WESTERN

e 4 AUSTRALIA

TO COMPLETE YOUR REGISTRATION, PLEASE. TELL US

Reinforcement |EEEEEGESE e
Learning {1

CITS3001 Algorithms, Agents and Artificial Intelligence

ANSWER QUICKLY—0UR SELF-DRIVING
CAR 1S ALMOST AT THE INTERSECTION.

S0 MUCH OF "Al" 15 JUST FIGURING OUT WAYS
TO OFFLOAD WORK ONTO RANDOM STRANGERS.

Tim French 2219, Semester 2

Department of Computer Science and Software Engineering
The University of Western Australia

Introduction

We will define and motivate
— Reinforcement learning vs. supervised learning
— Passive learning vs. active learning
— Utility learning vs. Q-learning
We will discuss passive learning in known and
unknown environments
— With emphasis on various updating schemes, esp.
« Adaptive dynamic programming
« Temporal-difference learning
We will discuss active learning

— With emphasis on the issue of
exploration vs. exploitation

We will discuss generalisation of learning

=¥ THE UNIVERSITY OF

N WESTERN
%ams? AUSTRALIA

Reinforcement Learning WESTERN

Supervised learning is where a learning agent is provided with input/output pairs
on which to base its learning
However learning is sometimes needed in less generous environments

— No examples provided

— No model of the environment

— No utility function at all!

In general, the less generous the environment, the more we need learning...

The agent relies on feedback about its performance on order to assess its
functionality
— e.g. in chess you may be told only what a legal move is, and the result of each game
— Try random moves and see what happens?
— But even if you win, which moves were good?

This is the basis of reinforcement learning
— Use rewards to learn a successful agent function

— In many complex environments, it’s the
only feasible learning option...

Aspects of reinforcement learning %, WESTERN

* |s the environment known?
— e.g. we may not know the transition model

— An unknown environment must be learned, alongside the other required functionality
Is the environment accessible?

— An accessible environment is where the state that an agent is in can be identified from
its percepts

— In an inaccessible environment, the agent must remember information about its state,
and recognise it by other means

Are rewards given only in terminal states, or in every state?
— e.g. only at the end of a game, or at other stages too?

Are rewards given only “in bulk”, or they are given for components of the utility?
— e.g. dollar returns for a gambling agent, or hints (“nice move!”)
» All feedback should be utilised!

— Usually learning is hard!

WESTERN
%am? AUSTRALIA

Passive learning vs active learning

One fundamental distinction is between passive and
active learning

Passive learning: given a fixed agent function, learn
the utilities of that function in the environment

— Essentially watch the world go by, and assess how
well things are going

Active learning: no fixed function, agent must select
actions using what has been learned so far
— I.e. learn the agent function too

— Use a problem generator to (systematically?) explore
the environment, and learn what
options exist

Passive learning agents may be associated with a
“higher-level” intelligence (a designer?) to suggest
different functions to try

— Active learning agents try to do the entire job as one

Utility learning vs Q-learning ﬂ,‘f@%ﬁm

A second fundamental distinction is between learning utilities, and simply(?)
learning actions

Utility learning: agent learns state utilities, then (subsequently) selects actions that
maximise expected utility

— Needs to know where actions can lead, so must have (or learn) a model of the
environment

— But this “deep” knowledge can mean faster learning

— cf. value iteration

Q-learning: agent learns an action-value function, i.e. the expected utility of taking
an action in a state

— Doesn’t need to know where actions lead, just learns how good they are
— “Shallow” knowledge can restrict the ability to learn
— cf. policy iteration

Passive learning in a known WESTERN

environment

Assume:
— Accessible environment
— Actions are pre-selected for the
agent
— Effects of actions are known

The aim is to learn the utility
function of the environment

The agent executes a set of trials
in the environment

— In each trial, the agent moves
from the start state to a terminal
state according to its given
function

— Its percepts identify both the
current state and the immediate
reward

e 4 AUSTRALIA

3 —_— —— —_— 3 —

2 ? T 2

] t y = o 1 0.388
1 2 3 4 1 2 3 4

(a) (b)

Figure 21.1 (a) A policy 7 for the 4 x 3 world; this policy happens to be optimal with
rewards of R(s)= — 0.04 in the nonterminal states and no discounting. (b) The utilities of
the states in the 4 x 3 world, given policy 7.

Passive learning continued

* An example trial would be

(1,1)-0.04 — (1,2).0.04 — (1,3)-0.04 — (1,2).
0.04 — (1,3).0.04 — (2,3)-0.04 — (3,3)-0.04
— (4’3)+1

» This trial generates a sample utility for
each state the agent passes through
— Assuming an additive utility function,
and working backwards

» Aset of trials generates a set of
samples for each state in the
environment

* In the simplest model, we just maintain
an average of the samples observed
for each state

« With enough trials, these estimates
will converge on the true utilities

THE UNIVERSITY OF

AUSTRALIA
SIS e 3 | 0812 | o868 | 0.918
2 ? 2 0.762 0.660
1 f ST e 1 | 0705 | 0655 | 0611 | 0.388

(a)

1

2
(b)

3

Figure 21.1 (a) A policy 7 for the 4 x 3 world; this policy happens to be optimal with

ewadsofR()= —0.04in
the states in the 4 x 3 world, given policy 7.

the nonterminal states and no discountin

g. (b) The utilities of

(L, | (1,2) | (1,3) | (2,3) | 3,3) | (4,3)
0.72 | 0.76 | 0.80 | 0.92 | 0.96 | 1.00
0.84 | 0.88

. WESTERN
Updating & AUSTRALIA

A key to reinforcement learning is the update function

The Bellman equation (and our intuition) tells us that states’ utilities are not
independent.

(The estimate of) U; has been set by previous trials
* Represented by the solid lines

U, is set by the new trial

* Represented by the dotted line

* The initial estimate for U; will be

highly positive
* But the link to U, tells us it >

should be negative... [U=\ oo
* And this is Uj's only known link 6

at the time

* This estimate will be corrected
with sufficient trials
« But with naive updating,
convergence will be slow

Adaptive dynamic programming %%%EEE‘X

One updating scheme that tries to learn faster by exploiting these connections is
ADP

As discussed in Lecture 9, the (true) utility of a state is a probability-weighted
average of its successors, plus its own reward

— In a passive situation: a
J

ADP needs enough trials to learn the transition model of the environment
— J.e. it needs to learn M,-ja
— It can estimate this from experience, e.g. if (3,1) — (3,2) occurs 20% of the time
Then learning reduces to the value determination process
— Page 7 of Lecture 9
ADP is a good benchmark for learning
— But as discussed previously, for n states it generates n simultaneous equations
— Thus the process is often intractable

Fo/zTnlo] THE UNIVERSITY OF
Temporal Difference Learning g%gggm

« TDL tries to get the best of both worlds
— Exploit the constraints between states
— But without solving for all states simultaneously

 The idea is to use the observed transitions to adjust utilities /ocally to be consistent
with Bellman
— e.g. say in a particular trial, we transition from (1,3) to (2,3), and that U, 3=0 92
— If this is correct, then U, 35=0.92-0.04=0.88
— So if Uy 5#0.88, move it towards that value
« But don’t over-commit!
— U, 3 may not be correct yet , There will probably be other paths out of (1,3)

Henc§ TDL uses the up?date U; « U; + a(R; + U]_ —~U)
« qais called the learning rate
— Higher values of @ mean we change Ui more

— a=0 does no update; a=7 uses the new value
« Sometimes a is set to decrease over time
— Basically as the number of observations goes up, we trust the current estimate more

« The average value of Ui converges eventually
— Different transitions will contribute in proportion to how often they happen

*TDL can be seen as a crude (but efficient) approximation to ADP

ADP vs TDL

THE UNIVERSITY OF

WESTERN
%am? AUSTRALIA

*Conversely, ADP can be seen as a version of TDL using “pseudo-experience’,
derived from the transition model

0.6
0.6
1 0.5
05 : 2
g 038 , = g =
£ T 04 g =
E - = o =
RRCORIEE . SRR e G2 T3 B 503
E 5 2 5
= 04 = G .
- £ 02 : £ 02
~ (=4
0.2 0.1 0.2 0.1 1
0 0 0 0 :
200 40 Sept 400 100 0 20 40 60 80 100 § / ' :
. - 0 100 200 300 400 500 0 20 40 60 80 100
Number of trials Number of trials
(@) (b) Number of trials Number of trials
(@) (b)
Figure21.3 The passive ADP learning curves for the 4 x 3 world, given the optimal policy 3 5 : : o :
shown in Figure 21.1. (a) The utility estimates for a selected subset of states, as a function Figure 21.5 The TD learning curves for the 4 x 3 world. (a) The utility estimates for a
of the number of trials. Notice the large changes occurring around the 78th trial—this is the selected subset of states, as a function of the number of trials. (b) The root-mean-square error
first time that the agent falls into the —1 terminal state at (4,2). (b) The root-mean-square in the estimate for U(1, 1), averaged over 20 runs of 500 trials each. Only the first 100 trials
error (see Appendix A) in the estimate for U (1, 1), averaged over 20 runs of 100 trials each. are shown to enable comparison with Figure 21.3.

Active learning g,?i; WERERN

« In active learning, the agent not only needs to learn utilities, it also must select actions
— Thus the agent needs to evolve its performance element by exploring its options

— To do this it needs a problem generator

* The former requires that
— For each state, the agent maintains an estimated utility for each action separately

« 3D data instead of 2D data
— If using ADP, the agent uses the active version of the Bellman equation to select actions

« Rather than simply following a fixed policy
— But TDL requires no change to the update scheme

« The latter requires balancing present vs. future rewards

w

z
2 25 ht] !
w
= 05
T 1 — — t ‘
0 +
0 50 100 150 200 250 300 350 400 450 500
1 2 3 4

Number of trials

(@) (b)

Figure 21.6 Performance of a greedy ADP agent that executes the action recommended
by the optimal policy for the learned model. (a) RMS error in the utility estimates averaged
over the nine nonterminal squares. (b) The suboptimal policy to which the greedy agent
converges in this particular sequence of trials.

Frzg=ey 1HE UNIVERSITY OF
Exploration vs exploitation gxyg%m

In active learning, the agent must select actions that both
— Enable it to perform well in its environment
— Enable it to learn about its environment
So it needs to balance
— Getting good rewards on the current sequence
» Exploitation for the immediate good

— Observing new percepts, and thus improving rewards on future
sequences

» Exploration for the long-term good
This is a general, non-trivial problem

— Insufficient exploration will mean that the agent gets “stuck in a rut”.
Greedy behaviour settles for the first good solution that it finds.

— Insufficient exploitation will mean that the agent never gets anything
done. Whacky behaviour (probably) finds all solutions, but never
knows it!

— Not just a problem for artificial agents!

The fundamental problem is that at any moment, very likely the agent’s
learned model differs from the true model

Greedy in the limit of infinite S ——
. ¥ WESTERN
exploration A& AUSTRALIA

The “optimal” exploration policy is known as GLIE
— Start whacky, get greedier

The fundamental idea is to give weight to actions that have not been tried often,
whilst also avoiding actions with low utilities

— Unknown preferred to good preferred to bad

— Obviously it's not applicable in all environments!
One scheme uses an optimistic prior

— Assume initially that everything is good

Let U;* be the initial estimate, and N2 be the number of times the agent has

performed Action a in State /
U < R; + maxaf(z MU, N{)

— Where f(u,n) is the exploration function

Using U+ on the RHS of the equation propagates the tendency to explore
— Regions near the start are likely to be explored first

— More-distant regions are likely to be sparsely-explored, so we need to make them look
good

GLIE cont.

f(u,n) determines the trade-off between “greed” and “curiosity”
— Should increase with u and decrease with n, where R* is the optimistic prior, and N is

the minimum number of tries for each action

fun) = {

Utility estimates

22 1 il
1) —— 14 1
2 1 (12) ===
| (1,3) ==oeeee- 212 9
18 3y (23) —
16 4 (32) -~ 3 ot
(3.3) == 5
14 4 (4.3) =08
1.2 £ 06 -
Q
11 'Tf;'_---'-'-~-'--~'-"‘"""'"""""“..:.::.:_1.: g 04 1
0.8 e L L e T e e 0.2
0.6
: . . 0
0= BDgL A0 60 180 1 100

Number of trials

(a)

RMS error
Policy loss --------

40 60 80 100
Number of trials

(b)

Figure 21.7 Performance of the exploratory ADP agent. using R™ = 2 and N, = 5. (a)
Utility estimates for selected states over time. (b) The RMS error in utility values and the

associated policy loss.

u,

WESTERN

e 4 AUSTRALIA

if n<N,
otherwise

For the above
problem

Best policy loss
for pure greedy
behaviour = 0.25
For pure whacky
behaviour = 2.3

Q Iearnlng A& AUSTRALIA

Q-learning basically means instead of learning the overall utility of State /, we learn
separately the utility of taking each action a that is available in j

The principal advantage is that we no longer need to know the transition model
— We don’t need to know explicitly what effects an action can have, just how good it is

If Q2 is the utility of doing Action a in State /-

U; = max,Qf

If we want to apply ADP to Q-learning, we still need to learn the transition model
— ADP updates explicitly require the model

Q' « R; + Z Mf‘jmabef

But applying TDL is much more natural

Qf « Qf + a(R; + max,Q; — Q)

Q-Learning @,ﬁ;AUSTRALIA

But learning via Q-values is still usually slow
— Because they do not enforce consistency between states’ (or actions’) utilities
— So why is it interesting?
Mostly for philosophical reasons
Does an intelligent agent really need to incorporate a model of its environment to
learn anything?
— If so, how can we ever develop a universal agent?

— Some biologists say that our DNA can be interpreted as a description of the
environment(s) in which we evolved...

Does the availability of model-free techniques like Q-learning offer hope?

When we discussed the nature of Al, we said we would take essentially an
engineering viewpoint
— “Can we develop systems that do useful stuff?”
— And of course this is the best way to get a job ©

But bear in mind that there may be bigger goals too

Generalization in learning %g%gm

Ultimately, neither supervised learning nor reinforcement
learning can expose an agent to all of the states it will ever
need to deal with

— Chess has over 1040 states: what proportion of those has Magnus
Carlsen ever seen?

— We need to generalise from what we learn about seen states to
cope with unseen states
Agents require an implicit, compact representation
— e.g. weighted linear sum of features
— Colossal compression ratio
— Enables generalisation

States are related to each other via their shared
features/properties/attributes
The hypothesis space for the representation must be rich
enough to allow for the “correct answer”

— e.g. can the “true” utility function for chess really be represented in

10—-20 numbers!?

The current world champion, aged 23, peak rating 2,882 — the
highest ever for a human.

THE UNIVERSITY OF

Trade offs in representation ¥, WESTERN

» Typically, a larger/richer hypothesis
space means

— There is more chance that it includes a THREE LOGICIANS WALK INTO A BAR...

suitable function DOES EVERYONE spikedmath.com
. WANT BEER?
— The space is more sparse
. : 2%\
— The function requires more memory @ &
— More examples are needed for learning -

— Convergence will be slower
— ltis harder to learn online vs. offline

» As often happens, the best answer is
highly problem-dependent

 That’s one reason these skills are
valuable!

* Next up, Logical Agents!

