WESTERN

e 4 AUSTRALIA

Learning Agents b

REMAINING

BUY INGREDIENTS INGREDIENTS

PUT SoME
IN A PAN

CITS3001 Algorithms, Agents and Artificial Intelligence

IT TASTE
GOOD?

Tim French 2021, Semester 2

Department of Computer Science and Software Engineering
The University of Western Australia

Introduction @, WESTERN

We will discuss the basic structure of a learning agent
We will discuss models of inductive learning
We will discuss inferring decision trees as an example of a learning process

We will discuss a methodology for assessing the performance of learning
processes and the agents derived

SHYNET

NEURAL NET-BASED ARTIFICIAL INTELLIGENCE

Why do we want agents to learn @%@?{Eﬁﬁ

In the agents we have described so far, all “intelligence” comes from the designer
— From the algorithm design, and/or
— From the heuristics used, and/or
— From some other process used by the designer
This has at least two significant disadvantages
— It is time-consuming for the designer
— It restricts the capabilities of the agent

Learning agents can
— Act autonomously
— Adapt autonomously
— Deal with unknown environments, outside their (and their designer’s) experience
— Handle complex data
— Synthesise rules/patterns from large volumes of data
— Improve their own performance
But note it is not true that without learning, an agent can never outperform its
designer
— Computers can perform some kinds of processes far better than humans can!

u THE UNIVERSITY OF
A general model of learning agents %, WESTERN

The basic idea is that percepts are used not just for choosing actions, but also for
improving future performance

This requires four basic components

A performance element

— Responsible for choosing actions that are
known to offer good outcomes

— Corresponds to the agents discussed earlier
A learning element

— Responsible for improving the performance element

— Requires feedback on how well the agent is doing
A critic element

— Responsible for providing feedback

— Compares outcomes with some objective performance standard from outside the agent
A problem generator

— Responsible for generating new experience

— Requires exploration — trying unknown actions which may be sub-optimal

WESTERN

Architecture A& AUSTRALIA

Consider a uber driver agent

Performance element. you want to go into Perth? Let’'s take Winthrop Avenue, it's
worked well previously.

Problem generator: nah, let’s try Mounts Bay Road for a change — it may be better.
Critic element. great, it was five minutes quicker, and what a nice view!
Learning element: yeah, in future we’ll take Mounts Bay Road.

Performance standard

Critic ~s=——— Sensors —=

4
changes A
Learning #=1 Performance
element element

knowledge
learning
goals § /
Problem

generator "

JURUIUOJTAUF]

@ cent Actuators

C

Figure 2.15 A general learning agent.

The learning element %ﬁfAUSTRAL[A

The learning element has two (separate) goals

— Learning agents may focus on either or both, at any given time
It wants to improve the outcome of the performance element

— How good is the action chosen?
Secondarily (usually), it wants to improve the time performance of the performance
element

— How fast does it operate?

— This is called speedup learning

* e.g. learning a good ordering for af3

The design of the learning element is affected by four main issues
— The components of the performance element to be improved
— The representation of those components el M
— The feedback available, and its source —
— The prior information available T

A iy Tﬂa%@ .

"_'n (3 ,:' 30 7)(5) (3 (5 MIN

VAR AN W,

The performance element & AUSRANA

» The performance element might have many components, e.g.
— A mapping from states to actions
— A means to infer information from percepts
— Information about how the world evolves
— Information about the effects of actions
— Ultility information about states
— Goals whose achievement will increase utility

« Each of these components might be improved by learning, e.g. for the uber driver
agent
— The driving instructor shouting “brake!”
— Being taught to recognise an ambulance
— Observing what effect rain has on road surfaces...
— and how that affects braking
— Observing how driving behaviour affects tips
— Learning new routes and their effects on income

» Clearly the details are highly context-dependent

" THE UNIVERSITY OF
Representing the performance element &, WESTERN

» Representations come in many forms, e.g.
— Game-playing agents may use linear weighted polynomials
— Reasoning agents may use logical sentences and inference engines
— Belief networks may use probabilistic descriptions
— elc.

» The scope for the learning element to improve the performance element will clearly
depend on the representation used

« Again, the details will be context-dependent

: WESTERN
The feedback available & WESRERN

« Supervised learning corresponds roughly to being taught by an expert

— The agent is given a set of example input-output pairs, i.e. problems and correct
answers

— The agent learns a general rule that captures these examples as special instances

» Reinforcement learning corresponds roughly to learning from experience
— e.g. from the result of a game, or the size of a tip
— Try something new and see if it works better!
— The agent experiments, and remembers what worked and what didn't

* Unsupervised learning happens (usually) in the absence of feedback
— Basically means learning patterns in the input
— The most common task is clustering
 Partitioning input values into sets

— e.g. ataxi driver may learn to distinguish “good traffic days” from “bad traffic days”,
or that the freeway is usually busy at 8am

n - THE UNIVERSITY OF
The prior knowledge available &, VESTERN

There are two “ends of the spectrum” in prior knowledge

tabula rasa: the agent starts with an empty slate
— And starts with only “basic skills”
— Sometimes called blue sky or green field design
The agent starts with a known good design
— And tries to fine-tune it

Obviously tabula rasa done well ends with fine-tuning...

This distinction captures exploration vs. exploitation

— Do we stick with (exploit) what we know, or do we try new things (explore) and hope they
work better?

— cf. teacher vs. student

In practice, most situations fall somewhere in the middle
— And learning is usually hard
— Use background knowledge when available!

— But relying too much on prior assumptions might mean that you get out only what you
put in

. . - THE UNIVERS]TYﬁ
Function approximation %, WESTERN

Mathematically, all components of the performance element can be described by a
function

— How the world evolves: f: state — state
— Reaching a goal: f: state — {0, 1}
— Optimising a utility: f: state — [—=, «]
— Evaluating an action: f: (state, action) — [, «]
Thus all learning can ultimately be seen as learning a function
— All learning can be seen as function approximation

Implementation details will vary dramatically...

Given a set of data instances (x, f(x)), return a function h that approximates f
— his called a hypothesis

This task is known as pure inductive inference, or sometimes just induction

Fo/zTnlo] THE UNIVERSITY OF
Inductive learning g WESTERN

In general, we have to decide

— What mathematical operations are available for h (polynomials, exponentials,
trigonometrics, efc.)

— What trade-off we will tolerate between exactness and generalisability
— Whether any of the data can be dismissed as outliers
All sets of n pts fit exactly a k-degree polynomial, k < n!

These decisions will determine both
— The type of learning algorithm required
— The overall tractability of the problem

Another issue is the update policy when new data arrives
— Incremental learning updates h

with each new pair re @ £ e

— Reinforcement relies on feedback e - e
from using h -~ \ = N

= X B X B X

(@) (®) © @

Figure 18.1 (a) Example (z, f(z)) pairs and a consistent, linear hypothesis. (b) A com-
sistent, degree-7 polynomial hypothesis for the same data set. (c) A different data set, w hac
admits an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple. exas
sinusoidal fit to the same data set.

Frzg=ey 1HE UNIVERSITY OF
A concrete example — decision trees gx{g%gm

A decision tree is a representation of a Boolean function
— f: situation — {0, 1}
— Can also be thought of as defining a classification procedure, or a categorisation
— Partitions the inputs into two subsets
The input is a description of a situation
— Abstracted by a set of properties, attributes, features, or parameters
The output is yes or no
— ldentifies the situations with a positive response

We will consider
— Using decision trees in a performance element
— Inducing decision trees in a learning element

Decision trees as performance elements

THE UNIVERSITY OF
WESTERN
W AUSTRALIA

« Consider the question of deciding whether to wait for a table at a restaurant
» Our approach will be to formalise the question, and to build a decision tree that

examines a situation and provides a yes/no answer

» The first (crucial!) step is to identify the relevant attributes of a situation that

influence the decision, e.qg.
— Alternative nearby?

— Bar?

— Friday/Saturday?

— Hungry?

— Patrons?

— Price?

— Raining?

— Reservation?

— Type of food?

— Estimated waiting time?

» Every attribute should be discretised so that it has only a small number of possible

values

— e.g. wait-time is discretised into four possibilities: < 10 minutes, 10-30, 30-60, > 60

Example decision tree S, WESTERN

* The choice of

attributes is crucial

— Without
examining the
right attributes, it
will be impossible
to make a rational

Patrons?

Some Full

f Yes | | WaitEstimate?]

>60 0-10

decision
.] No Y
— “garbage in,
garbage out” | Reservation? ” Fri/Sat? | lYesI | Alternate? J
No Yes No Yes No Yes
[]
Sometimes this can |Bar? | | Yes| BB Yes [Yes| | Raining? |
be the hardest task! No Yes No Yes
— cf. requirements No Yes No Yes
analysis in
software Figure 18.2 A decision tree for deciding whether to wait for a table.

engineering

Properties of decision trees as
P WESTERN

performance elements &5 AUSTRALIA

Limited inputs
— Cannot handle continuous information
Limited outputs

— Can provide only yes/no answers
— e.g. cannot choose amongst a set of restaurants

Fully expressive wrt propositional problems
But they can be huge

Given n attributes:
— There will be (at least) 2" combinations of inputs
— Hence (at least) 27" possible functions
— And many more possible trees!

6
e.g. 6 binary attributes implies 22 =107° possible functions
A non-trivial learning task!

WESTERN

Inducing decision trees &} 5 c7raiia
» We will use the following terminology » In 18.3, one row corresponds to one
— An example is a pair, with an input and an example
output

— These come from exercising the tree in 18.2
» ({attributes}, value)

— A positive example is where value = true
— A negative example is where value = false

« The goal of induction is to find a decision
tree that
— Agrees with all elements of the training set,

— A'training set is a set of examples used for and Is as small as possible
learning
Beiie ff ‘ Input Attributes Goal

| Alt | Bar | Fri | Hun| Pat | Price| Rain| Res Type Est WillWait
X1 | Yes| No | No | Yes | Some | $8% | No | Yes | French | 0-10 Y =¥es
X5 | Yes | No | No | Yes | Full $ | No| No| Thai | 30-60 | y, =No
X3 No | Yes| No| No | Some $ No | No | Burger | 0-10 ys = Yes
Xy Yes | No | Yes | Yes | Full $ Yes | No Thai 10-30 || y4 = Yes
X5 Yes | No| Yes| No| Full | 3 | No | Yes | French | >60 s — No
Xg No | Yes| No | Yes | Some | $$% Yes | Yes | Italian | 0-10 || yg = Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 || y7 = No
Xg No | No | No | Yes | Some | $$% | Yes | Yes Thai 0-10 || yg = Yes
Xg No | Yes | Yes | No | Full $ | Yes | No | Burger| >60 Yo = No
X10 Yes | Yes | Yes | Yes | Full | $38 | No | Yes| Iralian | 10-30 | y10 =No
X11 No| No| No | No | None $ | No | No Thai 0-10 || y11 = No
X192 Yes | Yes | Yes | Yes'| Full $ i No | No | Burger | 30-60 | y,o = Yes

Figure 18.3 Examples for the restaurant domain.

A trivial induction algorithm &, VESTERN

Build a tree that branches on each attribute in turn, until you reach a distinct leaf
for each example

This approach has two principal problems
— The tree will be much bigger than necessary
|t does not search for patterns that summarise or simplify the training set
— The tree will be unable to provide answers for examples that aren’t in the training set
It cannot generalise from the training set

These problems represent two sides of the same coin
— They result from ignoring Occam’s Razor
— “the most likely hypothesis is the simplest one that is consistent with the data”

— The tree has been overfitted to the data

i ' ' WESTERN
A better induction algorithm %@AUS%RAUA

Finding the (guaranteed) smallest tree is intractable
— But we can use a greedy approach to find a “good” tree
The basic idea is to always test the most important attribute first

— This will give us a set of sub-problems that we can solve recursively, each with a subset
of the data

What do we mean by “the most important attribute”?
— The one that “makes the most difference” to the example data
— Note this implies that starting with different training examples will give a different tree
 Is this a desirable feature of the approach?

Usually aim to
— make the whole tree as shallow as possible, or
— make the average depth as small as possible, or
— make the number of nodes as small as possible, or

WESTERN

Induction A& AUSTRALIA

* The text emphasises separating positive and negative examples as early as
possible
— Thus minimising the size of the tree
— Thus Patrons is a good first attribute
« But an argument could also be made for Type
— It minimises the size of the largest recursive sub-problem
— Likely to minimise the depth of the tree

« This illustrates the heuristic nature of the approach

Figure 18.4 Splitting the examples by testing on attributes. At each node we show the
positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on Zype
brings us no nearer to distinguishing between positive and negative examples. (b) Splitting
on Patrons does a good job of separating positive and negative examples. After splitting on
Patrons, Hungry is a fairly good second test.

. . WESTERN
A recursive algorithm <& AusTraLIA

There are three possible base cases

The remaining examples are all positive or all negative
— e.g. for all Indian restaurants, we wait!
— Stop and label the leaf either yes or no

There are no examples left

— e.g. there are no Indian restaurants in the data

— No relevant examples are in the training set, so use the “majority vote” from the parent
node

There are no attributes left
— I.e. there are identical rows with conflicting answers
— The data is inconsistent, so the attributes originally chosen were inadequate
— Either start again, or use majority vote

There is one recursive case

There are (still) both positive and negative examples

— Choose the next attribute to discriminate on, create a node and divide up the set, and
recurse

The derived tree J&, WESTERN

Note that this tree is different
to the original tree (18.2)

— Despite using examples

derived from the original!
So is it wrong?
— No — wrt the training set

— Probably — wrt unseen
examples

But it is more concise, and it Etench ftalian
highlights new patterns

Patrons?

None Some Full

erﬂ | Hungry? |

Fri/Sat?

— e.qg. if there’s no table e\
available and you aren’t QG | Yes
hungry, leave! Figure 18.6 The decision tree induced from the 12-example training set.

This process is akin to data
mining

— Identifying previously unseen
patterns in the data

F=¥™=] THE UNIVERSITY OF

- WESTERN
Assessing performance % AUsTRALIA

We have seen that the derived tree
— Fits with the seen data
— Predicts the classifications of unseen data

So to test whether it is a “good tree”, we need unseen examples to exercise it with
— But of course we need to know the answers for those unseen examples

The usual methodology is to

— Collect a large set of examples

— Divide them into a training set and a test set

— Use the training set in the learning process

— Then use the test set to assess the resulting agent
One question is — how do we split the data?

— More training data is good

— But more test data is also good!

— So try it out with different splits...

The happy graph WESTERN

e 4 AUSTRALIA

» Correctness on test set increases with size of training set
— Zags at the end result from lack of test data
— A common approach is 90% training, 10% test

» Basically, the shape of the happy graphs tells us that
— There is a pattern
— And the algorithm has identified it!

1 1 W

E o MMM
2 /
5084 V
3 N
£ 07 1 /
2061
£os))

0.4 . : : - .

0 20 40 60 80 100

Training set size

Figure 18.7 A learning curve for the decision tree learning algorithm on 100 randomly
generated examples in the restaurant domain. Each data point is the average of 20 trials.

Practical instances of decision tree X\{E%Em
learing: GASOIL

World’s largest commercial expert system
in its day
— Approx. 2,500 rules

« Building by hand would have taken 10
person-years

Decision-tree learning was applied to a
database of existing designs

Michie, BP, deployed 1986

Designed complex gas-oil separation
systems

for offshore oil platforms

Attributes included

— Relative proportions of gas, oil, and

water
— Flow rate — System was developed in 100 person-
— Pressure days
— Density « Outperformed human experts
— Viscosity — More systematic, thinks “outside the
— Temperature box”
— Susceptibility to waxing — Said to have saved BP many millions

of dollars

Practical instances of decision tree WESTERN
. %ams? AUSTRALIA
learning: C4.5

Sammut et al., 1992
Learned to fly a Cessna light plane on a flight simulator
— Learned a state-action mapping (a policy)
Training was provided by three skilled human pilots
— Each pilot flew an assigned flight plan 30 times
— 90 flights, approx. 1,000 actions/flight
Twenty attributes were used
— e.g. wind, altitude, throttle, ailerons, angle, etc.

— i.e. over 21,000,000 hossible functions! —

The generated decision tree was fed back into the simulator
— Tree flew better than its teachers
— Using the generalisation process “cleans out” “mistakes” by the teachers

o8 THE UNIVERSITY OF
. . WESTERN
Learning Under Uncertainty <% australia

Often we are required to learn in uncertain domains, where we do not have an
oracle providing the correct class for a given observation.

A variety of approaches exist, like fuzzy logic or belief functions, but probabilistic
reasoning is the most widely used.

Probabilities are given for events. E.g. X'is “| will pass CITS3001”, may have a
probability P(X)=0.95 (95%) (the prior probability)
We write =X for “not X”, X vY for “XorY”, and X &Y for “X and Y”

Probabilities for different events are related: If Yis “I study for the CITS3001 exam”
then we have the probability of X given Y, P(X| Y)=0.99 (the conditional
probability).

Conditional probabilities are defined by Bayes’ Rule

Probabilities must obey the Kolmogorov axioms: : .. P(bla)P(a)
= Bayes' rule P(alb) = —
~ 0SP(X)<1 P(b)
— P(true) =1, P(false) =0
— PXXVY) =P(X)+P(Y)-P(X 1Y)

Dependence

Reasoning under uncertainty comes down to learning
the probabilities of events, and how the probabilities

are related.

Given a set of events, the joint probability distribution is
the probability for combinations of events occuring.

For n events, there are 2" different combinations to
learn. However, many of these events may be
independent (so P(X /1Y) = P(X).P(Y)) or conditionally
independent so X and Y may whave a common cause,
but are otherwise independent.

Independence is a strong assumption, that makes
computing probabilities much simpler.

Bayesian Networks organise represent events in a
directed acyclic graph, where events are only
dependent on their parents, and otherwise conditionally
idependent.

We then just need to know the joint for nodes and their
parents.

WESTERN
%am? AUSTRALIA

toothache

= toothache

catch| —catch| catch| — catch
cavity | .108 | .012 .072| .008
—1cavity | .016 | .064 144 | 576

Toothache @

Burglary

E |P(A[B.E)
T| 95
F| 94
T| 29
F | .001

mmH AR

PJIA)

F| .05

P(B)
001 Earthquake

CEDIR
F| .01

P(E)

.002

A [P(M]A)

: WESTERN
Bayesian Networks & AUSTRALIA

Bayesian Networks organise represent events in a

directed acyclic graph, where events are only
dependent on their parents, and otherwise conditionally
idependent.

We then just need to know the joint for nodes and their

P(A|B,E)

95
94
29
.001

P(B) P(E)
001 Earthquake 002

iR o RN -~
M

PJIA)

P(M|A)

parents. D HFIRCEDIE

.70
.01

Applying Bayes’ Rule we can represent the same
information in networks with a different topology, but
the complexity will not be the same.

In general, computing the best topology for a Bayesian
Network, or computing conditional probabilities from a
Bayesian Network are NP-Hard.

However, could approximations of probabilities can be
approximated by using sampling algorithms, such as
Gibbs sampling, or Markov Chain Monte Carlo
methods.

Burgla

Earthquake

Foegney I1HE UNIVERSITY OF

- . WESTERN
Example: Car Diagnosis %5 AUsTrALIA

- Bayesian Networks are
a good method to take
prior knowledge and
assumptions, and

compute conditional fanbelt
broke broken

probabilities to support
rational decisions.
batt fuel li
(o) G

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

« They can be
generalized to handle
continuous variables,
and dynamic
information.

« Bayesian Networks are
used extensively in
medical applications
for diagnosis, but often
still rely on expert
guidance.

