
Reinforcement 
Learning
CITS3001 Algorithms, Agents and Artificial Intelligence

2219, Semester 2Tim French
Department of Computer Science and Software Engineering
The University of Western Australia



Introduction

• We will define and motivate 
– Reinforcement learning vs. supervised learning 
– Passive learning vs. active learning 
– Utility learning vs. Q-learning 

• We will discuss passive learning in known and 
unknown environments 

– With emphasis on various updating schemes, esp. 
• Adaptive dynamic programming 
• Temporal-difference learning 

• We will discuss active learning 
– With emphasis on the issue of 

exploration vs. exploitation 
• We will discuss generalisation of learning 

2



Reinforcement Learning

• Supervised learning is where a learning agent is provided with input/output pairs 
on which to base its learning 

• However learning is sometimes needed in less generous environments 
– No examples provided 
– No model of the environment 
– No utility function at all! 

• In general, the less generous the environment, the more we need learning… 

• The agent relies on feedback about its performance on order to assess its 
functionality 

– e.g. in chess you may be told only what a legal move is, and the result of each game 
– Try random moves and see what happens? 
– But even if you win, which moves were good? 

• This is the basis of reinforcement learning
– Use rewards to learn a successful agent function 
– In many complex environments, it’s the 

only feasible learning option… 
3



Aspects of reinforcement learning

• Is the environment known? 
– e.g. we may not know the transition model 
– An unknown environment must be learned, alongside the other required functionality 

• Is the environment accessible? 
– An accessible environment is where the state that an agent is in can be identified from 

its percepts 
– In an inaccessible environment, the agent must remember information about its state, 

and recognise it by other means 
• Are rewards given only in terminal states, or in every state? 

– e.g. only at the end of a game, or at other stages too? 
• Are rewards given only “in bulk”, or they are given for components of the utility? 

– e.g. dollar returns for a gambling agent, or hints (“nice move!”) 
• All feedback should be utilised! 

– Usually learning is hard! 

4



Passive learning vs active learning

• One fundamental distinction is between passive and 
active learning 

• Passive learning: given a fixed agent function, learn 
the utilities of that function in the environment 

– Essentially watch the world go by, and assess how 
well things are going 

• Active learning: no fixed function, agent must select 
actions using what has been learned so far 

– i.e. learn the agent function too 
– Use a problem generator to (systematically?) explore 

the environment, and learn what 
options exist

• Passive learning agents may be associated with a 
“higher-level” intelligence (a designer?) to suggest 
different functions to try 

– Active learning agents try to do the entire job as one 5



Utility learning vs Q-learning

• A second fundamental distinction is between learning utilities, and simply(?) 
learning actions 

• Utility learning: agent learns state utilities, then (subsequently) selects actions that 
maximise expected utility 

– Needs to know where actions can lead, so must have (or learn) a model of the 
environment 

– But this “deep” knowledge can mean faster learning 
– cf. value iteration 

• Q-learning: agent learns an action-value function, i.e. the expected utility of taking 
an action in a state 

– Doesn’t need to know where actions lead, just learns how good they are 
– “Shallow” knowledge can restrict the ability to learn
– cf. policy iteration 

6



Passive learning in a known 
environment

• Assume: 
– Accessible environment 
– Actions are pre-selected for the 

agent 
– Effects of actions are known 

• The aim is to learn the utility 
function of the environment 

• The agent executes a set of trials
in the environment 

– In each trial, the agent moves 
from the start state to a terminal 
state according to its given 
function 

– Its percepts identify both the 
current state and the immediate 
reward 

7



Passive learning continued

• An example trial would be 
(1,1)-0.04 → (1,2)-0.04 → (1,3)-0.04 → (1,2)-

0.04 → (1,3)-0.04 → (2,3)-0.04 → (3,3)-0.04
→ (4,3)+1

• This trial generates a sample utility for 
each state the agent passes through

– Assuming an additive utility function, 
and working backwards

• A set of trials generates a set of 
samples for each state in the 
environment 

• In the simplest model, we just maintain 
an average of the samples observed 
for each state 

• With enough trials, these estimates 
will converge on the true utilities 

8



Updating

• A key to reinforcement learning is the update function
• The Bellman equation (and our intuition) tells us that states’ utilities are not 

independent.
• (The estimate of) Uj has been set by previous trials 

• Represented by the solid lines 
• Ui is set by the new trial 

• Represented by the dotted line 

9

• The initial estimate for Ui will be 
highly positive 
• But the link to Uj tells us it 

should be negative… 
• And this is Ui’s only known link 

at the time 
• This estimate will be corrected 

with sufficient trials 
• But with naïve updating, 

convergence will be slow 



Adaptive dynamic programming

• One updating scheme that tries to learn faster by exploiting these connections is 
ADP

• As discussed in Lecture 9, the (true) utility of a state is a probability-weighted 
average of its successors, plus its own reward 

– In a passive situation:

• ADP needs enough trials to learn the transition model of the environment 
– i.e. it needs to learn Mij

a

– It can estimate this from experience, e.g. if (3,1) → (3,2) occurs 20% of the time 

• Then learning reduces to the value determination process
– Page 7 of Lecture 9 

• ADP is a good benchmark for learning 
– But as discussed previously, for n states it generates n simultaneous equations 

– Thus the process is often intractable 

10



Temporal Difference Learning

• TDL tries to get the best of both worlds 
– Exploit the constraints between states 
– But without solving for all states simultaneously 

• The idea is to use the observed transitions to adjust utilities locally to be consistent 
with Bellman 

– e.g. say in a particular trial, we transition from (1,3) to (2,3), and that U2,3=0.92
– If this is correct, then U1,3=0.92-0.04=0.88
– So if U1,3≠0.88, move it towards that value 

• But don’t over-commit! 
– U2,3 may not be correct yet , There will probably be other paths out of (1,3) 

Hence TDL uses the update 
• α is called the learning rate 

– Higher values of α mean we change Ui more 
– α=0 does no update; α=1 uses the new value 

• Sometimes α is set to decrease over time 
– Basically as the number of observations goes up, we trust the current estimate more 

• The average value of Ui converges eventually 
– Different transitions will contribute in proportion to how often they happen 11



ADP vs TDL

•TDL can be seen as a crude (but efficient) approximation to ADP 
•Conversely, ADP can be seen as a version of TDL using “pseudo-experience”, 
derived from the transition model 

12



Active learning

• In active learning, the agent not only needs to learn utilities, it also must select actions 
– Thus the agent needs to evolve its performance element by exploring its options 
– To do this it needs a problem generator 

• The former requires that 
– For each state, the agent maintains an estimated utility for each action separately 

• 3D data instead of 2D data 
– If using ADP, the agent uses the active version of the Bellman equation to select actions 

• Rather than simply following a fixed policy 
– But TDL requires no change to the update scheme

• The latter requires balancing present vs. future rewards 

13



Exploration vs exploitation
• In active learning, the agent must select actions that both 

– Enable it to perform well in its environment 
– Enable it to learn about its environment 

• So it needs to balance 
– Getting good rewards on the current sequence 

• Exploitation for the immediate good 
– Observing new percepts, and thus improving rewards on future 

sequences 
• Exploration for the long-term good 

• This is a general, non-trivial problem 
– Insufficient exploration will mean that the agent gets “stuck in a rut”. 

Greedy behaviour settles for the first good solution that it finds.
– Insufficient exploitation will mean that the agent never gets anything 

done. Whacky behaviour (probably) finds all solutions, but never 
knows it!

– Not just a problem for artificial agents! 
• The fundamental problem is that at any moment, very likely the agent’s 

learned model differs from the true model 14



Greedy in the limit of infinite 
exploration

• The “optimal” exploration policy is known as GLIE
– Start whacky, get greedier 

• The fundamental idea is to give weight to actions that have not been tried often, 
whilst also avoiding actions with low utilities 

– Unknown preferred to good preferred to bad
– Obviously it’s not applicable in all environments! 

• One scheme uses an optimistic prior
– Assume initially that everything is good 

• Let Ui+ be the initial estimate, and Nia be the number of times the agent has 
performed Action a in State I

– Where f(u,n) is the exploration function

• Using U+ on the RHS of the equation propagates the tendency to explore 
– Regions near the start are likely to be explored first 
– More-distant regions are likely to be sparsely-explored, so we need to make them look 

good 

15



GLIE cont.

• f(u,n) determines the trade-off between “greed” and “curiosity” 
– Should increase with u and decrease with n, where R+ is the optimistic prior, and Ne is 

the minimum number of tries for each action 

16

• For the above 
problem 
• Best policy loss 

for pure greedy 
behaviour ≈ 0.25 

• For pure whacky 
behaviour ≈ 2.3 



Q-learning

• Q-learning basically means instead of learning the overall utility of State i, we learn 
separately the utility of taking each action a that is available in i

• The principal advantage is that we no longer need to know the transition model 
– We don’t need to know explicitly what effects an action can have, just how good it is 

• If Qia is the utility of doing Action a in State i:

• If we want to apply ADP to Q-learning, we still need to learn the transition model 
– ADP updates explicitly require the model 

• But applying TDL is much more natural 

17



Q-Learning

• But learning via Q-values is still usually slow 
– Because they do not enforce consistency between states’ (or actions’) utilities 
– So why is it interesting? 

• Mostly for philosophical reasons 

• Does an intelligent agent really need to incorporate a model of its environment to 
learn anything? 

– If so, how can we ever develop a universal agent? 

– Some biologists say that our DNA can be interpreted as a description of the 
environment(s) in which we evolved… 

• Does the availability of model-free techniques like Q-learning offer hope? 

• When we discussed the nature of AI, we said we would take essentially an 
engineering viewpoint 

– “Can we develop systems that do useful stuff?” 
– And of course this is the best way to get a job J

• But bear in mind that there may be bigger goals too 

18



Generalization in learning

• Ultimately, neither supervised learning nor reinforcement 
learning can expose an agent to all of the states it will ever 
need to deal with 

– Chess has over 1040 states: what proportion of those has Magnus 
Carlsen ever seen? 

– We need to generalise from what we learn about seen states to 
cope with unseen states 

• Agents require an implicit, compact representation 
– e.g. weighted linear sum of features 
– Colossal compression ratio 
– Enables generalisation 

• States are related to each other via their shared 
features/properties/attributes 

• The hypothesis space for the representation must be rich 
enough to allow for the “correct answer”

– e.g. can the “true” utility function for chess really be represented in 
10–20 numbers!? 

• The current world champion, aged 23, peak rating 2,882 – the 
highest ever for a human. 

19



Trade offs in representation

• Typically, a larger/richer hypothesis 
space means 

– There is more chance that it includes a 
suitable function 

– The space is more sparse 
– The function requires more memory 
– More examples are needed for learning 
– Convergence will be slower 
– It is harder to learn online vs. offline 

• As often happens, the best answer is 
highly problem-dependent 

• That’s one reason these skills are 
valuable! 

• Next up, Logical Agents!

20


