
CITS3002	Computer	Networks		

1 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

What	Are	Client/Server	Software	Architectures?

Client/server	computing	is	the	logical	extension	of	modular	programming.

Modular	programming	has	as	its	fundamental	assumption	that	separation	of	a	large	piece	of
software	into	its	constituent	parts	("modules")	creates	the	possibility	for	easier	development	and
better	maintainability.

Client/server	computing	takes	this	a	step	farther	by	recognizing	that	those	modules	need	not	all
be	executed	within	the	same	memory	space.

With	this	architecture,	the	calling	module	becomes	the	client	(that	which	requests	a	service),
and	the	called	module	becomes	the	server	(that	which	provides	the	service).

The	logical	extension	of	this	is	to	have	clients	and	servers	running	on	the	appropriate	hardware
and	software	platforms	for	their	functions.

For	example,	database	management	system	servers	running	on	platforms	specially	designed
and	configured	to	perform	queries,	or	file	servers	running	on	platforms	with	special	elements	for
managing	files.

		ssh@vnet.ibm.com

For	a	long	time	it	was	widely-held	myth	that	client/server	computing	had	something	to	do	with
PCs	or	Unix	machines.	Cloud-computing,	and	mobile-computing,	are	contemporary	examples
demonstrating	that	the	choice	of	hardware	and	operating	system	platforms	has	become	quite
irrelevant,	and	that	interoperability	through	standards	is	all-important	for	success.	

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p1,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 2 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

What	Does	A	Client	Process	Do?

The	client	is	a	process	that	sends	a	message	to	a	server	process,	requesting	that	the	server
perform	a	service.

Client	programs	usually	manage	the	user-interface	portion	of	the	application,	validate	data
entered	by	the	user,	dispatch	requests	to	server	programs,	and	sometimes	execute	business
logic.	The	client-based	process	is	the	front-end	of	the	application	that	the	user	sees	and
interacts	with.

The	client	process	often	manages	the	local	resources	that	the	user	interacts	with	such	as	the
monitor,	keyboard,	and	peripherals.

One	of	the	key	elements	of	a	client	workstation	is	the	graphical	user	interface	(GUI).	Normally	a
part	of	operating	system,	i.e.	the	window	manager	detects	user	actions,	manages	the	windows
on	the	display,	and	displays	the	data	in	the	windows.

	

What	Does	A	Server	Process	Do?

Server	programs	generally	receive	requests	from	client	programs,	execute	database	retrieval
and	updates,	manage	data	integrity	and	dispatch	responses	to	client	requests.	The	server-
based	process	may	run	on	another	machine	on	the	network.	This	server	could	be	the	host
operating	system	or	network	file	server,	providing	file	system	services	and	application	services.

The	server	process	often	manages	shared	resources	such	as	databases,	printers,
communication	links,	or	high	powered-processors.	The	server	process	performs	the	back-end
tasks	that	are	common	to	similar	applications.

		kalakota@uhura.cc.rochester.edu

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p2,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 3 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

What	is	a	Two-Tier	Architecture?

A	two-tier	architecture	is	one	where	a	client	talks	directly	to	a	server,	with	no	intervening	server.
It	is	typically	used	in	small	environments	(fewer	than	50	simultaneous	clients).

A	common	error	in	client/server	development	is	to	prototype	an	application	in	a	small,	two-tier
environment,	and	then	attempt	to	scale	up	by	simply	adding	more	client	connections	to	the
server.

This	approach	will	usually	result	in	an	ineffective	system,	as	the	server	becomes	overwhelmed.
To	properly	scale	to	hundreds	or	thousands	of	users,	it	is	usually	necessary	to	move	to	a	three-
tier	architecture.

	

What	is	a	Three-Tier	Architecture?

A	three-tier	architecture	introduces	(another)	server	(or	an	agent)	between	the	client(s)	and	the
traditional	server.

The	role	of	the	agent	is	manyfold.	It	can	provide	translation	services	(as	in	adapting	a	legacy
application	on	a	mainframe	to	a	client/server	environment),	metering	services	(as	in	acting	as	a
transaction	monitor	to	limit	the	number	of	simultaneous	requests	to	a	given	server),	or
intelligent	agent	services	(as	in	mapping	a	request	to	a	number	of	different	servers,	collating	the
results,	and	returning	a	single	response	to	the	client.

		Lloyd.Taylor@jhuapl.edu

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p3,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 4 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

What	is	an	'Intranet'?

The	explosion	of	the	World	Wide	Web	is	due	to	the	world-wide	acceptance	of	a	common
transport	(TCP/IP),	server	standard	(HTTP),	and	markup	language	(HTML).	Many	corporations
have	discovered	that	these	same	technologies	can	be	used	for	internal	client/server
applications	with	the	same	ease	that	they	are	used	on	the	Internet.

Thus	was	born	the	concept	of	the	intranet	-	the	use	of	Internet	technologies	for	implementing
internal	client/server	applications.

One	key	advantage	of	Web-based	intranets	is	that	the	problem	of	managing	code	on	the	client
is	greatly	reduced.	Assuming	a	standard	browser	on	the	desktop,	all	changes	to	user	interface
and	functionality	can	be	done	by	changing	code	on	the	HTTP	server.	Compare	this	with	the	cost
of	updating	client	code	on	2,000	desktops.

A	second	advantage	is	that	if	the	corporation	is	already	using	the	Internet,	no	additional	code
needs	to	be	licensed	or	installed	on	client	desktops.	To	the	user,	the	internal	and	external
information	servers	appear	integrated.

A	rapidly-disappearing	disadvantage	is	that	there	is	limited	ability	to	provide	custom	coding	on
the	client.	In	the	early	days	of	the	Web,	there	were	limited	ways	of	interacting	with	the	client.
The	Web	was	essentially	"read-only",	with	protocols	such	as	gopher	and	WAIS.	With	the	release
of	code	tools	such	as	Java	and	JavaScript,	this	limitation	is	no	longer	a	major	issue.

		Lloyd.Taylor@jhuapl.edu

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p4,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 5 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Characteristics	Of	Client/Server	Architectures

1.	 A	combination	of	a	client	or	front-end	portion	that	interacts	with	the	user,	and	a	server	or
back-end	portion	that	interacts	with	the	shared	resource.

The	client	process	contains	solution-specific	logic	and	provides	the	interface	between	the
user	and	the	rest	of	the	application	system.	The	server	process	acts	as	a	software	engine
that	manages	shared	resources	such	as	databases,	printers,	modems,	or	high	powered
processors.

2.	 The	front-end	task	and	back-end	task	have	fundamentally	different	requirements	for
computing	resources	such	as	processor	speeds,	memory,	disk	speeds	and	capacities,
and	input/output	devices.

3.	 The	environment	is	typically	heterogeneous	and	multivendor.	The	hardware	platform	and
operating	system	of	client	and	server	are	not	usually	the	same.	Client	and	server
processes	communicate	through	a	well-defined	set	of	standard	application	program
interfaces	(APIs),	RPCs,	and	RMIs.

4.	 An	important	characteristic	of	client-server	systems	is	scalability:

Horizontal	scaling	means	adding	or	removing	client	workstations	with	only	a	slight
performance	impact.

Vertical	scaling	means	migrating	to	a	larger	and	faster	server	machine,	or	to
multiservers.

		kalakota@uhura.cc.rochester.edu

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p5,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 6 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Partitioning	Client/Server	Responsibilities

In	moving	a	single,	monolithic	application	to	a	separated	client/server	configuration,	we	must
address	a	number	of	issues:

1.	 Is	there	a	functional	partition	at	all?

Are	there	separate	responsibilities	that	can	be	performed	by	separate	tasks?	
Should	they	be	separated?

2.	 Is	there	a	data-driven	partition?

Can	different	sections	of	the	data	be	centralized,	or	split	between	multiple	tasks?	
Can	these	multiple	tasks	execute	on	separate	hardware,	with	separate	address-spaces?	
Should	distinct	data	partitions	be	replicated?

3.	 Is	there	an	extensive	use	of	global	variables?

Is	there	significant	state	information	that	controls	the	execution	of	the	application?	
Is	it	possible,	and	desirable,	to	centralize	this	information	anyway?

4.	 Are	there	any	hidden	intra-application	communication	mechanisms	(such	as	variables,
exceptions,	or	signals)?

Is	there	unusual,	possibly	asynchronous,	control	flow	in	the	application	(e.g.	the	use	of
global	goto's,	or	asynchronous	signals)?

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p6,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 7 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Concurrency	(and	hence	speed)	in	Servers

The	primary	motivation	for	providing	concurrency	in	servers	is,	of	course,	speed.

Concurrency	is	derived	from	using	a	'non-queuing'	model	of	execution,	either	by	using	a	new
(copy	of	the)	server	to	support	each	client,	or	to	provide	faster,	'time-sliced'	response	to	each
client.

If	no	concurrency	is	available	in	the	server,	pending	requests	from	new	and	existing	clients	are
either	blocked	or	refused	(c.f.	the	listen()	socket	API	call).

In	general,	clients	leave	their	concurrency	to	the	operating	system,	unless	the	application	is
sufficiently	large,	or	time-critical,	that	it	is	the	only	process	on	a	CPU	and	it	performs	its	own
internal	scheduling.

	

Increased	concurrency,	and	hence	speed,	is	required	(demanded)	when:

forming	responses	requires	significant	I/O.
processing	time	is	proportional	to	the	type	of	request.
application-specific,	high-performance,	hardware	is	available.

Definitions:

iterative	servers	-	single	request	at	a	time.
concurrent	servers	-	multiple	'simultaneous'	requests.

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p7,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 8 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Iterative	Servers	-	managing	a	single	connection

Firstly,	consider	a	iterative	server	-	each	connection,	or	session,	with	a	distinct	client	is	handled
until	its	completion.

Our	server	process	will	fully	service	each	client	until	its	completion,	and	continue	to	service
subsequent	clients	until	told	to	terminate.

Case	1	-	makes	subsequent	clients	wait:

//		Open	a	socket,	listen,	bind	an	address
			

				bool	keep_going	=	true;

				while(keep_going)	{
								int	new_client			=	accept(mysocket,);

								if(new_client	==	-1)	{
												perror("accept");
												keep_going	=	false;
								}
								else	{
					extern	bool	service(int	sd);

												keep_going	=	service(new_client);

					shutdown(new_client,	SHUT_RDWR);
												close(new_client);
								}
				}

				shutdown(mysocket,	SHUT_RDWR);
				close(mysocket);

If	the	time	to	service	each	client	is	lengthy,	or	of	indeterminable	duration,	new	clients	may	be
kept	waiting	for	their	initial	connection	-	perhaps	being	terminated	with	an	error	of	ECONNREFUSED.

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p8,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 9 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Iterative	Servers	-	managing	one	process	per	client

In	this	second	model,	a	separate	operating	system	process	is	spawned	to	handle	each	new
client.	There	is	thus	no	waiting	required	if	any	clients	are	slow	or	long-running,	but	(significant?)
additional	load	is	added	to	an	operating	system.

Case	2	-	wll	service	subsequent	clients	quicker,	but	cannot	scale	indefinitely:

//		Open	a	socket,	listen,	bind	an	address
			
				bool	keep_going	=	true;

				while(keep_going)	{
								int	new_client			=	accept(mysocket,);				

								if(new_client	==	-1)	{
												perror("accept");
												keep_going	=	false;
								}
								else	{
												switch	(fork())	{
												case	-1:
																keep_going	=	false;
																perror("fork");
																break;

												case		0:	{
																extern	bool	service(int	sd);

																close(mysocket);
																(void)service(new_client);

																shutdown(new_client,	SHUT_RDWR);
																close(new_client);
																exit(EXIT_SUCCESS);
																break;
												}
												default:
																shutdown(new_client,	SHUT_RDWR);
																close(new_client);
																break;
												}
								}
				}
				shutdown(mysocket,	SHUT_RDWR);
				close(mysocket);

Note	that	while	this	example	will	work,	that	it	is	not	complete.	In	particular,	the	parent	process
will	need	to	(eventually)	wait	for	the	completion	of	its	child	processes,	else	many	"zombie"
processes	will	persist.	

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p9,	1st	May	2024.

CITS3002	Computer	Networks		

←	prev 10 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Concurrent	Servers	Using	select()

With	a	concurrent	server,	a	single	server	handles	many	clients	within	the	same	process.	This
obviates	the	need	for	interprocess	communication	between	multiple	servers	(such	as	file
locking).

We	use	a	new	network	supporting	system	call,	select(),	to	inform	our	process	which	descriptors
are	ready	for	I/O.	The	descriptors	may	be	open	to	files,	devices,	sockets	or	pipes.

select	deals	with	sets	of	descriptors	(implemented	as	an	array	or	bitmap	in	C	or	C++)	and
provides	functions	for	their	manipulation.

Here	we	examine	descriptors	open	for	reading,	timing	out	each	10	seconds:

#include	<sys/select.h>
#include	<sys/time.h>
#include	<sys/types.h>
#include	<unistd.h>

				bool		keep_going	=	true;
			
				while(keep_going)	{
								fd_set	readset;

								FD_CLR(&readset);
								FD_SET(sd,	&readset);

								foreach	other	descriptor	open	for	reading	{
												FD_SET(desc,	&readset);
								}

								struct	timeval	timeout;

								timeout.tv_sec		=	10;													//	wait	up	to	10	seconds
								timeout.tv_usec	=		0;

								if(select(MAXDESC,	&readset,	NULL,	NULL,	&timeout)	>=	0)	{
												if(FD_ISSET(sd,	&readset))	{
																client	=	accept(sd,	...);	//	yet	another	new	client
															
												}
												foreach	other	descriptor	open	for	reading	{
																if(FD_ISSET(desc,	&readset))	{
																				service(desc);
																			
																}
												}
								}
				}

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

Note	that	this	example	is	typical	in	employing	only	one	set	of	file	descriptors,	readset.	A	service
much	more	concerned	about	I/O	speeds,	particularly	disk	blocking,	would	employ	another	set	of
file	descriptors,	writeset,	or	perform	asynchronous	file	I/O.	

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p10,	1st	May	2024.

CITS3002	Computer	Networks		

←	prev 11 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Internet	Supervisor	Daemon	-	inetd

One	problem	with	having	many	internetworking	services	supported,	is	that	each	operating
system	host	requires	many	(idle)	daemons	just	waiting	for	incoming	connections	on	their
reserved	port	-	each	consumes	some	memory	and	a	process	slot.

The	common	solution	is	a	single	'super'	daemon,	listening	for	incoming	connections	on	many
ports.	When	a	connection	is	made	on,	say,	telnet's	port	(=23)	the	'true'	telnet	daemon	is
invoked	to	service	the	connection.

The	inetd	daemon	listens	(accepts())	on	many	ports	simultaneously	(using	select()),	and	then
either	handles	the	connection	itself	or	spawns	a	new	process.

inetd	reads	its	configuration	information	from	/etc/inetd.conf	:

				telnet	stream	tcp	nowait	root			/usr/sbin/tcpd		in.telnetd
				#
				finger	stream	tcp	nowait	nobody	/usr/sbin/tcpd		in.fingerd
				#
				ftp				stream	tcp	nowait	root			/usr/sbin/tcpd		in.ftpd	-l	-a
				#
				time			stream	tcp	nowait	root		internal
				time			dgram		udp	wait			root		internal
				echo			stream	tcp	nowait	root		internal
				echo			dgram		udp	wait			root		internal

A	conceptually	similar	multi-protocol	server	implementation	in	Java	may	be	found	in	Flanagan's
excellent	Java	Examples	in	a	Nutshell,	Chapter	5.

All	code	examples	from	this	book	are	also	available.	

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p11,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://www.oreilly.com/catalog/9780596006204/
http://examples.oreilly.com/jenut3/

CITS3002	Computer	Networks		

←	prev 12 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Addressing	Between	Heterogeneous	Machines

The	Internet's	addressing	mechanisms	define	end-points	of	communication	using	32-bit	host
addresses	and	16-bit	ports.	To	provide	fixed	length	headers,	addresses	and	ports	are	integers
(not	strings).	The	Internet	protocols	define	a	network	standard	ordering	-	'fields	are	described
left	to	right,	with	the	most	significant	octet	on	the	left	and	the	least	significant	octet	on	the	right.'

Big-Endian Motorola	680x0,	Sun	SPARCs.

Little-
Endian

Intel	x86,	DEC-Alpha,	Apple	Silicon
M1/M2.

Bi-Endian SGI	MIPS,	IBM/Motorola	PowerPC.

Applications	must	convert	incoming	addresses	and	ports,	arriving	in	network	order,	to	their	host
order,	and	convert	outgoing	integers	to	network	order:

#include		<stdint.h>

#if	__BYTE_ORDER	==	__BIG_ENDIAN
#define	ntohl(x)								(x)
#define	ntohs(x)								(x)

#else
extern	uint32_t	ntohl(uint32_t	__netlong);
extern	uint16_t	ntohs(uint16_t	__netshort);

#endif

				uint32_t			ipaddr;
				uint16_t			tcp_port;

				ipaddr														=	ntohl(connection.ipaddr);
				tcp_port												=	ntohs(connection.port);

				connection.ipaddr			=	htonl(ipaddr);
				connection.port					=	htons(tcp_port);

	

Jonathan	Swift's	Gulliver's	Travels,	published	in	1726,	provided	the	earliest	literary	reference	to	computers,	in	which	a
machine	would	write	books.	This	early	attempt	at	artificial	intelligence	was	characteristically	marked	by	its	inventor's
call	for	public	funding	and	the	employment	of	student	operators.	Gulliver's	diagram	of	the	machine	actually	contained
errors,	these	being	either	an	attempt	to	protect	his	invention	or	the	first	computer	hardware	glitch.

The	term	endian	is	used	because	of	an	analogy	with	the	story	Gulliver's	Travels,	in	which	Swift	imagined	a	never-
ending	fight	between	the	kingdoms	of	the	Big-Endians	and	the	Little-Endians	(whether	you	were	Lilliputian	or
Brobdignagian),	whose	only	difference	is	in	where	they	crack	open	a	hard-boiled	egg.	

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://en.wikipedia.org/wiki/Gulliver's_Travels

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p12,	1st	May	2024.

CITS3002	Computer	Networks		

←	prev 13 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Accessing	Protocol	and	Service	Information

There	is	a	significant	amount	of	'common'	knowledge	about	protocols,	services,	addressing	and
hosts	available	in	many	files.

Fortunately,	most	of	this	is	accessible	through	support	libraries,	often	provided	as	part	of	an
Application	Programming	Interface	(API).

Because,	most	of	this	information	itself	will	be	frequently	requested	by	applications	(and	WWW
applications	here	are	not	helping),	the	information	is	often	provided	by	network	servers.

Examples	include	mappings	between:

protocol	names	and	protocol	numbers	-	see	getprotoent().
host	names,	host	addresses	and	host	aliases	-	see	gethostent().
service	names	and	service	ports	-	see	getservent().

Because	most	of	these	functions	cache	their	information,	most	return	pointers	to	static
information	that	must	be	copied	by	the	application.

The	growth	of	multi-threaded	applications	is	driving	the	need	for	re-entrant	versions	of	these
functions,	in	which	the	caller	provides	an	address	into	which	the	result	is	copied.	

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p13,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 14 	CITS3002 	help3002 	CITS3002	schedule 	

Typical	API	Library	Routines

Access	to	lists	of	networking	structures	and	services	is	generally	provided	by	library	routines.

For	example,	the	traditional	Unix	API	provides	routines	to	discover	hosts,	networks,	protocols,
application	services,	and	the	necessary	data	conversion	operations.

Consider	the	following	code	to	iterate	through	(many)	hostnames	at	UWA:

#include		<stdint.h>

int	main(int	argc,	char	*argv[])
{
				struct		netent	*ne;
				struct	hostent	*he;

				uint32_t		hostorder,	netorder;

				setnetent(1);											//	open	the	network	name	database

				while(ne	=	getnetent())	{			//	foreach	network	entry
	printf("NETWORK	%s	:\n",	ne->n_name);
	hostorder	=	(ne->n_net	<<	8);

	sethostent(1);						//	open	the	host	name	database

	for(int	i=1	;	i<=254	;	i++)	{
					netorder	=	htonl(hostorder);
					if(he	=	gethostbyaddr((char	*)&netorder,	sizeof(netorder),	AF_INET))
																printf("%36s	:	%s\n",	he->h_name,	inet_ntoa(he->h_addr));
																++hostorder;
												}
								}
								endhostent();							//	close	the	host	name	database
				}
				endnetent();												//	close	the	network	name	database
				return	0;
}

CITS3002	Computer	Networks,	Lecture	9,	Client/server	design,	p14,	1st	May	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

	What Are Client/Server Software Architectures?
	What Does A Client Process Do?
	What Does A Server Process Do?
	What is a Two-Tier Architecture?
	What is a Three-Tier Architecture?
	What is an 'Intranet'?
	Characteristics Of Client/Server Architectures
	Partitioning Client/Server Responsibilities
	Concurrency (and hence speed) in Servers
	Iterative Servers - managing a single connection
	Iterative Servers - managing one process per client
	Concurrent Servers Using select()
	The Internet Supervisor Daemon - inetd
	Addressing Between Heterogeneous Machines
	Accessing Protocol and Service Information
	Typical API Library Routines

