increase in mobility � 

Session duration (only 2018) ∗∗

< 1m 27% – 29% 

< 1h 71% – 88% 

#Sessions (only 2018) 

Minimum (hours) ~ 200 (4–7 a.m.) cards/h ~ 500 (5–6 a.m.) cards/h 2738 (4–6 a.m.) sess 

Maximum (hours) ~ 500 (1–4 p.m.) cards/h ~ 1400 (1–2 p.m.) cards/h 16,410 (12-2 p.m.) sess 

Busiest AP 71 cards/h – > 200 sess 

Busiest Building 76 cards/h ~ 340 cards/h > 500 sess 

Busiest Station > 70 sess 

Max. buildings per Session > 30 sess 

Stations 

Stations per day ∗ 800–1,000 3,000–3,500 8,474–15,310 

Max. buildings in a Day > 70 
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AP deployment by 700% (from 476 to 3330 APs), the load on the

busiest APs and buildings has increased. 

7.1. Models 

The development (or validation) of detailed new models (net-

work models, traffic models, or mobility models) is out-of-scope

for this characterization paper. We encourage researchers to use

our findings, in particular those summarized in Table 8 , to derive

simulation models useful in research. As input to that endeavor, we

extract the following approximate distributions observed in 2018. 

• Session length ( S L ): from Fig. 4 the distribution of session

length observed in 2018, after correcting for the inactiv-

ity threshold, follows a log-normal distribution: S L ~ Log-

N(5.4,3.6). The quality of the approximation is shown in

Fig. 16 (a). 

• Session data ( S D ): from Fig. 4 the distribution of ses-

sion data content observed in 2018 also follows a log-

normal distribution, which depends on the session length:

S D ~ Log-N (1 . 1 log (S L ) + 6 . 7 , 0 . 3 log (S L ) + 4 . 4) . Examples of

the approximation for 5-min and 1-h sessions are shown in

Fig. 16 (b)–(c). 

• Number of sessions per AP: the distribution observed for

2018 in Fig. 8 (a) follows a piece-wise decaying logarithm: 

– The top [1.10] most-loaded APs: y = 4800 · (−0 . 6) x +
2070 

– The next [11.100] most-loaded APs: y = 1870 ·
(−0 . 035) x + 670 

– The next [101.10 0 0] most-loaded APs: y = 800 ·
(−0 . 005) x + 160 

The quality of the approximation is shown in Fig. 16 (d), and

a detail for the 10 most-loaded APs in Fig. 16 (e). 

• Number of sessions per station: the distribution observed for

2018 in Fig. 13 follows a piece-wise decaying logarithm: 

– The top [1.100] most-loaded stations: y = 121 ·
(−0 . 04) x + 107 

– The next [101.10 0 0] most-loaded stations: y =
86 · (−0 . 004) x + 45 

– The rest of stations: y = 33 · (−0 . 0 0 0 03) x 

The quality of the approximation is shown in Fig. 16 (f), and

a detail for the 100 most-loaded stations in Fig. 16 (g). 
• Number of buildings per day: the distribution observed for

2018 in Fig. 15 follows a piece-wise decaying logarithm: 

– The top [1.100] most-mobile stations: y = 21 · (−0 . 03) x +
48 

– The next [101.10 0 0] most-mobile stations: y = 25 ·
(−0 . 002) x + 26 

– The rest of stations: y = 40 · (−0 . 0 0 03) x 

The quality of the approximation is shown in Fig. 16 (h), and

a detail for the 100 most-mobile stations in Fig. 16 (i). 

Note these specific models may not generalize to other cam-

uses, with the exception of the models for the session length and

ata, which can be seen to agree well with findings in other works

17,18] . 

. Related work 

As already discussed, the evolution of the Dartmouth Wi-Fi net-

ork has been previously studied in a series of two papers. First,

otz and Essien [1,2] analyzed 11 weeks of traffic starting Septem-

er 2001. The capture was composed of syslog records with au-

hentication and roaming events, SNMP logs and payload captures.

hey found high variance in the traffic load, and a large number

f sessions with an excess of roaming between close APs and an

ndication of reduced mobility. In a second paper [3,4] , Henderson,

otz and Abyzov assessed the evolution of the network by com-

aring the first capture with a second capture of 17 weeks starting

ovember 2003, with the same type of data plus VoIP connections.

he study found a large increase of usage, with a significant load

f P2P traffic, and a limited increase of mobility for specific device

ypes, mainly VoIP devices. The present paper represents the third

f the series to assess the evolution in the usage of the Dartmouth

i-Fi, and analyze a mature technology that can be contrasted to

hose initial deployments. A major contribution of the present pa-

er is the analysis of a much larger capture, corresponding to 7

ears of Wi-Fi connections. Very relevant is the fact that the cur-

ent analysis includes the emergence of smartphones, which now

ominate network connections and have altered usage, traffic and

obility patterns to a large extent. As a result, the increase of traf-

c (17-fold) and mobility represents the major difference with pre-

ious analysis. 

Other prior works have analyzed Wi-Fi traces to mine user ac-

ivity and behavioral patterns and to conduct mobility and us-
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Fig. 16. Approximations vs measured. 
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ge analysis. These works, however, all rely on traces over a time

pan shorter than the dataset used in this paper. As one example,

oucin, Farooq and Patterson [19] used one-week Wi-Fi connec-

ion logs from 2015 to mine users’ activity patterns in a university

ampus with unsupervised machine learning, in particular PCA and

-means clustering. Another, based on connection logs of several

onths in 2005, Meneses and Moreira [20] studied mobility and

etwork usage in a university campus with more than 550 APs.

fanasyev et al. [17] conducted similar analysis with a capture of

onnection logs over 28 days in 2008 from the Google Wi-Fi net-

ork in Mountain View, California, with around 500 APs. Ruiz-Ruiz

t al. [21] analyzed and visualized large Wi-Fi facilities using two-

eek trace data. Lyu et al. [18] leveraged four-month SNMP data

n 2018 to analyze a Wi-Fi deployment with more than 8K APs and

0K active users. Wei et al. [22] reviewed behavioral patterns using

ne-year connection logs plus a month of traffic data logs. Alipour

t al. [14] combined Netflow (25 days) and connection records (479

ays) from 2011–2012. Cao et al. [23] investigated the predictabil-

ty of human mobility through four-month Wi-Fi logs from 2015.

hi et al. [6] studied Wi-Fi scans on smartphones through around

0 0 0 days ending in 2015. Serrano et al. [24] reviewed the rele-

ant literature related to Wi-Fi, including traffic and usage analy-

is of real traces; all cited work studied traces from 20 0 0 to 20 08
nd presented traces of fewer than 1200 APs and capture periods

o longer than one month. By comparison, the dataset analyzed

n this paper is far larger than any of the previously cited refer-

nces, and presents the most up-to-date analysis, making our ob-

ervations and derived models of special value. 

Two relevant dimensions of interest in the study of large Wi-

i deployments are privacy and usage patterns. Regarding privacy,

artin et al. [15] performed a study on MAC Address Random-

zation (MAR), a privacy-preserving methodology applied by some

anufacturers to prevent user location and movements from being

racked. The study showed that MAR is only applied when a de-

ice is actively probing for APs, but not when associating to a net-

ork. The authors argued that when associated, using the actual,

nequivocal, MAC address of the device is not a risk for privacy,

ince associated devices show reduced mobility. In our capture, all

evices are in the process of association or already associated, and

herefore they use the actual MAC of the device. However, being a

arge campus network, with thousands of APs covering 200 acres,

nd considering the high degree of mobility of smartphones, MAC

ddresses in connection logs do actually pose a significant risk for

rivacy. Recent similar experiences [25] support this idea. 

Regarding usage patterns, the analysis of the Google Wi-Fi Net-

ork in 2008 [17] identified three user populations with different
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traffic, mobility, and usage patterns: modem users, hotspot users,

and smartphone users. The latter show high mobility and low traf-

fic demand, with most sessions below 2-h length and 10-MB usage.

This finding aligns with the general pattern of session length and

traffic volume that we found in our capture, which we actually ex-

pect to be dominated by smartphone users. However, mobility has

increased: in the Google trace, only a handful of users in [17] con-

nected to more than 16 APs per day, while in our capture we found

several thousands of stations exceeding that number, with a max-

imum daily average of 114 APs and 50 buildings in 2014 and 184

APs and 70 buildings in 2018 (see Fig 15 (a)). Lyu et al., in their

contemporary work [18] to ours, have also shown conclusions con-

sistent with the ones presented here in terms of the length of the

sessions (median of 100s per session) and mobility (median of as-

sociation to 20 APs per day). Alipour et al. [14] also explored dif-

ferences between laptops and smartphones, describing a method-

ology to classify devices according to the MAC addresses. Wei et al.

[22] found patterns of load within the day and differences between

regular and non-regular users of the network, showing conclusions

consistent with those presented here. 

9. Conclusion 

In this paper we present a detailed characterization and anal-

ysis of the most-recent seven years of data (2012–18) collected

about the Dartmouth Wi-Fi network, and highlight some of the

changes over time. The analysis shows the evolution of the infras-

tructure and adoption of Wi-Fi technology by users and leads to

the following conclusions. 

• The number of connection sessions has increased 10-fold in

the last 15 years, but remained reasonably stable in the last

5 years. 

• Much as in the previous analyses of the same network, the

number of active sessions shows marked daily, weekly and

yearly patterns. 

• Usage patterns in 2018 reflect that 29% of sessions were very

short: under 1 min. These short sessions may reflect the

background activity of idle devices that check-in periodically

with a remote server. 

• We found a gross mean of 100 daily sessions per access

point (AP), 25 daily sessions per user and 12 daily ses-

sions per device. These numbers reflect a provisioning of

one AP per 4 users and 8 devices, on average. However, we

also found that the distribution of sessions per AP, per user,

and per station were highly uneven, with maximums in the

thousands per AP and hundreds per station. 

• The network has multiple SSIDs, and a majority of ses-

sions (74%) occurred on the primary authenticated networks.

While there is a public-access network across the entire

campus, this network carried fewer than 19% of sessions. 

• Most mobile sessions have doubled their average mobility

in the last 5 years, likely as a result of the emergence of

smartphones. 

• Device mobility during a day has also increased in the last

5 years, likely because smartphones are always “on” even

when the screen is locked and they are not in use – unlike

the laptops of 2004, which had no network activity when

closed and being carried – and even a pocketed smartphone

remains periodically active to check for new messages. 

• Indeed, we found examples of high mobility in which the

device is connecting to the network even when the user may

not be explicitly trying to use the network. This behavior

may impinge on user privacy, because the network’s connec-

tion logs can be used to track user movements. MAC Address

Randomization (MAR) does not address this concern, since
MAR is seldom used when a device is associated to the net-

work. 

From these and other observations throughout the paper, we

erived models ( Section 7.1 ) that could be used to drive realistic

imulations of modern Wi-Fi networks, and we provide the re-

earch community with two anonymized data sets with prepro-

essed information about connection sessions, so that other groups

an extend our research. 
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ppendix A. Traps, OIDs, and sessions. 

Trap structure Fig. A.17 shows an example of an SNMP trap as

eceived. Each trap comprises a header, with timestamp and sender

nd collector information, followed by a variable number of triplets

elated to object identifiers (OIDs) following the format ‘ < OID >

 < type > : < value > ’ and separated by hashes (#). OIDs are

artly represented in the ASN.1 notation, which can be translated

nto more meaningful OID names using the relevant Management

nformation Base (MIB). An important OID is the trap type (TT),

hich is the second triplet in the figure, highlighted by a rectangle.

n the TT, the value is also an OID: ‘ < TT ; > = OID: < OID > ’. 

Distribution of traps Table A.9 presents the most common OIDs

n the capture and Table A.10 the most common TTs. The descrip-

ion of OIDs can be easily found in OID information repositories

vailable on-line [26,27] . Inspecting the table we can see that the

apture included information about APs (their name, MAC address,

ommunication slot), users (name/ID) and stations/devices (MAC

ddress). It also contained TTs related to the process of associating

ser devices to the network. Some of these TTs report the volume

f traffic generated per connection, but this information was in-

omplete and could only be found for a subset of connections. The

escription of TTs, as defined by Cisco Networks, and their period

f capture, is in Table A.11 . 

https://doi.org/10.13039/100000001
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Fig. A.17. Example of an SNMP trap in the data capture. The second OID, highlighted by a rectangle, represents the trap type. Parts of an IP and a MAC address have been 

hidden. 

Table A.9 

SNMP OIDs found in more than 20% of traps. CLAM 

refers to CISCO-LWAPP-AP-MIB, AWM to AIRESPACE- 

WIRELESS-MIB and CLDCM to CISCO-LWAPP-DOT11- 

CLIENT-MIB. 

Label % of traps 

CLAM::cLApDot11IfSlotId 46.83 

AWM::bsnAPName 35.94 

AWM::bsnStationMacAddress 34.32 

AWM::bsnStationAPIfSlotId 34.32 

AWM::bsnStationAPMacAddr 34.32 

AWM::bsnStationUserName 34.32 

AWM::bsnUserIpAddress 34.29 

CLAM::cLApName 29.76 

CLDCM::cldcClientByIpAddress 20.77 

CLDCM::cldcClientByIpAddressType 20.77 

CLDCM::cldcClientMacAddress 20.55 

CLDCM::cldcApMacAddress 20.49 

 

t  

t  

f  

s  

c  

a  

N  

Table A.10 

Trap Types (TTs) found in more than 1% of traps. AWM refers to 

AIRESPACE-WIRELESS-MIB and CLDCM to CISCO-LWAPP-DOT11-CLIENT- 

MIB. 

Label % of traps 

AWM::bsnDot11StationAssociate 19.43 

CLDCM::ciscoLwappDot11ClientMovedToRunState 17.73 

CLDCM::ciscoLwappDot11ClientSessionTrap 12.66 

AWM::bsnDot11StationDeauthenticate 6.93 

CLDCM::ciscoLwappDot11ClientAssocDataStatsTrap 5.57 

AWM::bsnAuthenticationFailure 3.55 

CLDCM::ciscoLwappDot11ClientDisassocDataStatsTrap 2.13 

AWM::bsnDot11StationAssociateFail 1.98 

i  

e  

c  

s  

i  

s  

“

 

l  

s  

s  

D  
Traps content Our capture included TTs related to the associa-

ion process. Unfortunately, due to configuration changes during

he seven years, not all TTs were captured throughout. It is use-

ul to consider the content of some trap types, summarized for

ome fields of interest in Table A.12 . Connection traps consistently

ontained the User Name and the AP MAC, relating user with AP,

nd thus that user’s approximate location. Station MAC and AP

ame were not included in all cases, and the SSID only appeared
Table A.11 

Description of traps in the connection process. For th

Corresponding complete names can be found in Table

Trap Type (period of capture) Descriptio

StationAssociate (2012–2018) The assoc

a client a

ClientAssocDataStatsTrap (2018) The assoc

Station se

This notifi

ClientMovedToRunState (2012–2018) completes

and move

ClientSessionTrap (2014–2018) Issued wh

moves to 

StationDeauthenticate (2012–2018) The deaut

the Statio

StationDisassociate (2017–2018) The disas

Station se

ClientDisassocDataStatsTrap (2018) The disas

Station se

The assoc

StationAssociateFail (2012–2018) the Statio

code othe

The authe

StationAuthenticateFail (2012–2018) when the

with a sta
n a limited number of traps. Session ID and connection pack-

ts/bytes appeared in a couple of traps each, enabling the identifi-

ation of sessions and their associated volume of traffic. The “Ses-

ionID” is a concatenation of three values: a monotonically increas-

ng unique 32-bit integer, the station MAC address, and the session

tart timestamp (also 32-bit integer). One anonymized example is

5b5e6b70/d2:63:—:—:e3:06/18477800”. 

Sessions Identification Looking at the TTs available, we have (at

east) two potential ways to identify connection sessions. The Ses-

ionID was one possibility. However, a main drawback is that Ses-

ionIDs were only present in two TTs, ClientSessionTrap and Client-

isassocDataStatsTrap which, in turn, were only captured since
e sake of readability, we use short trap names. 

 A.9 . 

n [27] 

iate notification shall be sent when 

ssociates with an AP. 

iate notification shall be sent when the 

nds a association frame. 

cation is generated when the client 

 the PEM state (authentication-association) 

s to the RUN state (associated). 

en the client completes the PEM state and 

the RUN state. 

henticate notification shall be sent when 

n sends a Deauthentication frame. 

sociate notification shall be sent when the 

nds a Disassociation frame. 

sociate notification shall be sent when the 

nds a Disassociation frame. 

iate failure notification shall be sent when 

n sends an Association frame with a status 

r than ’successful’. 

nticate failure notification shall be sent 

 Station sends an Authentication frame 

tus code other than ’successful’. 
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Table A.12 

Partial content of traps in the connection process. For the sake of readability, we use short trap names. 

Corresponding complete names can be found in Table A.9 . X ∗: this trap includes the roaming AP MAC. 

Trap Type Station AP User AP SSID Session Packets 

MAC MAC Name Name ID /Bytes 

StationAssociate X X X X 

ClientAssocDataStatsTrap X ∗ X X X 

ClientMovedToRunState X X X X X 

ClientSessionTrap X X X X X 

StationDeauthenticate X X X X 

StationDisassociate X X X X 

ClientDisassocDataStatsTrap X X X X X X 

StationAssociateFail X X X X 

StationAuthenticateFail X X X X 

Fig. A.18. Number of Dartmouth users on Dartmouth Secure (a) and eduroam (b), each day, over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2014 and 2018, respectively. This means that we could only iden-

tify the complete timespan of a SessionID in 2018, where we had

both associations and disassociations, and even in this year there

were missing traps. Alternatively, we could use the station MAC to

identify connection sessions in other traps available during the en-

tire capture, like StationAssociate, ClientMovedToRunState and Sta-

tionDeauthenticate. In the paper, we used the SessionID traps to

analyze the duration and amount of traffic and number of con-

nections in 2018, and then the station MAC in association traps to

generalize the analysis to the complete capture. 

Users The number of user names shows abnormally high peak

at the end of 2017 and the first half of 2018, and then an un-

expectedly low number in the latter half of 2018. This particu-

lar pattern is explained in Fig. A.17 , where we show the evolu-

tion of the users in the primary authenticated SSIDs, Dartmouth Se-

cure and eduroam . Dartmouth pushed all users to use the eduroam

SSID in late 2018, and shut down Dartmouth Secure near the end

of 2018. If we skip the misconfiguration period (2015–17) and fo-

cus on the following one, we can see that at the end of 2017 and

the first half of 2018 both SSIDs coexist. During this period, many

users connected through both SSIDs but with different user names:

their user ID and the corresponding email address, respectively.

This double-counting explains the anomalously high and unreal-

istic peak in Fig. 11 . 

Appendix B. Data sets 

We provide two anonymized data sets for the research commu-

nity: a) the SessionIDs in 2018, where we found starting and end-

ing traps, and b) the association traps found from 2012 to 2018.
Both data sets are presented in JSON format and are released for

use by researchers. 

Sessions from 2018 The first data set contains the following in-

formation per SessionID: 

InitTS Init timestamp 

FinalTS End timestamp 

Duration Session length 

PacketsSent #Packets uploaded 

BytesSent #Bytes uploaded 

PacketsRecv #Packets downloaded 

BytesRecv #Bytes downloaded 

UserName User ID 

UserMAC Station MAC address 

SSID SSID 

APName AP Name 

ReasonCode Reason for the end of the session 

Note regarding the computation of SessionIDs: In the case of

several starting traps (ClientSessionTrap) for the same SessionID

code, we chose the first one. In the case of several ending traps

(ClientDisassocDataStatsTrap) for the same SessionID code, we

chose the last one. We found that fewer than 0.01% of SessionIDs

had duration exceeding 2 days. For this reason, and to avoid a large

computational burden, we only considered SessionIDs of duration

less than two days. 

Association traps found from 2012 to 2018 The second data set

is built from the ClientMovedToRunState traps. We chose these

traps because its number ( Table A.10 ) and availability ( Table A.11 :

from 2012 to 2018) is similar to that of StationAssociate traps, but

with the additional advantage that the former contain the SSID

( Table A.12 ). The following information is stored per association

trap: 
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TS timestamp 

UserName User ID 

UserMAC Station MAC address 

SSID SSID 

APName AP Name 

Anonymization In each dataset, we replaced each identi-

er (UserName, UserMAC, APName) with a consistent, unique

seudonym of the same format. The same approach was used in

he public release of the early Dartmouth traces [28] . 
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