

Workshop 2: Approximation Algorithms

CITS3001 Algorithms, Agents and Artificial Intelligence

SLIGHTLY WRONG EQUATIONS AND IDENTITIES USEFUL FOR APPROXIMATIONS AND/OR TROLLING TEACHERS

A TABLE OF

(FOUND USING A MIX OF TRIAL-AND-ERROR, MATHEMATICA, AND ROBERT MUNAPO'S (RIES TOOL.) ALL UNITS ARE SI MKS UNLESS OTHERUISE NOTED.

RELATION:		ACCURATE TO WITHIN:
ONE LIGHT-YEAR(m)	99 ⁸	ONE PART IN 40
EARTH SURFACE (m²)	698	ONE PART IN 130
OCEANS' VOLUME (m3)	9 ¹⁹	ONE PART IN 70
SECONDS IN A YEAR	75 ⁴	ONE PART IN 400
SECONDS IN A YEAR (RENT METHOD)	525,600×60	ONE PART
AGE OF THE UNIVERSE (SECONDS)	15"	ONE PART IN 70
PLANCK'S CONSTANT	$\frac{1}{30^{\pi^e}}$	ONE PART IN 110
FINE STRUCTURE CONSTANT	140	THE HAD DNOUGH OF THE 137 CRMP
FUNDAMENTAL CHARGE	<u>3</u> 4π ^{ππ}	ONE PART IN 500
WHITE HOUSE SWITCHIBOARD	$\frac{1}{e^{\sqrt[n]{1+e\sqrt[n]{8}}}}$	
JENNY'S CONSTANT	$(7^{\frac{e}{1-e}}-9)\pi^2$	

2021, Semester 2

Tim French Dept of Computer Science and Software Engineering The University of Western Australia

An NP compete problem

- A Hamiltonian Cycle is a path through a graph that starts and ends at the same vertex , and visits every other vertex of the graph exactly once.
- Consider the problem of given a graph, finding a Hamiltonian Cycle, if one exists.
- Is this problem easier or harder than the travelling salesmen problem?
- An algorithm is *correct* if when it returns, it always gives the right answer, and is *compete* if it always returns.
- Describe a correct and complete algorithm for this problem?
- What is the most efficient correct and complete method for solving this problem?
- Describe a correct, but not complete, algorithm to solve this problem.

State space search

- Suppose we have a 0-1 knapsack problem, with *n* items, each with a weight an value, and a knapsack of size *W*.
- How would we express the solution space of this problem?
- How big is the solution space?
- What would a suitable neighbourhood function be?
- What are some search strategies that could be used? Are there any clever optimisations we can use? Are there any breaking cases where our search might fail?

Genetic Algorithms

- A genetic algorithm uses a population of candidate solutions, a machanism for mutating and combining (or breeding new solutions) and the principle of survival of the fittest to evolve a near optimal solution.
- Use these principles to build a genetic algorithm to solve the 0-1 knapsack problem. The key parts are:
 - A genome, which is a vector that represents a single solution
 - A method to *mutate* and *crossover* the genome
 - A fitness function, and
 - A selection mechanism to determine which solutions survive.
- Try implementing this algorithm and compare the results to your algorithm for Lab 2.

