
CITS3002	Computer	Networks		

1 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Data	Link	Layer

The	Data	Link	Layer	provides	the	following	services	between	the	Physical	and	Network	Layers	:

bundling	and	unbundling	groups	of	bits	into	frames	for	the	Physical	Layer.
throttling	the	flow	of	frames	between	sender	and	receiver.
detecting	and	correcting	"higher-level"	transmission	errors,	such	as	the	sequencing	of
packets	from	the	Network	Layer.

Again,	due	to	the	OSI	"philosophy",	the	Data	Link	Layer	in	the	sender	believes	it	is	talking
directly	to	the	Data	Link	Layer	in	the	receiver	(a	peer-to-peer	relationship).	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p1,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 2 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Three	Levels	of	Data	Link	Layer	Complexity

Simplex	connectionless	-	The	sender	simply	sends	its	frames	without	waiting	for	the
receiver	to	acknowledge	them.	No	attempt	is	made	to	detect	or	re-transmit	lost	frames.
Most	modern	LAN	technologies	(such	as	Ethernet)	use	this	method	and	leave	error
resolution	to	higher	layers.

This	is	also	termed	an	unacknowledged	connectionless	service.

Half-duplex	connectionless	-	each	frame	sent	is	individually	acknowledged.	Frames
which	are	lost	or	garbled	are	retransmitted	if	the	receiver	requests	them	(again)	or	after	a
suitable	timeout.

This	is	also	termed	an	acknowledged	connectionless	service.

Full-duplex	connection-oriented	-	each	frame	is	individually	numbered	and	is
guaranteed	by	the	data	link	layer	to	be	received	once	and	only	once	and	in	the	right	order.
The	result	is	that	the	data	link	layer	presents	a	reliable	frame	stream	to	the	network	layer.

This	is	also	termed	an	acknowledged	connected	service.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p2,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 3 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Some	Declarations	for	Introductory	Protocols

Our	early	protocols	will	benefit	from	all	using	the	same	datatypes,	so	for	simplicity	we'll	define
some	representative	ones	first.

As	our	protocols	"evolve"	we'll	need	to	distinguish	different	types	of	data	link	frames	from	each
other.

We	can	represent	each	data	link	frame	as	a	structure	in	programming	languages	that	support	a
'byte'	datatype,	and	permit	a	program	to	access/copy	these	bytes	using	their	memory
addresses.	Notice	that	the	frame	itself	consists	of	a	header	section	and	the	actual	data	to	be
sent.	We'll	need	to	extend	this	header	structure	as	our	protocols	develop.

#define		MAX_DATA_SIZE								1000

typedef	struct	{
//	firstly,	the	frame's	header
				int							len;												//	length	of	the	payload,	only

//	followed	by	the	payload
				char						data[MAX_DATA_SIZE];
}	FRAME;

#define	FRAME_HEADER_SIZE					(sizeof(FRAME)	-	sizeof(FRAME.data))

#define	FRAME_SIZE(f)									(FRAME_HEADER_SIZE	+	f.len)

Importantly,	even	though	we've	defined	our	FRAME	structure	to	be	of	a	fixed	(large)	size,	we	hope
to	avoid	sending	the	whole	(large)	FRAME	if	possible.	For	example,	while	the	standard	Ethernet
frame	may	carry	up	to	1500bytes	of	data,	it	may	only	need	to	carry,	say,	80bytes.

In	fact,	protocols	often	exchange	frames	consisting	of	only	the	header	(e.g.	acknowledgment
frames).	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p3,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 4 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Unrestricted	Simplex	Protocol

Assuming:

a	(unidirectional)	error	free	channel,
that	the	sender's	network	layer	has	unlimited	data	to	send	(being	"pushed	down"	from
above),	and
that	the	receiver's	network	layer	has	an	infinite	buffer	to	receive	the	data	(being	"pushed
up"	from	below).
that	the	functions	READ_xxx_LAYER()	and	WRITE_xxx_LAYER()	block	until	their	actions
are	complete	-	they	execute	synchronously.

In	the	sender:

FRAME	frame;
int			len,	link	=	1;

while(true)	{
				READ_NETWORK_LAYER(frame.data,	&len);
				frame.len	=	len;
				WRITE_PHYSICAL_LAYER(link,	&frame,	FRAME_SIZE(frame));
}

In	the	receiver:

FRAME	frame;
int			len,	link;

while(true)	{
				READ_PHYSICAL_LAYER(&link,	&frame,	&len);
				WRITE_NETWORK_LAYER(frame.data,	frame.len);											
}

Note:	when	passing	an	array	to	a	function	in	C,	as	we	do	for	our	frame's	payloads,	we	do	not
need	to	place	the	'&'	operator	in	front	of	the	array's	name.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p4,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 5 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Half-Duplex	Stop-and-Wait	Protocol

Next,	we'll	remove	the	assumption	that	the	receiver	can	safely	receive	and	store	an	infinite
amount	of	data.

When	this	happens,	we	say	that	the	(fast)	sender	floods	the	receiver,	and	the	"drowning"
receiver	needs	to	control	the	rate	at	which	data	is	received.

For	now,	we'll	keep	the	assumption	that	the	unidirectional	channel	is	error-free.

In	the	sender:

FRAME	frame;
int			len,	link;

while(true)	{
				READ_NETWORK_LAYER(frame.data,	&len);
				frame.len		=	len;
				link							=	1;
				WRITE_PHYSICAL_LAYER(link,	&frame,	FRAME_SIZE(frame));

				READ_PHYSICAL_LAYER(&link,	&frame,	&len);
}

In	the	receiver:

FRAME	frame;
int			len,	link;

while(true)	{
				READ_PHYSICAL_LAYER(&link,	&frame,	&len);
				WRITE_NETWORK_LAYER(frame.data,	frame.len);

				link	=	1;
				WRITE_PHYSICAL_LAYER(link,	&frame,	1	/*	one	byte	*/);	
}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p5,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 6 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Detecting	Frame	Corruption

Next,	we'll	remove	the	assumption	that	the	channel	is	error	free;	frames	(only)	may	now	be
corrupted	during	transmission,	introducing	the	need	for	checksums.	We'll	now	introduce	a
FRAMETYPE	to	distinguish	what	a	frame	is	being	used	for.

Known	(agreed	to)	by	both	the	sender	and	receiver:

typedef	enum	{	DLL_DATA,	DLL_ACK,	DLL_NACK	}	FRAMETYPE;

typedef	struct	{
//	firstly,	the	frame's	header
				FRAMETYPE	type;
				int							checksum;									//	checksum	of	the	whole	frame
				int							len;														//	length	of	the	payload,	only	

//	followed	by	the	payload
				char						data[MAX_DATA_SIZE];
}	FRAME;

In	the	sender:

FRAME	frame,	ackframe;
int			link,	len,	acklen;

while(true)	{
				READ_NETWORK_LAYER(frame.data,	&len);

				frame.type					=	DLL_DATA;
				frame.len						=	len;
				frame.checksum	=	0;
				frame.checksum	=	checksum_crc16(&frame,	FRAME_SIZE(frame));

				while(true)	{
								link	=	1;
								WRITE_PHYSICAL_LAYER(link,	&frame,	FRAME_SIZE(frame));

								READ_PHYSICAL_LAYER(&link,	&ackframe,	&acklen);
								if(ackframe.type	==	DLL_ACK)
												break;
				}
}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p6,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 7 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Detecting	Frame	Corruption,	continued

In	the	receiver	we	need	to	ensure	that	the	checksum	as	received	is	in	fact	the	checksum	that
the	sender	should	have	calculated.	
If	the	two	are	different,	then	the	frame	has	been	corrupted	(Labsheet	1).

In	the	receiver:

FRAME	frame;
int			len,	link;
int			got_checksum;

while(true)	{
				READ_PHYSICAL_LAYER(&link,	&frame,	&len);

				got_checksum			=	frame.checksum;
				frame.checksum	=	0;

				if(got_checksum	==	checksum_crc16(&frame,	len))	{
								WRITE_NETWORK_LAYER(frame.data,	frame.len);
								frame.type	=	DLL_ACK;
				}
				else	{
								frame.type	=	DLL_NACK;
				}

				link						=	1;
				frame.len	=	0;
				WRITE_PHYSICAL_LAYER(link,	&frame,	FRAME_SIZE(frame));
}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p7,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 8 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Detecting	Frame	Loss

There	is	still	the	possibility	that	errors	on	the	channel	cause	the	frames	to	be	lost	entirely.	In
particular,	the	DLL_ACK	and	DLL_NACK	frames	themselves	may	be	lost	(or	corrupted?)	and	the
sender	will	be	left	waiting	forever.

The	big	question	is:	how	long	should	the	sender	wait	for	an	acknowledgement?

To	handle	these	new	problems	we	need	to	change	our	programming	paradigm,	from	the
standard	iterative	one	(of	C)	to	an	event-driven	one	(as	with	Java's	windowing	APIs).

Moreover,	we'll	now	need	to	handle	the	concept	of	time	in	our	programs	and	implement
protocols	which	perform	nominated	actions	when	interesting	events	occurs.

In	the	sender:

#define	ESTIMATED_ROUND_TRIP_TIME					20000				//	microseconds

FRAME	frame;																			//	global	variables
int			len;

void	network_layer_ready(...)		//	called	iff	ready
{
				READ_NETWORK_LAYER(frame.data,	&len);

				STOP_NETWORK_LAYER();

				frame.type					=	DLL_DATA;
				frame.len						=	len;
				frame.checksum	=	0;
				frame.checksum	=	checksum_crc16(&frame,	FRAME_SIZE(frame));

				link	=	1;
				WRITE_PHYSICAL_LAYER(link,	&frame,	FRAME_SIZE(frame));
				start_timer(ESTIMATED_ROUND_TRIP_TIME);
}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p8,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 9 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Detecting	Frame	Loss,	continued

Still	in	the	sender:

#define	ESTIMATED_ROUND_TRIP_TIME					20000				//	microseconds

void	physical_layer_ready(...)				//	frame	arrived
{
				FRAME	ackframe;
				int			link,	acklen;											//	local	variables

				stop_timer();

				READ_PHYSICAL_LAYER(&link,	&ackframe,	&acklen);

				if(ackframe.type	==	DLL_ACK)	{
								start_network_layer();
				}
				else	{
								link	=	1;
								WRITE_PHYSICAL_LAYER(link,	&frame,	FRAME_SIZE(frame));

								start_timer(ESTIMATED_ROUND_TRIP_TIME);
				}
}

void	timer_has_expired(...)							//	a	timeout
{
				int		link	=	1;

				WRITE_PHYSICAL_LAYER(link,	&frame,	FRAME_SIZE(frame));

				start_timer(ESTIMATED_ROUND_TRIP_TIME);
}

There	should	be	no	need	to	change	the	receiver!	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p9,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 10 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Using	simulation	to	develop	network	protocols

In	the	following	slides	we	demonstrate	that	a	wide	variety	of	experiments	in	WAN,	LAN,	and
WLAN	networking	can	be	undertaken	and	evaluated	through	quality,	interactive,	simulation
tools.

Important	concepts	of	computer	networking,	including:

detection	and	recovery	from	data	corruption	and	loss,
collision	detection	and	avoidance,
data-link	protocols,
table-driven	and	on-demand	routing	algorithms,
wireless	and	mobile	algorithms,	and
the	security	of	networks,

may	all	be	investigated.

The	ideas	discussed	here	are	well	supported	by	thoroughly	tested	network	simulation	software
that	has	been	refined	over	twenty	years	and	used	by	thousands	of	undergraduate	students	at
hundreds	of	institutions	world-wide.

cnet	development	has	been	supported	by	an
ACM-SIGCSE	Special	Project	Grant

and	an	Australian	Apple	University
Consortium	Scholarship,

and	was	selected	by	William	Stalling	to	support	his	textbook	Data	and	Computer
Communications.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p10,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php
https://sigcse.org/programs/special/index.html
https://auc.edu.au
http://williamstallings.com/DataComm/DCC10e-Student/

CITS3002	Computer	Networks		

←	prev 11 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Software	Simulations	Offer	Many	Benefits

The	1982	Nobel	prize	winner,	Kenneth	G.	Wilson	(then	from	Physics	at	Cornell	University),
outlined	3	paradigms	of	science:

Theory
Repeatable	experimentation
Software	simulation

"A	software	simulation	is	worth	a	thousand	wires."	-	Prof.	John	Lions

	

Often,	"real"	networks	cannot	be	used	to	test	student-written	low-level	protocol	software.

Software	simulations	provide	a	far	higher	degree	of	experimentation	than	possible	with	limited
hardware	and	software	resources.

Moreover,	extensible	simulation	environments	may	be	driven	by	real,	observed	measurements,
such	as	network	trace-data.

Nearly	all	research	into	computer	networking,	such	as	the	development	and	evaluation	of	new
protocols	and	standards	published	in	journals	and	conferences,	is	supported	by	simulations
which,	often,	provide	their	source	code	and	data.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p11,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 12 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Benefits	of	Network	Simulation

Network	simulation	provides	almost	complete	control	over	teaching	the	lower	level	networking
protocols.

Many	different	aspects	of	networking	can	be	controlled	and	examined	on	very	dynamic
"networks"	-

network	topology,	
message	arrival	rate,	
message	size	and	destination,	
transmission	speeds	and	delays,	
frame	corruption	and	loss,	
extent	of	node	and	link	failures,	
signal	strength	and	propagation	models,	and	
node	mobility.

Real	network	infrastructure	is	static	and	too	reliable	-	Error	rates	on	local	area	networks
are	typically	1:109	or	better.	Errors	need	to	occur	about	8	orders	of	magnitude	more
frequently!

Centralized	control	of	a	network	permits	the	accurate	management	and	collection	of
statistics	and	their	analysis.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p12,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 13 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

...	And	The	Pitfalls

The	choice	of	a	simulation	environment	can	constrain	the	types	of	practical	exercises	and
discourage	creativity.

The	wrong	choice	of	network	simulator	can	seriously	impede	a	student's	learning,	and
dissuade	experimentation.

Purpose	written	simulators	have	constrained	domains	-	transport-layer	protocol	testbeds
do	not	actually	''transmit''	the	data	frames.

Very	few	students	are	enthused	by	simulations	whose	role	is	to	verify	or	develop	statistical
models.

Students	can	perceive	a	simulation	as	mickey-mouse	-	"...	but	that	would	never	happen".

Too	much	control/variation	in	a	simulation	can	overwhelm	a	student	-	practical	work	must
be	clearly	specified.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p13,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 14 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	cnet	Networking	Simulator

The	cnet	network	simulator	enables	experimentation	with	various	data-link	layer,	network	layer,	routing	and	transport	layer	networking	protocols	in	networks	consisting	of	any
combination	of	wide	area	networks	(WANs),	local	area	networks	(LANs),	and	wireless	local	area	networks	(WLANs).

compile									=	"stopandwait.c"
icon												=	"macintosh"

ber													=	0.000005,

winx												=	500
winy												=	300

mapwidth								=	500px
mapheight							=	300px

host	Perth	{
				x											=	130px
				y											=	130px
				messagerate	=	1500ms
}
host	Sydney	{
				x											=	380px
				y											=	130px
				messagerate	=	3500ms
				wan	to	Perth	{}
}

Network	protocols	may	be	written	in	C99	or	C++.	The	simulator	invokes	native	compilers,	such	as	gcc	or	clang,	to	compile	and	link	protocols.
This	code	is	executed	by	the	simulator	natively	-	neither	interpreted	nor	emulated.	Execution	is	within	a	single	Linux/UNIX	process.	Students	do	not	need	to	write	any
scheduling	code.
Under	the	GUI	(written	using	the	wxWidgets	toolkit)	many	attributes	of	the	network	may	be	modified	while	the	simulator	is	running.	Students	do	not	need	to	write	any
windowing	code.
Data	frames	are	truly	passed	between	nodes.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p14,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 15 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	cnet	Networking	Model

Network	nodes	are	connected	by	one	or	more	WAN	(point-to-point)	links,	LAN	segments
(Ethernet),	or	WLAN	(wireless	Ethernet)	interfaces.
cnet	provides	only	the	highest	(Application)	and	lowest	(Physical)	layers.	The	number	of
internal	layers	to	be	designed	and	implemented	by	the	professor	(for	instruction)	or	the
student	(for	edification	and	assessment)	depends	on	the	complexity/functionality	of	the
protocols	being	considered.

Execution	proceeds	by	informing	the	student-written	protocols	that	events	of	interest	have
occured.	The	protocols	are	expected	to	respond	to	these	events.
Each	node	in	the	network	appears	to	have	its	own	operating	system,	and	can	call	almost
all	standard	C	library	functions,	including	screen	and	file	I/O,	and	memory	allocation.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p15,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 16 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Defining	networks	using	Topology	Files

cnet	accepts	(many)	command	line	options	and	a	topology	file	(or	generates	a	random	network).	Network	topologies	may	consist	of	wide-area
networks	(WANs),	local-area-networks	(LANs),	and	wireless	local-area-networks	(WLANs):

compile										=	"protocol.c"
messagerate						=	500ms,
propagationdelay	=	700ms,
probframecorrupt	=	3

host	perth	{
				x=100,	y=100
				messagerate		=	1000ms,

				link	to	melbourne
}

host	melbourne	{
				east	of	perth
				nodemtbf	=	200s,

				link	to	perth
								{	probframeloss	=	2	}
}

compile								=	"ethertest.c"
minmessagesize	=	100bytes
maxmessagesize	=	1200bytes

lansegment	CSSE	{
				lan-bandwidth	=	10Mbps
}

host	budgie	{
			ostype	=	"linux"
			lan	to	CSSE	{
								nicaddr	=	00:90:27:62:58:84
			}
}

host	bunny	{
			lan	to	CSSE	{
								nicaddr	=	00:90:27:62:58:12
			}
}

compile									=	"mobile1.c	newswalk.o"

mapwidth								=	700m
mapheight							=	600m

mapimage								=	"campus.gif"
icontitle							=	"%n"

mobile	mobile0	{	wlan	{	}	}
mobile	mobile1	{	wlan	{	}	}
mobile	mobile2	{	wlan	{	}	}
mobile	mobile3	{	wlan	{	}	}
mobile	mobile4	{	wlan	{	}	}
mobile	mobile5	{	wlan	{	}	}
mobile	mobile6	{	wlan	{	}	}
mobile	mobile7	{	wlan	{	}	}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p16,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 17 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

A	complete	stopandwait	Data-Link	Layer	protocol

We	now	present	a	complete	example	of	the	stopandwait	Data-Link	Layer	protocol.	This
implementation	is	based	on	Tanenbaum's	'protocol	4',	5th	edition,	p230.	Some	other	textbook
authors	refer	to	the	same	protocol	as	the	IRQ	protocol.

This	protocol	employs	only	data	and	acknowledgement	frames	-	piggybacking	and	negative
acknowledgements	are	not	supported.

We	first	define	some	global	types,	data	structures,	and	variables	for	this	protocol.	It	is	important
to	understand	that	each	of	these	is	unique	to	each	of	the	nodes	in	the	simulation.

#include	<cnet.h>
#include	<stdlib.h>
#include	<string.h>

typedef	enum				{	DL_DATA,	DL_ACK	}			FRAMEKIND;

typedef	struct	{
				char								data[MAX_MESSAGE_SIZE];
}	MSG;

typedef	struct	{
				FRAMEKIND				kind;							//	only	ever	DL_DATA	or	DL_ACK
				size_t							len;								//	the	length	of	the	msg	field	only
				int										checksum;			//	checksum	of	the	whole	frame
				int										seq;								//	only	ever	0	or	1
				MSG										msg;
}	FRAME;

#define	FRAME_HEADER_SIZE		(sizeof(FRAME)	-	sizeof(MSG))
#define	FRAME_SIZE(f)						(FRAME_HEADER_SIZE	+	f.len)

static		int													ackexpected													=	0;
static		int													nextdatatosend										=	0;
static		int													dataexpected												=	0;

static		MSG													lastmsg;
static		size_t										lastlength														=	0;
static		CnetTimerID					lasttimer															=	NULLTIMER;

Although	each	of	the	nodes	will	typically	use	the	same	source	code	file,	each	node	has	its	own
local	copy	of	its	variables.	It	is	not	possible	for	one	node	to	modify	the	variables	in	another
node.	The	only	way	for	the	nodes	to	communicate	is	via	the	Physical	Layer.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p17,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 18 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Rebooting	each	node

We	next	look	at	the	mandatory	reboot_node()	function,	and	the	simple	handler	of	EV_DEBUG1
which	simply	prints	the	runtime	state	of	the	stopandwait	protocol.

EVENT_HANDLER(showstate)
{
				printf("\tackexpected\t=	%d\n\tnextdatatosend\t=	%d\n\tdataexpected\t=	%d\n",
						ackexpected,	nextdatatosend,	dataexpected);

}

EVENT_HANDLER(reboot_node)
{
				if(OS->nodenumber	>	1)	{
	fprintf(stderr,"This	is	not	a	2-node	network!\n");
	exit(EXIT_FAILURE);
				}

				CHECK(CNET_set_handler(EV_APPLICATIONREADY,	application_ready,	0));
				CHECK(CNET_set_handler(EV_PHYSICALREADY,				physical_ready,	0));
				CHECK(CNET_set_handler(EV_TIMER1,											timeouts,	0));
				CHECK(CNET_set_handler(EV_DEBUG1,											showstate,	0));

				CHECK(CNET_set_debug_string(EV_DEBUG1,	"State"));

				if(OS->nodenumber	==	1)	{
	CNET_enable_application(ALLNODES);
				}
}

Two	things	of	note:

Embedding	a	cnet	function	call	in	CHECK()	provides	a	convenient	way	to	check	that	the
call	succeeded.
The	last	3	lines	ensure	that	data	traffic	only	flows	one	way,	and	its	acknowledgments	only
flow	the	other	
(which	is	much	easier	to	debug).

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p18,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 19 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Receiving	new	messages	for	delivery

The	first	thing	of	interest	that	will	occur	after	each	node	has	rebooted	is	that	one	node's
Application	Layer	will	generate	and	announce	a	new	message	for	delivery.

We	handle	the	EV_APPLICATIONREADY	event	with	our	application_ready()	function:

EVENT_HANDLER(application_ready)
{
				CnetAddr	destaddr;

				lastlength		=	sizeof(MSG);
				CHECK(CNET_read_application(&destaddr,	&lastmsg,	&lastlength));
				CNET_disable_application(ALLNODES);

				printf("down	from	application,	seq=%d\n",nextdatatosend);

				transmit_frame(&lastmsg,	DL_DATA,	lastlength,	nextdatatosend);

				nextdatatosend	=	1	-	nextdatatosend;
}

Of	note:

Assignment	statements	such	as		sequence	=	1	-	sequence;				are	used	to	quickly	toggle
between	the	values	0	and	1.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p19,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 20 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Transmitting	across	the	Physical	Layer

Our	transmit_frame()	function	performs	the	final	actions	before	something	is	transmitted	across	the
Physical	Layer.

Parameters	provide	the	message	to	be	transmitted,	an	indication	as	to	whether	it	is	data	or	an
acknowledgment,	its	length,	and	its	sequence	number	as	part	of	the	stopandwait	protocol.

void	transmit_frame(MSG	*msg,	FRAMEKIND	kind,	size_t	msglen,	int	seqno)
{
				FRAME							f;

				f.kind						=	kind;
				f.seq							=	seqno;
				f.checksum		=	0;
				f.len							=	msglen;

				switch(kind)	{
						case	DL_ACK	:
								printf("ACK	transmitted,	seq=%d\n",seqno);
								break;

						case	DL_DATA	:	{
								CnetTime			timeout;

								memcpy(&f.msg,	msg,	msglen);
								printf("	DL_DATA	transmitted,	seq=%d\n",seqno);

	timeout			=	(FRAME_SIZE(f)*8000000	/	OS->links[1].bandwidth)	+	OS->links[1].propagationdelay;
								lasttimer	=	CNET_start_timer(EV_TIMER1,	timeout,	0);
								break;
						}
				}
				msglen						=	FRAME_SIZE(f);
				f.checksum		=	CNET_ccitt((unsigned	char	*)&f,	(int)msglen);

				CHECK(CNET_write_physical(1,	&f,	&msglen));
}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p20,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 21 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Handling	the	arrival	of	new	physical	frames

EVENT_HANDLER(physical_ready)
{
				FRAME								f;
				size_t							len;
				int										link,	checksum;

				len									=	sizeof(FRAME);
				CHECK(CNET_read_physical(&link,	&f,	&len));

				checksum				=	f.checksum;
				f.checksum		=	0;
				if(CNET_ccitt((unsigned	char	*)&f,	(int)len)	!=	checksum)	{
								printf("\t\t\t\tBAD	checksum	-	frame	ignored\n");
								return;											//	bad	checksum,	ignore	frame
				}

				switch(f.kind)	{
						case	DL_ACK	:	{
								if(f.seq	==	ackexpected)	{
												printf("\t\t\t\tACK	received,	seq=%d\n",	f.seq);
												CNET_stop_timer(lasttimer);
												ackexpected	=	1-ackexpected;
												CNET_enable_application(ALLNODES);
								}
								break;
						}
						case	DL_DATA	:	{
								printf("\t\t\t\tDATA	received,	seq=%d,	",	f.seq);
								if(f.seq	==	dataexpected)	{
												printf("up	to	application\n");
												len	=	f.len;
												CHECK(CNET_write_application(&f.msg,	&len));
												dataexpected	=	1-dataexpected;
								}
								else
												printf("ignored\n");

								transmit_frame((MSG	*)NULL,	DL_ACK,	0,	f.seq);
								break;
						}
				}
}

There	it	is;	a	complete	stop-and-wait	Datalink	Layer	protocol,	addressing	frame	corruption	and
loss	between	two	nodes.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p21,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 22 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Improving	The	stop-and-wait	Protocol

We	naturally	ask	'Can	the	stop-and-wait	protocol	be	improved?'

To	answer	this	we	first	need	to	measure	its	performance	to	evaluate	potential	improvements.

Our	protocols	will	always	be	subject	to	propagation	delays	and	finite	bandwidth	-	these	cannot
be	overcome.	However,	our	protocols	will	necessarily:

add	extra	network	traffic	with	frame	headers,
degrade	an	operating	system	with	additional	interrupts,	and
introduce	delays	in	frame	transmission.

Minimizing	these	overheads	will	help	improve	various	efficiencies.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p22,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 23 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Reducing	The	Number	Of	Data	Link	Frames

At	present	we	have	both	DL_DATA	and	DL_ACK	frames	travelling	in	each	direction.

The	small	DL_ACK	frames	consume	much	bandwidth,	and	increase	the	number	of	hardware
interrupts	that	must	be	serviced	by	the	operating	system.

Instead,	we	use	frame	piggybacking:

When	the	receiver	gets	a	DL_DATA	frame,	it	does	not	immediately	send	an	DL_ACK	frame.
The	receiver	waits	until	it	has	its	own	outgoing	DL_DATA	frame,	and	piggybacks	the	pending
DL_ACK	in	the	outgoing	header.
If	no	DL_DATA	frame	becomes	available	in	a	short	time,	the	receiver	must	send	an	DL_ACK
frame,	by	itself.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p23,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 24 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Data	Link	Layer	-	Sliding	Window	Protocols

Although	we	have	seen	some	possible	improvements	in	efficiency	in	our	data	link	layer
protocols	to	date,	we	still	have	one	significant	shortcoming.	The	sender	must	wait	until	an
acknowledgment	arrives	from	the	receiver.

Over	links	with	long	propagation	delays	(such	as	a	satellite	link	with	a	540msec	delay)	this
results	in	very	inefficient	use	of	the	available	bandwidth.

There	is	thus	strong	motivation	to	keep	the	sender	and	the	medium	'busy'.	We	can	achieve	this
by	permitting	the	sender	to	send	more	than	a	single	frame	while	waiting	for	the	first
acknowledgment.

In	sliding	window,	or	clock,	protocols	we	have	these	properties:

the	sender	has	a	sending	window	consisting	of	a	list	(array)	of	frames	that	have	been
sent	but	not	acknowledged.
The	sender's	window	size	grows	as	more	frames	are	sent	but	not	yet	acknowledged.
The	receiver	has	a	receiving	window	consisting	of	frames	it	is	willing	to	accept.	The
receiver's	window	size	remains	constant.
Each	frame	being	sent	has	a	sequence	number	from	0	to	2n-1	(which	fits	in	n	bits).	Stop-
and-wait	and	PAR	have	n=1.
A	window	size	of	1	implies	that	frames	are	only	accepted	in	order.

Sliding	window	protocols	remain	synchronized	under	conditions	of	premature	timeouts,	garbled
frames	and	lost	frames.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p24,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 25 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

Frame	Pipelining

If	the	distance	(in	time)	between	sender	and	receiver	is	long	(e.g.	a	satellite	transmission	taking
540	milliseconds	round-trip	time),	or	expensive	(e.g.	single-company	leased	lines),	then
bandwidth	should	be	maximized.

The	solution	is	to	permit	multiple	outstanding	frames.

This	is	made	possible	by	having	the	sender	transmit	many	frames	until	the	medium	is	'full',	and
then	wait	for	acknowledgements	indicating	that	frames	have	been	received	correctly	before
proceeding.

The	obvious	question	is	'what	do	we	do	when	either	data	frames	or	acknowledgements	are
lost?'

We	shall	look	at	two	solutions:

the	go-back-N	protocol,	and
the	selective	repeat	protocol.

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p25,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 26 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	go-back-N	Protocol

The	first	solution,	termed	go-back-N,	requires	the	receiver	to	simply	discard	all	frames	after	a	bad	one.

The	sender's	window	size	corresponds	to	the	number	of	frames	transmitted	by	not	yet	received	-
it	varies,	grows	and	shrinks,	over	time.
The	receiver's	window	size	corresponds	to	the	number	of	frames	that	the	receiver	is	willing	to
receive	-	it	is	always	fixed,	1.

In	the	following	diagram,	from	[Tan	5/e],	the	sender's	transmitted	frames	appear	in	the	top	row,	and
received	frames	appear	in	the	bottom	row.	The	frames	are	'offset'	because	they	take	time	to	be
encoded	onto	the	media	and	to	then	travel	through	the	media.	The	frames	are	not	necessarily	all	the
same	size,	nor	necessarily	transmitted	at	regular	intervals.

	

	

Notice	the	waste	of	bandwidth	-	because	the	receiver	only	buffers	a	single	frame,	all	frames	transmitted
after	a	lost	(or	corrupted	frame)	require	later	re-transmission	-	we	go	back	N	frames	and	then	restart
transmitting.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p26,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 27 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

The	Selective	Repeat	Protocol

The	go-back-N	protocol	wastes	bandwidth	on	retransmitted	frames	if	the	error	rate	is	high.

Alternatively,	in	the	selective	repeat	protocol,	the	receiver	can	buffer	all	received	frames	(up	to	some
limit)	and	simply	wait	for	the	bad	frame	to	be	retransmitted.

The	sender's	window	size	corresponds	to	the	number	of	frames	transmitted	by	not	yet	received	-
it	varies,	grows	and	shrinks,	over	time.
The	receiver's	window	size	corresponds	to	the	number	of	frames	that	the	receiver	is	willing	to
receive	-	it	too	varies	over	time,	and	is	always	≥	1.

	

	

If	the	receiver	receives	a	corrupted	frame,	or	one	that	is	not	at	the	lower	edge	of	its	receiving	window,	a
negative	acknowledgment	is	sent,	indicating	the	highest	correct	frame	that	has	been	received	to	date.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p27,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 28 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

A	Problem	with	Selective	Repeat

Suppose	that	we	use	3	bits	to	represent	the	sequence	numbers	(0..7),	even	if	we	use	a	larger
integer	to	store	the	sequence	number	in	an	actual	implementation.

Now,	imagine	that	the	following	events	happen,	in	order	:

1.	 Sender	sends	frames	0..6.
2.	 All	arrive	correctly	into	the	receiver's	window	as	0..6,	the	receiver	advances	its	window	to

7,0,1,...,5	and	acknowledges	the	frames.
3.	 A	"small	disaster"	occurs	and	no	acknowledgements	are	received.
4.	 The	sender	times	out	and	resends	frame	0.
5.	 The	receiver	gets	frame	0,	which	is	within	its	receiving	window	and	says	thanks.	

The	receiver	acknowledges	for	frame	6	as	it	is	still	waiting	on	7.
6.	 Sender	now	sends	new	frames	7,0,1,...,5.
7.	 Frame	7	is	received	and	frames	7	and	(the	duplicated)	0	go	off	to	the	network	layer.	Oops!

The	Solution	:	make	window	sizes	half	the	size	of	the	maximum	sequence	number.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p28,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 29 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

A	Sample	selective-repeat	Protocol

Here	we	develop	a	sample	selective-repeat	protocol	for	the	data	link	layer.

We'll	assume	that	the	size	of	the	sender's	and	receiver's	windows	have	been	defined	as	integer
constants	with	NRBUFS	and	MAXSEQ.

We	omit	the	declaration	of	structures	and	variables,	but	note	that	the	sender	will	need	a
number	of	timers	(one	per	outstanding	frame),	and	the	receiver	needs	record	which	frames
have	arrived	(but	not	yet	to	be	sent	to	the	layer	above).

#include	<cnet.h>
#include	<stdlib.h>
#include	<stdbool.h>

FRAME		*inframe;
FRAME		*outframe;

//		other	declarations	omitted....

EVENT_HANDLER(reboot_node)
{
				inframe			=	calloc(NRBUFS,	sizeof(FRAME));
				outframe		=	calloc(NRBUFS,	sizeof(FRAME));

				timers				=	calloc(NRBUFS,	sizeof(CnetTimerID));

				arrived			=	calloc(NRBUFS,	sizeof(bool));

				//	we	really	should	check	if	the	allocations	were	successful!

				for(int	b=0	;	b	<	NRBUFS	;	b++)	{
	arrived[b]				=	false;
	timers[b]					=	NULLTIMER;
				}

				CHECK(CNET_set_handler(EV_APPLICATIONREADY,	appl_ready,	0));
				CHECK(CNET_set_handler(EV_PHYSICALREADY,				physical_ready,	0));
				CHECK(CNET_set_handler(EV_TIMER1,											DLL_timeouts,	0));

				CNET_enable_application(ALLNODES);
}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p29,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 30 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

A	Sample	selective-repeat	Protocol,	continued

When	the	layer	above	(here,	the	Application	Layer)	provides	a	message	for	delivery,	we	must	now
buffer	that	message	for	possible	future	retransmission.	Care	is	required	to	use	the	correct	buffer!

As	we	also	have	a	finite	number	of	buffers	in	the	sender,	we	must	choke	or	throttle	the	Application
Layer	when	our	buffers	are	exhausted.

EVENT_HANDLER(appl_ready)
{
				CnetAddr	dest;
				int						nf			=	nextdatatosend	%	NRBUFS;

				outframe[nf].len			=	MAX_MESSAGE_SIZE;

				CHECK(CNET_read_application(&dest,	outframe[nf].msg,	&(outframe[nf].len)));

				if(++nbuffered	==	NRBUFS)	{									//	out	of	buffer	space!
	CNET_disable_application(dest);
				}
				transmit_frame(&outframe[nf],	DL_DATA,	FRAME_SIZE(outframe[nf]),	nextdatatosend);
				inc(&nextdatatosend);
}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p30,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 31 next	→ 	CITS3002 	help3002 	CITS3002	schedule 	

A	Sample	selective-repeat	Protocol,	continued

We	have	most	work	to	perform	when	a	frame	arrives	at	the	Physical	Layer	-	either	some
DL_DATA	or	an	DL_ACK.

As	with	earlier	protocols,	we	must	first	determine	if	the	frame	has	been	corrupted.	A	more
complex	selective-repeat	protocol	may	incorporate	DL_NACKs.

EVENT_HANDLER(physical_ready)
{
				FRAME					frame;
				int							link,	checksum;
				size_t				len;

				len					=	sizeof(FRAME);
				CHECK(CNET_read_physical(&link,	&frame,	&len));

				checksum										=	frame.checksum;
				frame.checksum				=	0;

				if(CNET_ccitt((unsigned	char	*)&frame,	len)	!=	checksum)	{
								return;							//	bad	checksum,	simply	ignore	frame
				}
				if(frame.kind	==	DL_ACK)	{
								if(between(ackexpected,	frame.seqno,	nextdatatosend))	{

												while(between(ackexpected,	frame.seqno,	nextdatatosend))	{	
																--nbuffered;										//	buffer	now	available

																CNET_stop_timer(timers[ackexpected	%	NRBUFS]);
																timers[ackexpected	%	NRBUFS]	=	NULLTIMER;
																inc(&ackexpected);
												}
												CNET_enable_application(ALLNODES);
								}
				}

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p31,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

CITS3002	Computer	Networks		

←	prev 32 	CITS3002 	help3002 	CITS3002	schedule 	

A	Sample	selective-repeat	Protocol,	continued

When	a	DL_DATA	frame	arrives,	we	must	ensure	that	it	is	within	the	receiver's	range	of	expected
frames.

For	each	frame	in	a	sequence	that	have	arrived	successfully,	we	send	it	to	the	layer	above.

//		this	is	the	continuation	of	event-handler		physical_ready

				else	if(frame.kind	==	DL_DATA)	{
	if(between(dataexpected,	frame.seqno,	toofar)	&&
					arrived[frame.seqno	%	NRBUFS]	==	false)	{

					arrived[frame.seqno	%	NRBUFS]				=	true;
					inframe[frame.seqno	%	NRBUFS]				=	frame;			//	copies	frame

					while(arrived[dataexpected	%	NRBUFS])	{
		len			=	inframe[dataexpected	%	NRBUFS].len;
		CHECK(CNET_write_application(inframe[dataexpected	%	NRBUFS].msg,	&len));

		arrived[dataexpected	%	NRBUFS]	=	false;
		inc(&dataexpected);
		inc(&toofar);
					}
	}
	else	{
					;				//	frame	is	ignored/
								}
	transmit_frame(NULL,DL_ACK,0,(dataexpected+MAXSEQ)%(MAXSEQ+1));
				}
}

We	do	not	send	an	DL_ACK	for	each	frame	received;	instead	we	simply	acknowledgment	the
'highest'	sequence	number	correctly	received	to	date.

This	DL_ACK	implies	all	'lower'	sequence	numbers	have	been	received	as	well.	

CITS3002	Computer	Networks,	Lecture	3,	Data	Link	Layer	protocols,	p32,	13th	March	2024.

http://teaching.csse.uwa.edu.au/units/CITS3002/index.php
https://secure.csse.uwa.edu.au/run/help3002
http://teaching.csse.uwa.edu.au/units/CITS3002/schedule.php

	The Data Link Layer
	Three Levels of Data Link Layer Complexity
	Some Declarations for Introductory Protocols
	The Unrestricted Simplex Protocol
	The Half-Duplex Stop-and-Wait Protocol
	Detecting Frame Corruption
	Detecting Frame Corruption, continued
	Detecting Frame Loss
	Detecting Frame Loss, continued
	Using simulation to develop network protocols
	Software Simulations Offer Many Benefits
	The Benefits of Network Simulation
	... And The Pitfalls
	The cnet Networking Simulator
	The cnet Networking Model
	Defining networks using Topology Files
	A complete stopandwait Data-Link Layer protocol
	Rebooting each node
	Receiving new messages for delivery
	Transmitting across the Physical Layer
	Handling the arrival of new physical frames
	Improving The stop-and-wait Protocol
	Reducing The Number Of Data Link Frames
	The Data Link Layer - Sliding Window Protocols
	Frame Pipelining
	The go-back-N Protocol
	The Selective Repeat Protocol
	A Problem with Selective Repeat
	A Sample selective-repeat Protocol
	A Sample selective-repeat Protocol, continued
	A Sample selective-repeat Protocol, continued
	A Sample selective-repeat Protocol, continued

