
CITS3002	Computer	Networks		

1 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Internet	Transport	Layer	Protocols
To	date,	we've	compared	the	7-layered	OSI/ISO	model	to	the	4-layered	TCP/IP	protocol	suite.

We've	recently	focused	on	how	TCP/IP	delivers	its	packets	-	using	32-bit	IPv4	addresses	to	deliver	data,	first	to	the	correct
network,	and	then	to	the	correct	host	on	that	network.	We've	also	focused	on	how	the	protocols	are	embedded,	or
encapsulated,	within	each	other:	

Pedantically,	we	could	say	that	Ethernet	delivers	the	IP	packet	to	the	correct	interface	on	that	host.

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p1,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 2 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Port	numbers
IP	addresses,	alone,	are	not	enough	as	they	only	address	hosts,	and	not	individual	operating	system	processes	on	those
hosts.

From	the	perspective	of	any	transport	protocol,	such	as	TCP	(next),	each	arriving	frame	is	further	identified	by	a	16-bit
positive	port	number	that	identifies	the	'software	end-point'	to	receive	the	payload.

One	role	of	TCP	is	to	demultiplexed	each	arriving	segment	to	its	corresponding	communication	end-point,	using	a	port	as
an	index.

Port	numbers	below	1024	are	described	as	reserved	ports,	and	on	operating	systems	with	distinct	users	and	privilege
levels,	elevated	privilege	('root'	or	'administrator'	access)	is	required	to	create	a	'software	end-point'	bound	to	such	ports.

The	file	/etc/services	on	Linux	and	macOS,	or	C:\Windows\System32\drivers\etc	on	Windows,	lists	ports	commonly	used
(worldwide),	and	ports	in	use	for	dedicated/local	applications:

//	Ports	below	1024	are	reserved

echo						7/tcp
ftp							21/tcp									#	File	transfer	protocol
ssh							22/tcp									#	SSH	Remote	Login	Protocol
telnet				23/tcp									#	Telnet
smtp						25/tcp									#	Simple	mail	transfer	protocol
finger				79/tcp
http						80/tcp									#	Hypertext	transfer	protocol
pop3						110/tcp								#	POP	version	3
sunrpc				111/tcp								#	RPC	4.0	portmapper	TCP
nntp						119/tcp								#	Network	news	transfer	protocol
https					443/tcp								#	Secured	hypertext	transfer	protocol
exec						512/tcp								#	Remote	execution
login					513/tcp

//	Ports	above	1023	are	not	reserved,	but	may	be	pre-assigned:

ms-sql-s	1433/tcp								#	Microsoft-SQL-Server
license		1702/tcp								#	matlab/FLEXlm	licence	manager
nfs						2049/udp								#	The	network	file	system	(NFS)
x11						6000/tcp								#	the	X	Window	System

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p2,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 3 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Transmission	Control	Protocol	(TCP)

The	Transmission	Control	Protocol	(TCP)	transforms	the	'raw'	IP	into	a	full-duplex	reliable	character	stream	[Ref:RFC	793].

TCP	uses	a	'well-understood'	sliding	window	with	selective-repeat	protocol,	and	conveys	a	number	of	important	fields	in	its
TCP	frame	header:

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p3,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://www.faqs.org/rfcs/rfc793.html

CITS3002	Computer	Networks		

←	prev 4 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

What	TCP/IP	Provides	to	Applications

TCP/IP	provides	6	major	features:

1.	 Connection	orientation	-	for	two	programs	to	employ	TCP/IP,	one	program	must	first	request	a	connection	to	the
destination	before	communication	may	proceed.

2.	 Reliable	connection	startup	-	when	two	applications	create	a	connection,	both	must	agree	to	the	new	connection.	No
packets	from	previous,	or	ongoing,	connections	will	interfere.

3.	 Point-to-point	communication	-	each	communication	session	has	exactly	2	endpoints.

4.	 Full-duplex	communication	-	once	established,	a	single	connection	may	be	used	for	messages	in	both	directions.

This	requires	buffering	at	both	each	input	and	output	'end',	and	enables	each	application	to	continue	with	computation
while	data	is	being	communicated.

5.	 Stream	interface	-	from	the	application's	viewpoint,	data	is	sent	and	received	as	a	continuous	sequence	of	bytes.

Applications	need	not	(but	may)	communicate	using	fixed-sized	records.	Data	may	be	written	and	read	in	blocks	of
arbritary	size.

6.	 Graceful	connection	shutdown	-	TCP/IP	guarantees	to	reliably	deliver	all	'pending'	data	once	a	connection	is	closed	by
one	of	the	endpoints.

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p4,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 5 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

TCP/IP	3-way	connection	establishment	and	sequence	numbers

A	three-way	handshake	is	employed	in
TCP's	internal	open	sequence.

If	machine	A	wishes	to	establish	a
connection	with	machine	B,	A	transmits	the
following	message:

		A->B	:	SYN,	ISNa

This	initial	packet	request	has	the
synchronize	sequence	number	bit	(SSN)	set
in	its	header,	and	an	initial	32-bit	unsigned
sequence	number	ISNa.

B	replies	with:

		B->A	:	SYN,	ISNb,	ACK(ISNa)

to	provide	its	own	initial	sequence	number,
ISNb,	and	to	acknowledge	ISNa.

A	will	finally	acknowledge	ISNb	with

		A->B	:	ACK(ISNb)

and	the	connection	is	established.	May	be
of	interest:	the	Byzantine	Generals'
Problem.

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p5,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
https://en.wikipedia.org/wiki/Byzantine_fault

CITS3002	Computer	Networks		

←	prev 6 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

TCP/IP	Retransmissions

TCP/IP	is	employed	between	processes	physically	tens	of	centimetres	(i.e.	nano-seconds)	apart,	as	well	as	processes	tens
of	thousands	of	kilometres	(near	a	second)	apart.

As	TCP/IP	uses	a	sliding	window	protocol,	timeouts	are	employed	to	force	re-transmissions.	As	there	are	so	many
destination	hosts,	what	should	be	the	timeout	value?

To	cope	with	the	widely	varying	network	delays,	TCP	maintains	a	dynamic	estimate	of	the	current	round	trip	time	(RTT)	for
each	connection.	Because	the	RTTs	vary	tremendously,	TCP	averages	RTTs	into	a	smoothed	round	trip	time	(SRTT)	that
minimizes	the	effects	of	unusually	short	or	long	RTTs.

SRTT	=	(α	x	SRTT)	+	((1-α)	x	RTT)

where	α	is	a	smoothing	factor	that	determines	how	much	weight	the	new	values	are	given.	When	α=1,	the	new	value	of
RTT	is	ignored,	when	α=0	all	previous	values	are	ignored.	Typically	α	is	between	0.8	and	0.9.

The	SRTT	estimates	the	average	round	trip	time.	To	also	allow	for	queuing	and	transmission	delays,	TCP	also	calculates
the	mean	deviation	(MDEV)	of	the	RTT	from	the	measured	value.

This	is	also	smoothed:

SMDEV	=	(α	x	SMDEV)	+	((1-α)	x	MDEV)	
RTO	=	SRTT	+	2	x	SMDEV

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p6,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 7 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

TCP/IP	Congestion	Control

Perhaps	the	most	important,	and	certainly	the	most	studied	and	'tinkered	with'	aspect	of	TCP/IP	is	its	congestion	control.

TCP	attempts	to	avoid	congestion	collapse	by	using	end-to-end	packet	loss	as	the	metric	of	congestion.

The	TCP	receiver	normally	fills	the	Window	field	of	an	acknowledgment	header	to	report	how	much	additional	buffer
space	(the	receiver's	window	size)	is	available	for	further	data.

When	a	message	is	lost,	the	TCP	sender	could	naively	retransmit	enough	data	to	fill	the	receiver's	buffers.	Instead,
TCP	commences	by	sending	a	single	packet.	If	an	acknowledgment	for	this	single	packet	returns,	the	sender	next
transmits	two	packets;	if	all	of	their	acknowledgments	return,	up	to	four,	and	so	on.

In	effect,	the	protocol	grows	(doubles)	the	sender's	sliding	window	until	packets	are	lost;	it	then	restarts	at	1.

TCP/IP	responds	to	congestion	by	backing-off	quickly,	and	avoids	further	congestion	by	slowly	increasing	offered
traffic.

In	combination	with	its	closely	related	slow-start	algorithm	for	new	connections,	TCP	is	capable	of	both	avoiding	and
recovering	from	most	congestion.

Ref:	RFC	2001.	

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p7,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://www.faqs.org/rfcs/rfc2001.html

CITS3002	Computer	Networks		

←	prev 8 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Network	Application	Program	Interfaces	(APIs)

Dating	back	to	early	operating	system	implementations,	applications	attempted	to	provide	a	common	framework	to	access
both	files	and	devices.

Calls	to	Unix	open()	return	a	file	descriptor	which	is	then	used	in	calls	to	read()	and	write().

It	is	preferable	if	the	application	program	interfaces	(API)	to	network	I/O	exhibit	the	same	semantics	as	file,	or	stream,	I/O,
but	this	is	difficult	for	a	number	of	reasons:

The	typical	client-server	relationship	is	not	symmetrical	-	each	program	must	know	what	role	it	has	to	play.
Network	connections	may	be	connection-oriented	or	connectionless.	With	a	connectionless	protocol	there	is	nothing
akin	to	open()	since	every	network	I/O	operation	could	be	with	a	different	process	on	a	different	host.
Identification	is	more	important	to	networking	than	for	file	operations.	Networking	applications	need	to	verify	peer
processes	when	accepting	new	connections.
There	are	more	associations	to	be	made	for	network	I/O	than	for	file	I/O:

{	protocol,	local-address,	local-process,	remote-address,	remote-process	}

Many	file	I/O	models	presume	all	data	is	in	a	continuous	data	stream;	this	precludes	networking	applications	working
with	variable	length	datagrams.

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p8,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 9 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

An	Example	Network	API	-	Berkeley	Sockets

Sockets	are	a	generalization	of	the	original	Unix	file	system	model.	The	most	important	difference	is	that	the	operating
system	binds	file	descriptors,	once,	to	files	and	devices	when	they	are	opened.	With	sockets,	applications	can	specify	the
destination	each	time	they	use	the	socket.

When	sockets	were	first	proposed	(1982	in	4.1cBSD),	it	was	unclear	how	significant	TCP/IP	would	become.	As	a
(beneficial)	consequence,	sockets	have	been	designed	to	use	many	different	protocols.

The	current	(kernel)	socket	implementation	consists	of	three	parts	:

1.	 The	socket	layer	provides	the	interface	between	user	programs	and	the	networking	(via	operating	system	system
calls).

2.	 The	protocol	layer	supports	different	protocols	in	use,	such	as	TCP/IP,	X.25,	etc.
3.	 The	device	driver	supports	the	physical	devices	such	as	Ethernet	controllers.

Essential	reading:

A	Guide	to	Network	Programming	using	Internet	sockets,	by	Brian	"Beej"	Hall.	

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p9,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
http://beej.us/guide/bgnet/

CITS3002	Computer	Networks		

←	prev 10 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Domain	Addressing

Legal	combinations	of	protocols	and	drivers	are	specified	when	the	kernel	is	configured.

For	example,	sockets	that	share	common	communication	properties,	such	as	naming	conventions	and	protocol	address
formats,	are	grouped	into	address	families.

The	Linux	file	/usr/include/bits/socket.h	lists	all	supported	address	families.

#define	AF_UNSPEC				0				//	unspecified	
#define	AF_UNIX						1				//	local	to	host	(pipes,	portals)	
#define	AF_INET						2				//	internetwork:	UDP,	TCP,	etc.	
#define	AF_IMPLINK			3				//	arpanet	imp	addresses	
#define	AF_CCITT					10			//	CCITT	protocols,	X.25	etc	
#define	AF_SNA							11			//	IBM	SNA	
#define	AF_DECnet				12			//	DECnet	
#define	AF_APPLETALK	16			//	Apple	Talk	

#define	AF_NIT							17			//	Network	Interface	Tap	
#define	AF_802							18			//	IEEE	802.2,	also	ISO	8802	
#define	AF_OSI							19			//	umbrella	for	all	families	used	by	OSI	
#define	AF_X25							20			//	CCITT	X.25	in	particular	
#define	AF_GOSIP					22			//	U.S.	Government	OSI	

Processes	communicate	using	the	client-server	paradigm.

A	server	process	listens	to	a	socket,	one	end	of	a	bidirectional	communication	path	and	the	client	processes	communicate
with	the	server	over	another	socket,	the	other	end	of	the	communication	path.

The	kernel	maintains	internal	connections	and	routes	data	from	client	to	server.	

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p10,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 11 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Establishing	Sockets	With	OS	System	Calls

The	socket	mechanism	requires	several	Unix	system	calls.	The	socket()	call	establishes	an	end	point	of	a	communications
link.

#include	<sys/socket.h>

				int	family,	type,	protocol;
				int	sd,	socket(int,	int,	int);
					...
				sd	=	socket(addr_family,	type,	protocol);

protocol	is	usually	0	to	indicate	the	default	for	the	family/type	combination.	The	socket()	system	call	returns	a	small	integer,
termed	a	socket	descriptor,	(akin	to	a	file	descriptor).	The	call	may	fail	due	to	a	request	for	an	unknown	protocol	or	when	a
request	is	made	for	a	type	without	a	supporting	protocol.

The	socket()	system	call	only	instantiates	protocol	from	the	5-tuple	association.

Depending	on	whether	the	socket	is	being	used	in	the	client	or	server	of	either	a	connection-oriented	or	connectionless
communication,	different	programs	do	different	things	next:	

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p11,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 12 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Naming	Sockets

When	initially	created	a	socket	is	unbound	(it	has	no	addresses	associated	with	it).

Communication	cannot	occur	on	an	unbound	socket	-	without	a	name	for	the	process	owning	the	socket,	the	kernel	cannot
demultiplex	packets	to	the	correct	socket.	The	bind()	routine	provides	an	address	(a	name)	to	the	local	end	of	the	socket.

//	Socket	address,	UNIX	style.		
struct	sockaddr	{
					u_short	sa_family;								//	address	family	
					char				sa_data[108];					//	up	to	108	bytes	of	addr	
};

//	Socket	address,	internet	style.		
struct	sockaddr_in	{
					short			sin_family;							//	AF_INET	
					u_short	sin_port;									//	16-bit	port	number	
					struct		in_addr	sin_addr;	//	32-bit	netid/hostid	
					char				sin_zero[8];						//	unused	
};

			
				bind(sd,	socket_addr,	sizeof(socket_addr));
			

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p12,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 13 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Naming	Sockets,	continued

The	related	call	connect()	takes	the	same	arguments	but	binds	an	address	to	the	remote	end	of	the	socket.

For	connectionless	protocols,	such	as	UDP/IP,	the	kernel	caches	the	destination	address	associated	with	the	socket.

Server	processes	bind	address	to	sockets	and	'advertise'	their	names	to	identify	themselves	to	clients.

Connection	Establishment

Servers	accept	connections	from	remote	clients	and	cannot	use	connect()	because	they	do	not	(usually)	know	the	address
of	the	remote	client	until	the	client	has	initiated	a	connection.

Applications	use	listen()	and	accept()	to	perform	passive	opens.

When	a	server	arranges	to	accept	data	over	a	virtual	circuit,	the	kernel	must	arrange	to	queue	requests	until	they	can	be
serviced.

listen(sd,	queue_length);

listen()	only	indicates	that	an	application	is	willing	to	accept	requests;	applications	call	accept()	to	accept	them.

new_socket	=	accept(sd,	from,	fromlength);

When	accept()	returns,	from	contains	the	network	address	of	the	remote	end	of	the	socket,	and	new_socket	is	in	a
connected	state.	

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p13,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 14 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

System	Call	Sequences	for	Connection-oriented	and	Connectionless	I/O

Connection-oriented	I/O Connectionless	I/O

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p14,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 15 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

A	Client	Process	in	the	Unix	Domain	(in	C)

Consider	a	simple	client	process	wishing	to	establish	a	connection	with	a	server	process	in	the	Unix	domain.	When
communicating	within	the	Unix	domain,	the	data	frames	never	leave	the	single	computer,	and	never	get	lost	(other	than	on
an	extremely	busy	machine).

In	this	example,	the	client	program	sends	commands	to	a	3D	printer	which	is	directly	connected	to	the	same	computer.	The
client	process	simply	connects	to	the	server	process	and	then	writes	the	bytes	to	be	printed	to	the	socket	(note	that	this
example	is	far	from	how	print	spooling	works	in	practice!)

#include	<many-header-files.h>

int	write_file_to_server(int	sd,	const	char	filenm[])
{
//		ENSURE	THAT	WE	CAN	OPEN	PROVIDED	FILE
				int	fd		=	open(filenm,	O_RDWR,	0);

				if(fd	>=	0)	{
								char		buffer[1024];
								int			nbytes;

//		COPY	BYTES	FROM	FILE-DESCRIPTOR	TO	SOCKET-DESCRIPTOR
								while((nbytes	=	read(fd,	buffer,	sizeof(buffer)))	{
												if(write(sd,	buffer,	nbytes)	!=	nbytes)	{
																close(fd);
																return	1;
												}
								}
								close(fd);
								return	0;
				}
				return	1;
}

int	main(int	argc,	char	*argv[])
{
//		ASK	OUR	OS	KERNEL	TO	ALLOCATE	RESOURCES	FOR	A	SOCKET
				int	sd	=	socket(AF_UNIX,	SOCK_STREAM,	0);
				if(sd	<	0)	{
								perror(argv[0]);					//	issue	a	standard	error	message
								exit(EXIT_FAILURE);
				}

//		FIND	AND	CONNECT	TO	THE	SERVICE	ADVERTISED	WITH	"THREEDsocket"
				if(connect(sd,"THREEDsocket",strlen("THREEDsocket"))	==	-1)	{				
								perror(argv[0]);					//	issue	a	standard	error	message
								exit(EXIT_FAILURE);
				}
				write_file_to_server(sd,	FILENM_OF_COMMANDS);
				shutdown(sd,	SHUT_RDWR);
				close(sd);
				exit(EXIT_SUCCESS);
}

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p15,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 16 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

A	Server	Process	in	the	Unix	Domain	(in	C)

Now	consider	our	server	process	which	accepts	streams	of	bytes	(commands	and	contents)	to	be	printed	on	our	3D-
printer.

To	avoid	contention	for	the	printer,	and	to	possibly	screen	the	requests,	a	single	server	performs	the	printing.

#include	<many-header-files.h>

int	main(int	argc,	char	*argv[])
{
//		ASK	OUR	OS	KERNEL	TO	ALLOCATE	RESOURCES	FOR	A	SOCKET
				int		sd	=	socket(AF_UNIX,	SOCK_STREAM,	0);

				if(sd	<	0)	{
								perror(argv[0]);					//	issue	a	standard	error	message
								exit(EXIT_FAILURE);
				}

//		ADVERTISE	THE	STRING	"THREEDsocket"	TO	THE	NEW	SOCKET
				if(bind(sd,	"THREEDsocket",	strlen("THREEDsocket"))	!=	0)	{						
								perror(argv[0]);					//	issue	a	standard	error	message
								exit(EXIT_FAILURE);
				}

//		ENQUEUE	5	NEW	CLIENTS	BEFORE	REFUSING	NEW	CONNECTIONS
				listen(sd,	5);

				while(true)	{
								struct				sockaddr	sockaddr;
								socklen_t										fromlen	=	sizeof(sockaddr);

//		USE	THE	'ADVERTISING'	DESCRIPTOR	TO	ACCEPT	NEW	CONNECTIONS
								int								newsd			=	accept(sd,	&sockaddr,	&fromlen);

								if(newsd	>=	0)	{
												read_file_for_printing(newsd);
												shutdown(newsd,	SHUT_RDWR);
												close(newsd);
								}
				}
				exit(EXIT_SUCCESS);
				return	0;
}

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p16,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 17 	CITS3002 	help3002 	CITS3002	schedule 	

A	Remote	Login	Client	(Internet	Domain,	in	C)

Most	operating	systems,	supporting	internetworking	using	the	Berkeley	sockets	API,	also	provide	many	functions	to
facilitate	access	to	many	commonly	required	resources	-	such	as	hostnames,	protocol	numbers,	service	numbers,	etc.	In	an
environment	where	many	computers	require	access	to	consistent	data,	these	API	functions,	themselves,	may	be	configured
to	seek	their	information	via	the	Internet.

#include	<many-header-files.h>

int	main(int	argc,	char	*argv[])
{
//		LOCATE	INFORMATION	ABOUT	THE	REQUIRED	SERVICE	(PROTOCOL	AND	PORT)
				struct	servent					*sp	=	getservbyname("login",	"tcp");

				if(sp	==	NULL)	{
								fprintf(stderr,"rlogin:	tcp/login:	unknown	service\n");
								exit(1);
				}

//		LOCATE	INFORMATION	ABOUT	THE	REQUIRED	HOST	(ITS	IP	ADDRESS)
				struct	hostent					*hp	=	gethostbyname(argv[1]);

				if(hp	==	NULL)	{
								fprintf(stderr,"rlogin:	%s:	unknown	host\n",argv[1]);
								exit(2);
				}

//		ASK	OUR	OS	KERNEL	TO	ALLOCATE	RESOURCES	FOR	A	SOCKET
				int		sd		=	socket(AF_INET,	SOCK_STREAM,	0);
				if(sd	<	0)	{
								perror("rlogin:	socket");
								exit(3);
				}

//		INITIALIZE	FILEDS	OF	A	STRUCTURE	USED	TO	CONTACT	SERVER
				struct	sockaddr_in	server;

				memset(&server,	0,	sizeof(server));
				memcpy(&server.sin_addr,	hp->h_addr,	hp->h_length);
				server.sin_family		=	hp->h_addrtype;
				server.sin_port				=	sp->s_port;

//		CONNECT	TO	SERVER
				if(connect(sd,	&server,	sizeof(server))	<	0)	{
								perror("rlogin:	connect");
								exit(4);
				}
				
				communicate_with_rlogin_server(sd);
				shutdown(sd,	SHUT_RDWR);
				close(sd);
				exit(EXIT_SUCCESS);
}

CITS3002	Computer	Networks,	Lecture	8,	Transport	layer	protocols	and	APIs,	p17,	24th	April	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

	Internet Transport Layer Protocols
	Port numbers
	The Transmission Control Protocol (TCP)
	What TCP/IP Provides to Applications
	TCP/IP 3-way connection establishment and sequence numbers
	TCP/IP Retransmissions
	TCP/IP Congestion Control
	Network Application Program Interfaces (APIs)
	An Example Network API - Berkeley Sockets
	Domain Addressing
	Establishing Sockets With OS System Calls
	Naming Sockets
	Naming Sockets, continued
	Connection Establishment
	System Call Sequences for Connection-oriented and Connectionless I/O
	A Client Process in the Unix Domain (in C)
	A Server Process in the Unix Domain (in C)
	A Remote Login Client (Internet Domain, in C)

