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Abstract—Wireless networks are deployed in home, university,

business, military and hospital environments, and are increasingly

used for mission-critical applications like VoIP or financial

applications. Monitoring the health of these networks, whether

it is for failure, coverage or attacks, is important in terms of

security, connectivity, cost, and performance.

Effective monitoring of wireless network traffic, using com-

modity hardware, is a challenging task due to the limitations of

the hardware. IEEE 802.11 networks support multiple channels,

and a wireless interface can monitor only a single channel at

one time. Thus, capturing all frames passing an interface on all

channels is an impossible task, and we need strategies to capture

the most representative sample.

When a large geographic area is to be monitored, several

monitoring stations must be deployed, and these will typically

overlap in their area of coverage. The competing goals of

effective wireless monitoring are to capture as many frames as

possible, while minimizing the number of those frames that are

captured redundantly by more than one monitoring station. Both

goals may be addressed with a sampling strategy that directs

neighboring monitoring stations to different channels during any

period. To be effective, such a strategy requires timely access to

the nature of all recent traffic.

We propose a coordinated sampling strategy that meets these

goals. Our implemented solution involves a central controller

considering traffic characteristics from many monitoring stations

to periodically develop specific sampling policies for each station.

We demonstrate the effectiveness of our coordinated sampling

strategy by comparing it with existing independent strategies.

Our coordinated strategy enabled more distinct frames to be

captured, providing a solid foundation for focused sampling and

intrusion detection.

I. INTRODUCTION

Wireless networks are increasingly being used by enter-
prises for mission-critical applications, including Voice over
IP and backhaul infrastructure for sensor devices. Any inter-
ruption to service may cause loss of revenue or other bad
consequences. It is, therefore, necessary to monitor wireless
networks to detect anomalies or attacks in the network. The
task of monitoring all channels everywhere in the coverage
area is non-trivial because of the diversity of channels and
the ubiquity of wireless access. Wireless sniffers, which we
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call Air Monitors (AMs), can be used to capture traffic on the
wireless medium.

Each AM has the responsibility of capturing traffic in its
own vicinity. There are several channels available in Wi-Fi
networks, however, and many may be active simultaneously;
it is challenging to simultaneously monitor multiple channels
at the same location. One could attach multiple radios to one
device so that each radio can monitor one channel, or place
multiple single-radio devices at one location. Both methods
are infeasible because the hardware required is bulky and
prohibitively expensive. An example of a multi-radio device
is the “porcupine.”1 A compromise solution is to monitor
multiple channels using one radio, periodically changing the
channel on which the radio is capturing traffic. Figure 1 shows
how several channels at different locations can be monitored
by using single radios at each location.

To monitor large areas, one must deploy several AMs.
We call this technique channel sampling, as it results in
collecting only a sample of the frames passing through all
the channels. In its simplest form, channel sampling shifts
the radio sequentially through each channel in the wireless
network, in a predetermined order, and spends equal amounts
of time on each. If each radio is autonomous in its pattern of
channel sampling, we call it independent sampling; if a single
mechanism coordinates the sampling on multiple radios, we
call it coordinated sampling.

In this paper, we describe the sampling problem in detail,
the design of our sampling software in regard to its flexibility
and simplicity, and our algorithms for coordinating multiple
AMs and the metrics that drive them. We demonstrate by
experiment that intelligent coordinated sampling is superior
to independent sampling.

II. RELATED WORK

Few large-scale 802.11 measurement studies have attempted
to capture wireless frames from the air; most prior work cap-
tures packet traces from the wired side of the access point [6],
[9]. Although a few papers characterize traffic at meetings
and conferences [8], [15], or describe tools for capturing and
analyzing wireless frames [7], [10], [12], none of these papers
consider channel sampling, merging, or security.

1http://www.porcupine.iu.edu/
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Fig. 1. Dynamic multichannel monitoring

A few recent papers describe offline tools to capture and
merge wireless frames from AMs located around a building.
Yeo et al. [16] use beacon frames that are heard at multiple
sniffers to create a linear equation to synchronize sniffer clocks
and subsequently remove duplicate frames. This system is only
tested on offline traces and it is unclear whether it will work
in an online measurement environment, which is necessary for
quick detection of network problems. In addition, the sniffers
in this system are all configured to capture packets on the
same channel, which leads to a large percentage of frames
being heard at multiple sniffers. The Wit [11] tool includes a
similar merging mechanism to combine multiple traces and an
inference engine to determine missing frames. The Jigsaw [4],
[3] system uses multiple AMs to collect and merge traces
for analysis of 802.11 networks. The focus of Jigsaw is to
detect performance artifacts and network inefficiencies by
reconstructing transport and link-layer conversations. The au-
thors use common frames captured by different AMs for time
synchronization. These methods do not sample the channels.
The AMs are fixed on specific channels.

Our own earlier work [5] focused on the challenge of
sampling traffic from many channels, and merging frames from
many AMs. Our online merging software works with channel-
hopping sniffers, which receive fewer frames in common. In
that paper we reported more deeply on a large-scale experi-
mental deployment, considered several independent sampling
strategies, and considered the challenges of combining the
streams of frames from different mergers.

A few publications examine captured frames in an attempt to
detect attacks. For example, the DOMINO system [14] detects
several MAC-layer cheating attacks, in which clients attempt
to obtain greater wireless access by subverting the protocol’s
standard execution. Several commercial products [13] employ
multiple sniffers although they do not provide the ability to
merge streams from these sniffers. Typically the sniffers are
used to send high-level summary statistics, rather than packet
traces.

The DAIR system [1] uses USB NICs to turn desktops in
an enterprise network into AMs, and could benefit from our

techniques for traffic collection. In a follow-on publication [2]
the authors use the DAIR system to localize clients to better
understand network performance. DAIR assigns each sniffer
to a specific channel whereas we support channel sampling to
capture a broader range of traffic.

III. SAMPLING AND EFFICIENT CAPTURE

The goal of a wireless monitoring system is to capture a
representative subset of the traffic being transmitted through
the network. Ideally, we wish to capture as much traffic
as possible. In our attempt to achieve this goal, we try to
maximize the total number of unique frames captured by
maximizing the time spent by AMs on the busiest channels
observed. At the same time, we believe that AMs also need
to spend a minimum time on the quieter channels to capture
a sample of the traffic. This is one type of channel sampling
strategy.

We consider a family of strategies that visit all available
channels, in order, once per sampling cycle. Each sampling
strategy is, therefore, defined in terms of the time spent on
each channel, and how that time is adjusted in response to
current conditions. In this paper, we consider the proportional

sampling strategy, which observes the frame rate on each
channel, and uses the proportion of traffic on each channel
to determine the proportion of the next scanning cycle to
spend on each channel. Production infrastructure channels are
typically the busiest, so this strategy partially achieves our goal
of maximizing unique frame capture [5].

Consider a monitoring system with AMs deployed densely
enough to be able to hear any client in the monitored area;
there will necessarily be some areas covered by more than one
AM. We say that two AMs are neighbors if they have recently
captured a redundant frame. When employing proportional
sampling, neighboring AMs will observe the same channel
to be busy and therefore choose to spend more time on
that same channel. We define overlap as the total amount
of time that neighboring AMs spend on the same channels.
This overlap results in redundant frame capture by neighboring
AMs. Therefore, to better address the goal of maximizing
unique frame capture we need to reduce the amount of overlap,
hopefully resulting in the AMs capturing frames from distinct
channels. When considering the resources required to capture
frames, a smaller overlap results in a higher efficiency.

Our hypothesis is that scheduling the channels on AMs, as
shown in Figures 2 and 3, such that the coverage includes
minimal overlap, should result in even greater unique frame
capture.

In this paper we describe a “coordinated sampling” strategy
and compare it to an independent sampling strategy that
does not consider neighbor relationships. As clients move,
we anticipate that the neighbor relationships among AMs in
the network will change and the traffic volume on channels
will fluctuate. Therefore, our coordination must dynamically
change the schedule provided to the AMs.
Our approach has three goals:
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• maximize unique traffic capture through proportional
sampling,

• capture representative traffic by ensuring that all channels
are sampled and that there is coverage over space and
time, and

• minimize redundant frame capture by coordinating neigh-
bor’s schedules.

Our approach recognizes three constraints:
• a single radio can capture traffic only on one channel at

one time,
• deploying a sniffer costs money and space, hence limits

deployment, and
• no frames are captured during channel changes, which

take time.

IV. THE COORDINATION ALGORITHM

We developed the following approach to reduce the amount
of overlap among neighboring AMs. We assume that a central
controller determines a sampling schedule for all AMs, based
on statistics of recently captured traffic.

The output of the coordinated sampling strategy is a channel
sampling schedule for each AM, identifying the order and
duration of visits to each channel. Consider the set of AMs
a1, a2, ..., an. Let these be vertices in a graph. Let there be an
edge eij in the graph if the two AMs ai and aj are neighbors
and are also on the same channel; as time progresses, edge eij

comes and goes the graph as ai and aj follow their respective
schedules. Let tij be the amount of time that the edge eij

exists in the graph. We want to minimize the total overlap

value T =
P

tij over the entire schedule. Clearly a brute-force
search of all possible schedules to find the minimum value for

T is infeasible. Instead we use an approach for minimizing the
overlap that is inspired by the method of simulated annealing.
Our method generates a series of schedules by perturbing each
schedule a little. If a new schedule has lower overlap, we keep
it; if not, we keep it anyway with probability p. This method
allows our algorithm to jump out of local minima. Each time
we reduce p by a factor of � and terminate the algorithm when
p  P , where � > 1 and 0 < P < 1 are tunable parameters.
Our algorithm works as follows.

1) Identify the neighbor relationships among all AMs.
2) Create a new schedule S in which each AM spends time

on each channel in proportion to traffic measurements
provided by the AMs, and a minimum amount of time
on quiet channels [5]. Each AM’s schedule starts with
a randomly selected channel but progresses in order
around all channels.

3) Calculate pairwise overlap tij between every pair of
neighbors i, j, and the total overlap T =

P
tij .

4) Set p = 1.
5) do // permute AM schedules to find a better schedule

a) Among all pairs of AMs not yet considered in this
loop, choose the pair with maximum overlap and
rotate the channel order of one of the two AMs to
create a new schedule S0; compute its overlap T 0.

b) If the new schedule has less overlap (T 0 < T ),
retain it (set S = S0 and T = T 0); otherwise, with
probability p, retain it anyway.

c) Set p = p/�.
while p > P and there are other pairs to consider.

6) Accept schedule S and send each AM its new schedule.
The above algorithm takes a greedy approach: if we reduce

the overlap between two neighboring AMs, the overall overlap
is likely to reduce as well. We rotate the channel ordering of
one AM in a pair of neighboring AMs with the maximum
pairwise overlap so that we can take larger steps towards a
more efficient solution. This choice seems to work well in our
experiments.

In our coordinated sampling experiments, we start off all
the AMs using a schedule that spends equal time on every
channel, and run the above algorithm every 20 seconds.

V. DINGO: A COORDINATED SNIFFER

We have developed a small collection of software com-
ponents, named dingo, that collectively enable a variety of
packet-sniffing strategies to be defined and controlled, and
their effects monitored. dingo comprises two main compo-
nents: amsniffer, which runs on each AM device, and amcon-

troller, which runs on a more powerful central Linux server.
Figure 4 shows the principal components of our software and
the communication paths between them.

One or more instances of amsniffer may be invoked when an
AM is rebooted, or on demand via a network connection to
the AM. Command-line options to amsniffer indicate which
wireless interface should be employed, a default sniffing
strategy to be followed, and to where a variety of frame capture



Dingo

amcontroller

Merger

AM

amsniffer

frames

frames

AM

amsniffer

channel time

channel time

channel time

channel time

Application

frames

Fig. 4. Our sampling architecture

information should be sent. We have dual-radio sniffers; our
experiments have determined that it is better to invoke two
distinct instances of amsniffer per AM, each listening on a
different interface, than it is for a single process to monitor
two interfaces in an interleaved manner.

The MAC-layer header of every frame captured and a sum-
mary of the wireless channel characteristics that existed during
that capture are packaged into a single UDP/IP frame and
transmitted, over a wired Ethernet infrastructure, to another
important software component, the frame merger (described
below). Of note, the payload of each captured frame is neither
examined nor provided to any other software components
in our work. Thus, our method works even on encrypted
networks.

A sampling schedule specifies a sequence of channel num-
bers and the duration, in milliseconds, for which the interface
should listen on each channel. Our experiments with our wire-
less routers have demonstrated that there can be a significant
delay when changing from one channel to another, and that
this delay is minimized by visiting all available channels in
ascending order. A typical cycle involves visiting each channel,
capturing frames, transmitting a summary of each frame to the
merger, collating and forwarding simple statistics about the
traffic to the amcontroller. Each instance of amsniffer executes
its current schedule for an indicated number of cycles or until
directed by amcontroller to commence execution of a new
schedule.

Each amsniffer maintains a set of simple counters including
the number and the total length of frames captured on each
channel during a scheduling cycle. At the end of each cycle,
each counter’s value is sent to the amcontroller for future
scheduling decisions, and each counter is cleared. Our earlier
strategies [5] are based on these simple counts gathered at the

AMs. For example, the proportional strategy spends time on
each channel proportional to the recently observed frame rate
on that channel.

The role of the merger is to receive the streams of frames
captured by the AMs and to merge these into a chronologi-
cally consistent order, with any duplicates removed, to enable
analysis of the traffic. The information in each consolidated
frame is retained for a period of one second during which
the merger anticipates the arrival of duplicate frames from
other AMs. Duplicates are counted and discarded, and a
record of the receiving AMs and their frequencies are collated
and forwarded as a UDP/IP frame stream to any number of
subscribers, such as our amcontroller.

Periodically, every 20 seconds in our implementation, the
amcontroller considers the current neighbor graph and recent
frame counts to build a new coordinated schedule, as described
in the previous section. The full schedule consists of a new
schedule for each AM. Each schedule ensures that its AM
listens on each available channel for a specified period,
avoiding (as much as possible) overlap with its neighbors’
schedules. Each AM’s new schedule is transmitted to the AM
for execution until the arrival of a new schedule.

VI. SAMPLING EXPERIMENTS

We ran sampling experiments on a testbed in our depart-
ment’s three floor, 1,600 square meter building. The building
has 19 Aruba AP52 access points that provide 802.11a/b/g
service to over 80 resident faculty, students and staff members,
so we deployed an additional 19 Aruba AP70s as AMs;
Figure 5 shows the floor plan and location of the AMs. We
conducted our experiments on 802.11b. The production APs
for the wireless network operate on 802.11b/g channels 1,
4, 8 and 11. Several experimental networks (such as a mesh
network and some experimental APs) operate on channel 11.

A. Experimental setup

We chose the Aruba AP70 as our sniffer boxes; each
has a MIPS IDT32434 CPU running at 266MHz, 32MB
DRAM, two Atheros AR5212 802.11a/b/g network interface
controllers (NICs), two Ethernet NICs and one USB port.
We installed OpenWRT Linux (Kamikaze branch, r5494) and
Madwifi (v0.9.2) on each, and a copy of amsniffer on each.

We captured frames on both the 802.11 NICs by running
two copies of amsniffer. One instance of amsniffer ran an
independent proportional strategy while the other ran the
coordinated strategy described above.

We connected all the AMs to the merger through our wired
building network, a switched 100Mbps Ethernet without any
internal routers. Our merger and amcontroller ran as user-level
processes on a Linux (Fedora core 4) server. This server has
four 3.0GHz Intel Xeon CPUs, 4GB of RAM, and a 3.2TB
RAID storage system.

The sniffers running the independent strategy forwarded the
frames they captured to one merger, and the sniffers running
the coordinated strategy forwarded the frames they captured
to another merger. The amcontroller received the output of the
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latter merger and used this information to create and update
the neighbor graphs.

One stream from each of the mergers was saved to disk for
later analysis of the performance of the respective schemes.

B. Results

Experiments were conducted over a period of one hour, and
the number of unique frames captured by both the proportional
and coordinated approaches collected and compared in 20
second intervals. The coordinated scheduling algorithm re-
quired a total of between 33 and 35 milliseconds to determine
new schedules for all of the 19 AMs; we consider this cost
insignificant relative to the frequency of scheduling. Initial
random channel assignments resulted in a total channel overlap
time of between 128 and 167 milliseconds. After an average
of 253 iterations, this total channel overlap time was reduced
to between 23 and 32 milliseonds, meaning that neighboring
AMs were successfully scheduled for different channels most
of the time.

The data collected shows that coordinated sampling was
successful for increasing unique frame capture. Figure 6 shows
that, over a one hour period, coordinated sampling captured
over 10% more unique frames in nearly all 20 second intervals
than did proportional sampling. The Student’s t-test applied to
these two sets of capture indicates that the means of the two
sets of data were significantly different (t = 2.85, p-value =
0.005567). This result supports our hypothesis that coordinated
sampling will, by using global information, decrease overlap
and capture frames more efficiently.
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Figure 7 is the histogram of the number of frames that
were seen by one AM, two AMs and so on. The histogram
of the coordinated-sampling experiment is markedly more
skewed towards the left than the histogram of the independent-
sampling experiment. We see that the number of frames
exclusively captured by one AM under coordinated sampling
was about 35% more than the number of frames exclusively
captured by a single AM under independent-sampling, thus
achieving our goal of reducing redundant capture.

VII. CONCLUSION AND FUTURE WORK

We found that using global information to schedule our
monitoring system to minimize the time that neighboring AMs
spent on the same channel resulted in a greater number of
unique frames captured. We achieved our goal of maximizing
the number of unique frames captured and reducing the
number of redundant frames.



Some frames may be more relevant to an application
than others. For example, a security application may need
frames from a particular client that acts suspiciously. Another
application may require frames of a particular type. Monitoring
systems need to be cognizant of the needs of applications. Our
future work focuses on providing flexibility to applications so
that the most relevant data can be made available by tuning the
monitoring system to better meet the needs of the applications.
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