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Introduction

• We will discuss the basic structure of a learning agent
• We will discuss models of inductive learning
• We will discuss inferring decision trees as an example of a learning process
• We will discuss a methodology for assessing the performance of learning 

processes and the agents derived 
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Why do we want agents to learn

• In the agents we have described so far, all “intelligence” comes from the designer 
– From the algorithm design, and/or 

– From the heuristics used, and/or 

– From some other process used by the designer 

• This has at least two significant disadvantages 
– It is time-consuming for the designer 

– It restricts the capabilities of the agent 

• Learning agents can 
– Act autonomously 

– Adapt autonomously 

– Deal with unknown environments, outside their (and their designer’s) experience 
– Handle complex data 

– Synthesise rules/patterns from large volumes of data 

– Improve their own performance 

• But note it is not true that without learning, an agent can never outperform its 
designer 

– Computers can perform some kinds of processes far better than humans can! 3



A general model of learning agents

• The basic idea is that percepts are used not just for choosing actions, but also for 
improving future performance

• This requires four basic components 

• A performance element
– Responsible for choosing actions that are 

known to offer good outcomes
– Corresponds to the agents discussed earlier 

• A learning element
– Responsible for improving the performance element 
– Requires feedback on how well the agent is doing

• A critic element
– Responsible for providing feedback 
– Compares outcomes with some objective performance standard from outside the agent

• A problem generator
– Responsible for generating new experience 
– Requires exploration – trying unknown actions which may be sub-optimal 
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Architecture

• Consider a uber driver agent 

• Performance element: you want to go into Perth? Let’s take Winthrop Avenue, it’s 
worked well previously. 

• Problem generator: nah, let’s try Mounts Bay Road for a change – it may be better. 
• Critic element: great, it was five minutes quicker, and what a nice view! 
• Learning element: yeah, in future we’ll take Mounts Bay Road. 
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The learning element

• The learning element has two (separate) goals 
– Learning agents may focus on either or both, at any given time 

• It wants to improve the outcome of the performance element
– How good is the action chosen? 

• Secondarily (usually), it wants to improve the time performance of the performance 
element

– How fast does it operate? 
– This is called speedup learning

• e.g. learning a good ordering for αβ

• The design of the learning element is affected by four main issues 
– The components of the performance element to be improved 
– The representation of those components 
– The feedback available, and its source 
– The prior information available 
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The performance element

• The performance element might have many components, e.g.
– A mapping from states to actions 
– A means to infer information from percepts 
– Information about how the world evolves 
– Information about the effects of actions 
– Utility information about states 
– Goals whose achievement will increase utility 

• Each of these components might be improved by learning, e.g. for the uber driver 
agent 

– The driving instructor shouting “brake!” 
– Being taught to recognise an ambulance 
– Observing what effect rain has on road surfaces… 
– and how that affects braking 
– Observing how driving behaviour affects tips 
– Learning new routes and their effects on income 

• Clearly the details are highly context-dependent 7



Representing the performance element

• Representations come in many forms, e.g.
– Game-playing agents may use linear weighted polynomials 
– Reasoning agents may use logical sentences and inference engines 
– Belief networks may use probabilistic descriptions  
– etc.

• The scope for the learning element to improve the performance element will clearly 
depend on the representation used 

• Again, the details will be context-dependent 
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The feedback available

• Supervised learning corresponds roughly to being taught by an expert 
– The agent is given a set of example input-output pairs, i.e. problems and correct 

answers 
– The agent learns a general rule that captures these examples as special instances 

• Reinforcement learning corresponds roughly to learning from experience 
– e.g. from the result of a game, or the size of a tip 
– Try something new and see if it works better! 
– The agent experiments, and remembers what worked and what didn’t 

• Unsupervised learning happens (usually) in the absence of feedback 
– Basically means learning patterns in the input 
– The most common task is clustering

• Partitioning input values into sets 
– e.g. a taxi driver may learn to distinguish “good traffic days” from “bad traffic days”, 

or that the freeway is usually busy at 8am 
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The prior knowledge available

• There are two “ends of the spectrum” in prior knowledge 

• tabula rasa: the agent starts with an empty slate 

– And starts with only “basic skills” 

– Sometimes called blue sky or green field design 

• The agent starts with a known good design 

– And tries to fine-tune it 

• Obviously tabula rasa done well ends with fine-tuning… 

• This distinction captures exploration vs. exploitation
– Do we stick with (exploit) what we know, or do we try new things (explore) and hope they 

work better? 

– cf. teacher vs. student 

• In practice, most situations fall somewhere in the middle 

– And learning is usually hard 

– Use background knowledge when available! 

– But relying too much on prior assumptions might mean that you get out only what you 

put in 

10



Function approximation

• Mathematically, all components of the performance element can be described by a 
function 

– How the world evolves:  f: state → state
– Reaching a goal:             f: state → {0, 1}
– Optimising a utility:       f: state → [–∞, ∞]
– Evaluating an action:     f: (state, action) → [–∞, ∞]

• Thus all learning can ultimately be seen as learning a function 
– All learning can be seen as function approximation

• Implementation details will vary dramatically… 

• Given a set of data instances (x, f(x)), return a function h that approximates f
– h is called a hypothesis

• This task is known as pure inductive inference, or sometimes just induction
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Inductive learning

• In general, we have to decide 
– What mathematical operations are available for h (polynomials, exponentials, 

trigonometrics, etc.) 
– What trade-off we will tolerate between exactness and generalisability 
– Whether any of the data can be dismissed as outliers

• All sets of n pts fit exactly a k-degree polynomial, k < n! 
• These decisions will determine both 

– The type of learning algorithm required 
– The overall tractability of the problem 

• Another issue is the update policy when new data arrives 
– Incremental learning updates h
with each new pair 
– Reinforcement relies on feedback 
from using h
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A concrete example – decision trees

• A decision tree is a representation of a Boolean function 
– f: situation → {0, 1}
– Can also be thought of as defining a classification procedure, or a categorisation 
– Partitions the inputs into two subsets 

• The input is a description of a situation
– Abstracted by a set of properties, attributes, features, or parameters

• The output is yes or no
– Identifies the situations with a positive response 

• We will consider 
– Using decision trees in a performance element 
– Inducing decision trees in a learning element 
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Decision trees as performance elements

• Consider the question of deciding whether to wait for a table at a restaurant 
• Our approach will be to formalise the question, and to build a decision tree that 

examines a situation and provides a yes/no answer 
• The first (crucial!) step is to identify the relevant attributes of a situation that 

influence the decision, e.g.
– Alternative nearby? 
– Bar? 
– Friday/Saturday? 
– Hungry? 
– Patrons? 
– Price? 
– Raining? 
– Reservation? 
– Type of food?
– Estimated waiting time? 

• Every attribute should be discretised so that it has only a small number of possible 
values 

– e.g. wait-time is discretised into four possibilities: < 10 minutes,   10–30,   30–60,   > 60 
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Example decision tree

• The choice of 
attributes is crucial

– Without 
examining the 
right attributes, it 
will be impossible 
to make a rational 
decision 

– “garbage in, 
garbage out” 

• Sometimes this can 
be the hardest task!

– cf. requirements 
analysis in 
software 
engineering 
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Properties of decision trees as 
performance elements

• Limited inputs 
– Cannot handle continuous information 

• Limited outputs 
– Can provide only yes/no answers
– e.g. cannot choose amongst a set of restaurants 

• Fully expressive wrt propositional problems 
• But they can be huge

• Given n attributes: 
– There will be (at least) 2n combinations of inputs 
– Hence (at least) 22

n
possible functions

– And many more possible trees! 
• e.g. 6 binary attributes implies 22

6
≈1019 possible functions 

• A non-trivial learning task! 
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Inducing decision trees

• We will use the following terminology 
– An example is a pair, with an input and an 

output 
• ({attributes}, value)

– A positive example is where value = true
– A negative example is where value = false
– A training set is a set of examples used for 

learning 
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• In 18.3, one row corresponds to one 
example 

– These come from exercising the tree in 18.2
• The goal of induction is to find a decision 

tree that 
– Agrees with all elements of the training set, 

and Is as small as possible 



A trivial induction algorithm

• Build a tree that branches on each attribute in turn, until you reach a distinct leaf 
for each example 

• This approach has two principal problems 
– The tree will be much bigger than necessary 

• It does not search for patterns that summarise or simplify the training set 
– The tree will be unable to provide answers for examples that aren’t in the training set 

• It cannot generalise from the training set 

• These problems represent two sides of the same coin 
– They result from ignoring Occam’s Razor
– “the most likely hypothesis is the simplest one that is consistent with the data” 
– The tree has been overfitted to the data 
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A better induction algorithm

• Finding the (guaranteed) smallest tree is intractable 
– But we can use a greedy approach to find a “good” tree 

• The basic idea is to always test the most important attribute first 
– This will give us a set of sub-problems that we can solve recursively, each with a subset 

of the data 
• What do we mean by “the most important attribute”? 

– The one that “makes the most difference” to the example data 
– Note this implies that starting with different training examples will give a different tree 

• Is this a desirable feature of the approach? 

• Usually aim to 
– make the whole tree as shallow as possible, or 
– make the average depth as small as possible, or 
– make the number of nodes as small as possible, or 
– …
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Induction

• The text emphasises separating positive and negative examples as early as 
possible 

– Thus minimising the size of the tree 
– Thus Patrons is a good first attribute 

• But an argument could also be made for Type
– It minimises the size of the largest recursive sub-problem 
– Likely to minimise the depth of the tree

• This illustrates the heuristic nature of the approach 
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A recursive algorithm

• There are three possible base cases 
• The remaining examples are all positive or all negative 

– e.g. for all Indian restaurants, we wait! 
– Stop and label the leaf either yes or no

• There are no examples left 
– e.g. there are no Indian restaurants in the data 
– No relevant examples are in the training set, so use the “majority vote” from the parent 

node 
• There are no attributes left 

– i.e. there are identical rows with conflicting answers
– The data is inconsistent, so the attributes originally chosen were inadequate 
– Either start again, or use majority vote 

• There is one recursive case 

• There are (still) both positive and negative examples 
– Choose the next attribute to discriminate on, create a node and divide up the set, and 

recurse 21



The derived tree

• Note that this tree is different 
to the original tree (18.2) 

– Despite using examples 
derived from the original! 

• So is it wrong? 
– No – wrt the training set 
– Probably – wrt unseen 

examples 
• But it is more concise, and it 

highlights new patterns 
– e.g. if there’s no table 

available and you aren’t 
hungry, leave! 

• This process is akin to data 
mining

– Identifying previously unseen 
patterns in the data 
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Assessing performance

• We have seen that the derived tree 
– Fits with the seen data 
– Predicts the classifications of unseen data 

• So to test whether it is a “good tree”, we need unseen examples to exercise it with 
– But of course we need to know the answers for those unseen examples 

• The usual methodology is to 
– Collect a large set of examples 
– Divide them into a training set and a test set
– Use the training set in the learning process 
– Then use the test set to assess the resulting agent 

• One question is – how do we split the data? 
– More training data is good 
– But more test data is also good! 
– So try it out with different splits… 
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The happy graph

• Correctness on test set increases with size of training set 
– Zags at the end result from lack of test data 
– A common approach is 90% training, 10% test 

• Basically, the shape of the happy graphs tells us that 
– There is a pattern 
– And the algorithm has identified it! 
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Practical instances of decision tree 
learing: GASOIL

• Michie, BP, deployed 1986 
• Designed complex gas-oil separation 

systems 
for offshore oil platforms 

• Attributes included 
– Relative proportions of gas, oil, and 

water 
– Flow rate 
– Pressure 
– Density 
– Viscosity 
– Temperature 
– Susceptibility to waxing 
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• World’s largest commercial expert system 
in its day 
– Approx. 2,500 rules 

• Building by hand would have taken 10 
person-years 

• Decision-tree learning was applied to a 
database of existing designs 
– System was developed in 100 person-

days 
• Outperformed human experts 

– More systematic, thinks “outside the 
box” 

– Said to have saved BP many millions 
of dollars 



Practical instances of decision tree 
learning: C4.5

• Sammut et al., 1992 

• Learned to fly a Cessna light plane on a flight simulator 
– Learned a state-action mapping (a policy) 

• Training was provided by three skilled human pilots 
– Each pilot flew an assigned flight plan 30 times 

– 90 flights, approx. 1,000 actions/flight 

• Twenty attributes were used 
– e.g. wind, altitude, throttle, ailerons, angle, etc.
– i.e. over 21,000,000 possible functions! 

• The generated decision tree was fed back into the simulator 
– Tree flew better than its teachers 
– Using the generalisation process “cleans out” “mistakes” by the teachers 
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Learning Under Uncertainty

• Often we are required to learn in uncertain domains, where we do not have an 
oracle providing the correct class for a given observation.

• A variety of approaches exist, like fuzzy logic or belief functions, but probabilistic 
reasoning is the most widely used.

• Probabilities are given for events. E.g. X is “I will pass CITS3001”, may have a 
probability P(X)=0.95 (95%) (the prior probability)

• We write ¬X for “not X”,  X ∨Y for “X or Y”, and X ∧Y for “X and Y”
• Probabilities for different events are related: If Y is “I study for the CITS3001 exam” 

then we have the probability of X given Y, P(X | Y)=0.99 (the conditional 
probability).

• Conditional probabilities are defined by Bayes’ Rule
• Probabilities must obey the Kolmogorov axioms:

– 0 ≤ P(X) ≤ 1
– P(true) = 1, P(false) = 0
– P(X ∨Y) = P(X) + P(Y) – P(X ∧ Y)
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Dependence 

• Reasoning under uncertainty comes down to learning 
the probabilities of events, and how the probabilities 
are related.

• Given a set of events, the joint probability distribution is 
the probability for combinations of events occuring.

• For n events, there are 2n different combinations to 
learn. However, many of these events may be 
independent (so P(X ∧ Y) = P(X).P(Y)) or conditionally 
independent so X and Y may whave a common cause, 
but are otherwise independent.

• Independence is a strong assumption, that makes 
computing probabilities much simpler.

• Bayesian Networks organise represent events in a 
directed acyclic graph, where events are only 
dependent on their parents, and otherwise conditionally 
idependent.

• We then just need to know the joint for nodes and their 
parents. 28



Bayesian Networks 

• Bayesian Networks organise represent events in a 
directed acyclic graph, where events are only 
dependent on their parents, and otherwise conditionally 
idependent.

• We then just need to know the joint for nodes and their 
parents.

• Applying Bayes’ Rule we can represent the same 
information in networks with a different topology, but 
the complexity will not be the same.

• In general, computing the best topology for a Bayesian 
Network, or computing conditional probabilities from a 
Bayesian Network are NP-Hard.

• However, could approximations of probabilities can be 
approximated by using sampling algorithms, such as 
Gibbs sampling, or Markov Chain Monte Carlo 
methods.
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Example: Car Diagnosis 

• Bayesian Networks are 
a good method to take 
prior knowledge and 
assumptions, and 
compute conditional 
probabilities to support 
rational decisions.

• They can be 
generalized to handle 
continuous variables, 
and dynamic 
information.

• Bayesian Networks are 
used extensively in 
medical applications 
for diagnosis, but often 
still rely on expert 
guidance.
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