
CITS3002	Computer	Networks		

1 next	→ CITS3002 help3002 CITS3002schedule
	

Automated	Development	of	Distributed	Applications

The	complications	of	layering	in	the	OSI	model	come	to	a	head	in	the	Session	Layer	and	a
number	of	recent	developments	have	'bypassed'	many	of	the	OSI	layers.

These	include,	and	have	been	motivated	by	:

Speed,
Distributed	and	replicated	file	systems,
Remote	process	invocation	and	control,
Network-aware	programming	languages,	such	as	Java,	and
Increased	need	for	distributed	security.

	

The	Remote	Procedure	Call	(RPC)	Paradigm

The	remote	procedure	call	(RPC)	paradigm	[BJ	Nelson,	1981]	and	[AD	Birrell	and	BJ	Nelson,
1984]	is	based	on	the	observation	that	procedure	calls	are	a	well	understood	mechanism	for
control	transfer.

The	proposal	is	that	procedure	calls	may	be	consistently	extended	to	access	remote
environments	(other	machines).

When	a	remote	procedure	call	is	invoked	:

The	calling	environment	is	suspended,
Any	parameters	are	passed	(marshalled)	across	the	network	to	the	remote	environment,
The	required	procedure	is	executed	in	the	remote	environment,	and
Results	are	marshalled	back	to	the	caller	and	its	execution	resumes.

See:	Implementing	Remote	Procedure	Calls,	Birrell,	Andrew	D.	and	Nelson,	Bruce	Jay,	in	ACM
Trans.	Comput.	Systems,	2(1),	pp39-59,	February	1984.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p1,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
https://dl.acm.org/doi/10.1145/2080.357392
https://dl.acm.org/doi/10.1145/2080.357392

CITS3002	Computer	Networks		

←	prev 2 next	→ CITS3002 help3002 CITS3002schedule
	

The	RPC	Execution	Order

1.	 The	client	calls	a	local
procedure	termed	the	client
stub.

It	appears	to	the	client	that
the	stub	is	the	actual	server
procedure	that	it	wants	to
call.

The	purpose	of	the	stub	is
to	package	up	the
arguments	to	the	remote
procedure,	possibly	put
them	in	some	standard
form	and	then	to	build	one
or	more	network	messages
(marshalling).

	

2.	 The	network	messages	are
sent	to	the	local	kernel
using	a	system	call.

	

3.	 The	network	messages	are
sent	to	the	remote	kernel
using	either	a	connection
based	or	connectionless
protocol.

	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p2,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 3 next	→ CITS3002 help3002 CITS3002schedule
	

The	RPC	Execution	Order,	continued

4.	 The	server	stub	has	been
waiting	on	any	client's
request.

It	unmarshals	the
arguments	from	the
network	messages	and
possibly	converts	them	to
its	own	(architecture's)
format.

	

5.	 The	server	stub	executes	a
local	procedure	call	to
invoke	the	actual	server
function.

	

6.	 When	the	server	procedure
is	finished	it	returns
(normally)	to	the	server
stub,	returning	any	required
arguments.

	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p3,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 4 next	→ CITS3002 help3002 CITS3002schedule
	

The	RPC	Execution	Order,	continued

7.	 The	server	stub	converts
the	return	values,	if
necessary,	and	builds	one
or	more	network	messages.

	

8.	 These	messages	traverse
the	network.

	

9.	 The	client	stub	reads	the
replies	from	the	local	kernel
(it	has	blocked	all	this	time).

	

10.	 After	possibly	converting
the	return	values	the	client
stub	returns	to	the	calling
procedure;	control	flow	is
again	in	the	client's	code.

	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p4,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 5 next	→ CITS3002 help3002 CITS3002schedule
	

An	Example	of	Transparent	Access

Consider	an	application	requiring	access	to	a	file	available	on	another	machine.

		fd	=	open("/home/uniwa/staff9/staff/00012349/linux/src/example.c",	O_RDONLY,	0);

Here,	the	local	operating	system	kernel	recognized	that	the	mount	point,	/home/uniwa/staff9,
refers	to	a	file	system	on	a	remote	machine	and	a	series	of	RPC	requests	are	made	to	access
the	remote	file.

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p5,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 6 next	→ CITS3002 help3002 CITS3002schedule
	

Passing	parameters	to	remote	procedures

Significant	problems	are	introduced	with	parameter	passing:

Passing	simple	data
types	(by	value)	such
as	integers,	floating
point	numbers	and
strings	(character
arrays)	is	easy.	The
client-stub	simply
places	copies	of	them
in	a	calling	packet.

At	worst,	data	types
may	need	format
conversion	between
machines	(performed
by	the	Presentation
Layer).	There	exists	a
well	defined	data
interchange	standard	-
the	External	Data
Representation	(XDR)
for	transferring	data
between
heterogeneous
environments	(in
[RFC1014]).

To	get	an	appreciation
of	the	complexity	of
XDR,	read	the	manual
entry	for	xdr	or	the
header	file	(on	Linux).

Trouble	arises	when
reference	parameters
must	be	passed.
When	local
procedures	are
invoked	a	reference
parameter,	such	as	a
pointer	may	be	passed
and	followed	by	the
procedure	(they	have
the	same	address
space).

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://tools.ietf.org/html/rfc1014

This	is	not	true	of	RPCs!

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p6,	8th	May	2024.

CITS3002	Computer	Networks		

←	prev 7 next	→ CITS3002 help3002 CITS3002schedule
	

SUN	Microsystem's	RPC	Compiler	-	rpcgen

Many	operating	systems	provide	RPC	within	their	kernels	and	as	a	standard	library	of	routines.

One	such	example	is	SUN's	implementation	of	RPC	(in	[RFC1057]).	The	RPC	package	consists	of
rpcgen,	a	compiler	for	creating	remote	procedure	call	server	and	client	stubs,	the	XDR	for	encoding
data	into	a	portable	manner	between	different	architectures	and	a	runtime	library	(provided	in	C's
standard	library	libc).

For	example:

program	DATE_PROG	{
		version	DATE_VERS	{
					long				BIN_DATE(void)	=	1;			/*	proc	#1	*/
					string		STR_DATE(long)	=	2;			/*	proc	#2	*/
		}	=	1;																											/*	version	1	*/
}	=	0x37621;																							/*	program	number	*/

Complete	example	in	rpc_example.zip	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p7,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://tools.ietf.org/html/rfc1057
http://undergraduate.csse.uwa.edu.au/units/CITS3002/resources/rpc_example.zip

CITS3002	Computer	Networks		

←	prev 8 next	→ CITS3002 help3002 CITS3002schedule
	

RPC	Client-side	Code	in	C

//		date_client.c	-	client	program	for	remote	date	service.

#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>

#include	<rpc/rpc.h>			//	standard	RPC	include	file
#include	<rpc/auth.h>

#include		"date.h"										//	automatically	generated	by	rpcgen

typedef	unsigned	int				rpc_uint;

int	main(int	argc,	char	*argv[])
{
				CLIENT		*handle;								//	RPC	handle,	used	in	all	RPC	transactions
				char				*remote_host;

				long				*lresult;							//	return	value	from	bin_date_1()
				char				**sresult;						//	return	value	from	str_date_1()

				if(argc	!=	2)	{
								fprintf(stderr,	"Usage:	%s	hostname\n",	argv[0]);
								exit(1);
				}
				remote_host	=	argv[1];

//		CREATE	THE	CLIENT	"HANDLE"	TO	BE	USED	IN	ALL	RPC	TRANSACTIONS.
				if((handle	=	clnt_create(remote_host,	DATE_PROG	,DATE_VERS,	"udp"))	==	NULL)	{
								clnt_pcreateerror(remote_host);	//	no	connection	with	server.
								exit(2);
				}

//		FIRST	CALL	THE	REMOTE	PROCEDURE	"bin_date"
				if((lresult	=	bin_date_1(NULL,	handle))	==	NULL)	{
								clnt_perror(handle,	remote_host);
								exit(3);
				}
				printf("time	on	host	%s	=	%ld\n",	remote_host,	*lresult);

//		NOW	CALL	THE	REMOTE	PROCEDURE	"str_date"
				if((sresult	=	str_date_1(lresult,	handle))	==	NULL)	{
								clnt_perror(handle,	remote_host);
								exit(4);
				}
				printf("time	on	host	%s	=	%s",	remote_host,	*sresult);

//		CLOSE	OUR	CONNECTION	WITH	THE	RPC	SERVER
				clnt_destroy(handle);

				return	0;
}

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p8,	8th	May	2024.

CITS3002	Computer	Networks		

←	prev 9 next	→ CITS3002 help3002 CITS3002schedule
	

RPC	Server-side	Code	in	C

//		date_server.c	-	remote	procedures;	called	by	server	stub

#include		<time.h>
#include		<rpc/rpc.h>											//	standard	RPC	include	file
#include		"date.h"														//	this	file	is	generated	by	rpcgen

//		RETURN	THE	DATE	AND	TIME	AS	AN	INTEGER
long	*bin_date_1_svc(void	*unused1,	struct	svc_req	*unused2)
{
				static	long	timeval;								//	must	be	declared	as	a	static

				timeval	=	time(NULL);

				return	(&timeval);
}

//		RECEIVE	AN	INTEGER	TIME	VALUE	AND	RETURN	A	HUMAN	READABLE	STRING
char	**str_date_1_svc(long	*bintime,	struct	svc_req	*unused)
{
				static	char	*ptr;											//	must	be	declared	as	a	static

				ptr	=	ctime(bintime);							//	convert	to	local	time

				return	(&ptr);														//	return	the	address	of	pointer
}

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p9,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 10 next	→ CITS3002 help3002 CITS3002schedule
	

Naming	and	Interface	Binding

How	does	the	client-stub	know	who	to	call?

Most	operating	systems	now	supporting	RPCs	use	a	replicated	database	used	to	store	server
addresses.

When	a	server	restarts	(boots)	it	informs	the	database	that	it	is	alive	and	passes	it	:

the	program's	program	number,
the	program's	version	number,	and
its	port	number	(on	that	machine).

Thereafter,	the	first	time	a	client-stub	needs	to	locate	a	remote	procedure	it	first	asks	the
database	server	(the	portmapper).

The	server	maps	the	procedure's	name	to	the	network	address.

This	process	is	termed	binding.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p10,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 11 next	→ CITS3002 help3002 CITS3002schedule
	

Locating	and	calling	the	server

When	we	start	the	server	program	on	the	remote	machine	it	creates	a	UDP	socket	and
binds	any	local	port	to	that	socket.	The	function	svc_register	in	the	RPC	library	is	called
to	register	the	server	with	the	portmapper	process.	The	portmapper	keeps	track	of	each
server's	program	number,	version	number	and	port	number.

We	start	our	client	program	which	calls	clnt_create.	This	function	contacts	the
portmapper	on	the	remote	system	to	determine	the	UDP	port	number.

Our	client	calls	the	bin_date_1	function	(the	client	stub).	The	stub	sends	the	'call'	to	the
server	stub	using	a	UDP	datagram.	An	integer	is	returned	as	the	single	result.

Our	client	calls	the	str_date_1	function	(the	client	stub).	The	stub	sends	the	single
parameter	to	the	server	stub	using	a	UDP	datagram.	The	string	result	is	returned	in	the
parameter	array.

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p11,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 12 next	→ CITS3002 help3002 CITS3002schedule
	

Semantics	of	Remote	Procedure	Calls

Ideally,	Remote	Procedure	Calls	look	like	local	procedure	calls	and	the	application	programs
may	be	unaware	of	the	existence/need	for	the	network.	Like	everything	else,	they	suffer	from
network	crashes,	lost	messages	and	delays.

Consider	what	happens	when	a	server	crashes.	The	client	stub	may	:

Block	and	await	the	reply	(which	will	never	come).
Time-out	and	report	a	failure,	or	exception,	to	the	client.
Time-out	and	retransmit	the	request.

Should	clients	re-issue	their	requests	in	the	event	of	a	failure?	Moreover,	should	the	client's
application	(manually)	or	the	client's	stubs	(automatically)	re-issue	a	request?

It	is	important	to	understand	whether	a	package	supports	at-most-once	or	at-least-once
semantics.	Remote	operations,	which	may	be	repeated	without	consequence,	are	termed
idempotent	operations.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p12,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 13 next	→ CITS3002 help3002 CITS3002schedule
	

The	External	Data	Representation

The	External	Data	Representation	(XDR)	is	a	standard	for	the	description	and	encoding	of	data
[RFC1014].

XDR	was	designed	specifically	to	provide	the	marshalling	and	unmarshalling	operations	for
Sun's	implementation	of	RPC.

All	data	which	is	transferred	in	RPC	is	translated	using	XDR.

XDR	is	also	useful	in	situations	which	do	not	use	RPC,	or	even	the	network,	as	it	allows	one	to
read	and	write	arbitrary	C	data	structures	in	a	consistent	and	well-defined	manner.

e.g.	We	can	use	XDR	to	save	a	program's	state	(i.e.	data	structures)	to	a	file	so	that	when	the
program	is	restarted	it	can	resume	execution	where	it	left	off.

XDR	fits	into	the	ISO	presentation	layer,	and	is	roughly	analogous	to	ISO's	Abstract	Syntax
Notation.1.

The	major	difference	between	the	two	is	that	ASN.1	explicitly	sends	typing	information	along
with	the	data	while	in	XDR	this	information	is	implied.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p13,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://tools.ietf.org/html/rfc1014

CITS3002	Computer	Networks		

←	prev 14 next	→ CITS3002 help3002 CITS3002schedule
	

The	Differences	in	Data	Representation

Machines	of	different	architectures	represent	data	differently	internally.

Simple	example:	integers

On	Sun-SPARC	or	Motorola	PowerPC	architectures	integers	are	stored	as

while	on	Intel	x86	processors,	integers	are	stored	as

So	the	integer	1	on	a	SPARC	or	PowerPC	would	be	interpreted	as	the	integer	16777216	(224)	on
the	Intel.

Other	problems	occur	with	respect	to	alignment	and	pointers:

Different	alignment	schemes	will	cause	the	data	in	structures	to	be	stored	differently.
Pointers	have	no	meaning	outside	the	program	where	they	are	used.

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p14,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 15 next	→ CITS3002 help3002 CITS3002schedule
	

The	XDR	Approach

XDR	takes	a	canonical	approach	to	data	communication:	it	defines	a	standard	XDR
representation	for	data	and	makes	its	clients	use	it.

If	a	program	wishes	to	use	XDR	to	transmit	data	it	must	firstly	translate	its	internal	representation
of	the	data	to	the	XDR	representation.

A	program	receiving	XDR	information	performs	the	opposite	mapping:	it	converts	the	incoming
XDR	data	to	its	own	representation

The	advent	of	a	new	machine/language	has	no	impact	on	existing	users:	the	new	machine	is
'taught'	to	convert	between	XDR	and	its	own	representation	and	can	thereafter	communicate
with	all	other	XDR	users.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p15,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 16 next	→ CITS3002 help3002 CITS3002schedule
	

The	XDR	Data	Representation

The	representation	used	by	XDR	is	defined	fully	in	RFC1014.

XDR	assumes	that	bytes	(octets)	are	portable	between	architectures.

The	representation	of	all	objects	requires	a	multiple	of	4	bytes,	numbered	0	to	n-1.

The	bytes	are	read	from	and	written	to	streams	such	that	byte	m	precedes	byte	m+1.

If	the	object	being	represented	is	not	a	multiple	of	4	bytes	in	length	then	the	n	bytes	are
followed	by	enough	0	bytes	to	make	the	total	byte	count	a	multiple	of	4.

An	unfortunate	consequence	of	this	is	that	sending	a	single	character	will	involve	a	75%
waste	of	bandwidth	(!).

The	standard,	however,	defines	representations	for	arrays	of	characters	to	minimise	this
wastage	in	general	use.

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p16,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://tools.ietf.org/html/rfc1014

CITS3002	Computer	Networks		

←	prev 17 next	→ CITS3002 help3002 CITS3002schedule
	

The	XDR	Representation,	continued

XDR	defines	the	representation	of	simple	types,	and	the	representation	to	be	used	when
combining	these	types	to	produce	more	complex	types.

The	simple	types	include:

integers,	short	and	long,	signed	and	unsigned
floats,	single	and	double	precision
characters,	signed	and	unsigned
enumerated	types	and	Booleans

These	may	be	combined	to	produce	the	complex	types:

fixed	and	variable	length	arrays
strings
structures
discriminated	unions

XDR	also	allows	some	special	types:

fixed	and	variable	length	opaque	data
the	'void'	type

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p17,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 18 next	→ CITS3002 help3002 CITS3002schedule
	

The	XDR	Representation	of	some	simple	types

Integers:

Signed:	Two's	Complement	(MSB	is	a	sign	bit).	
Unsigned:	As	above,	but	all	32	bits	store	the	value.	
Short	Integers:	Stored	as	though	the	short	had	been	assigned	to	a	long.

Reals	-	Single	Precision:

Reals	-	Double	Precision:

S	-	Sign	Bit	(0	->	positive)	
E	-	Exponent	
M	-	Mantissa	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p18,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 19 next	→ CITS3002 help3002 CITS3002schedule
	

The	XDR	Representation	of	some	complex	types

Strings:

Variable	Length	Arrays:

Note	that	a	string	is	represented	more	efficiently	than	an	array	of	characters	would
be.

Fixed	Length	Arrays:

Structures:

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p19,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 20 next	→ CITS3002 help3002 CITS3002schedule
	

The	SunOS	XDR	Library

The	SunOS	library	contains	functions	to	convert	each	of	the	primitive	types	to/from	their	XDR
representation.

Users	write	their	own	functions	to	convert	more	complex	data	structures.

Each	XDR	conversion	routine	(including	those	written	by	users)	takes	two	parameters:	an
XDR	stream	pointer	and	a	pointer	to	the	data	to	convert.

An	XDR	stream	is	a	handle	which	is	used	to	specify	the	source/destination	of	XDR	data.

Ways	exist	of	obtaining	XDR	streams	which	are	connected	to	standard	input/output	(e.g.
files	opened	using	fopen()),	memory	(useful	for	bundling	data	before	sending	it	off	as	a
datagram),	and	TCP/IP	stream	connections.

When	an	XDR	stream	is	created	the	user	specifies	whether	it	will	be	used	for	encoding
(symbolic	constant	XDR_ENCODE)	or	decoding	(symbolic	constant	XDR_DECODE).

The	same	XDR	conversion	routines	are	used	for	both	encoding	and	decoding	data:	the
type	of	the	XDR	stream	tells	the	conversion	routine	what	to	do.

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p20,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 21 next	→ CITS3002 help3002 CITS3002schedule
	

The	SunOS	XDR	Library,	continued

Example:

The	XDR	routine	to	convert	an	integer	is	declared	as

		bool				xdr_int(XDR	*xdrs,	int	*ip)

If	we	wish	to	XDR	encode	an	integer	and	send	it	to	standard	out	we	would	firstly	create	an	XDR
stream	to	encode	data:

		XDR	*xdrs;
		int	i;
										.
										.
		xdrstdio_create(xdrs,	stdout,	XDR_ENCODE);

and	then	call	the	function

		i	=	23;
		if(!xdr_int(xdrs,	&i))	{
										error-handling
		}

To	decode	reading	from	standard	input	we	would	create	the	stream	using

		xdrstdio_create(xdrs,	stdin,	XDR_DECODE);

and	use	the	same	function	call

		if(!xdr_int(xdrs,	&i))	{
										error-handling
		}

to	receive	the	integer	into	variable	i.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p21,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 22 next	→ CITS3002 help3002 CITS3002schedule
	

Converting	complex	data	structures

Example:

If	we	wished	to	XDR	encode	a	structure	of	the	form

struct	person	{
				char				name[50];
				int					age;
				char				sex;
}

we	could	use	the	following	XDR	conversion	function

bool				xdr_person(XDR	*xdrs,	struct	person	*p)
{
								if(!xdr_string(xdrs,	&p->name,	50))
																return	false;
								if(!xdr_int(xdrs,	&p->age))
																return	false;
								if(!xdr_char(xdrs,	&p->sex))
																return	false;
								return	true;
}

If	we	had	an	array	of	person	structures,	declared	as

struct	person				world[200];

we	could	convert	it	using

xdr_vector(xdrs,	world,	200,	sizeof(struct	person),	xdr_person);

The	final	parameter	is	the	name	of	the	function	which	is	to	be	called	to	XDR	encode	each
element	of	the	array.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p22,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 23 CITS3002 help3002 CITS3002schedule
	

Converting	complex	data	structures,	continued

Example:

If	we	wished	to	XDR	encode	a	pointer	to	the	person	structure	declared	as

		struct	person			*pp;

we	would	convert	it	using

		xdr_reference(xdrs,	&pp,	sizeof(struct	person),	xdr_person);

If	the	XDR	stream	indicates	an	encode	operation	the	function	follows	the	pointer	and	encodes
the	data	it	points	to	by	calling	xdr_person().

If	the	XDR	stream	indicates	a	decode	operation	and	*pp	is	NULL	the	routine	allocates	memory	to
hold	the	structure	and	makes	pp	point	to	that	area.

The	routine	then	decodes	the	data	by	calling	xdr_person()	and	places	the	decoded	structure
into	the	memory	pointed	to	by	pp.

A	related	routine	called	xdr_pointer()	exists	which	more	correctly	understands	NULL	pointers.

This	facility	can	be	used	to	create	functions	which	encode/decode	linked	lists	and	other
arbitrarily	complex	data	structures.	

CITS3002	Computer	Networks,	Lecture	10,	Architecture	independent	applications,	p23,	8th	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

	Automated Development of Distributed Applications
	The Remote Procedure Call (RPC) Paradigm
	The RPC Execution Order
	The RPC Execution Order, continued
	The RPC Execution Order, continued
	An Example of Transparent Access
	Passing parameters to remote procedures
	SUN Microsystem's RPC Compiler - rpcgen
	RPC Client-side Code in C
	RPC Server-side Code in C
	Naming and Interface Binding
	Locating and calling the server
	Semantics of Remote Procedure Calls
	The External Data Representation
	The Differences in Data Representation
	The XDR Approach
	The XDR Data Representation
	The XDR Representation, continued
	The XDR Representation of some simple types
	The XDR Representation of some complex types
	The SunOS XDR Library
	The SunOS XDR Library, continued
	Converting complex data structures
	Converting complex data structures, continued

