
Sequential Decision
Problems
CITS3001 Algorithms, Agents and Artificial Intelligence

2021, Semester 2
Tim French
Department of Computer Science and Software Engineering
The University of Western Australia

Introduction

• We will define sequential decision problems
(SDPs)

• We will discuss two major algorithms for
solving SDPs

– Value iteration:
• estimate rewards
• refine rewards, repeatedly
• use rewards to make plan

– Policy iteration:
• make initial plan
• calculate rewards and re-make plan,

repeatedly
• We will discuss the related issues of

– Delayed rewards
– Immortal/eternal agents

2

Sequential decision problems

• A sequential decision problem (SDP) is a problem where the utility obtained by an
agent depends on a sequence of decisions

• SDPs in known, accessible, deterministic domains can be solved using search
algorithms that we have already seen

– The result is a sequence of actions that lead (inevitably) to a “good” state
• But SDPs typically include utilities, uncertainty, sensing issues, etc.

– They generalise the searching and planning problems that we have seen up to now
– An agent needs to know what action to take in each possible state, allowing for future

uncertainties
• A policy is a set of state-action rules

– For each state, which action to take?
– Providing a policy basically turns a utility-based agent into
a simple reflex agent

• We need algorithms that can derive optimal policies for an
agent faced with an SDP

3

An example SDP

• Beginning from the start state of 17.1(a):
– The agent must select an action at each time step, from the set {Up, Down, Left, Right}

• Each non-terminal state incurs a step-cost
– The agent’s interaction finishes when it reaches

any terminal state
• Each terminal state confers a “reward”

– The agent wants to maximise its overall utility
• The utility of a sequence of states is the sum of the step-costs, plus the terminal utility

• If actions are deterministic, it’s trivial!
– [Up, Up, Right, Right, Right]

4

• But each action has a pre-defined
probability of “failure”
• Given by the transition model in

17.1(b)
• Non-determinism limits the

usefulness of search
• So what’s the best policy now?

Optimal Policies

• The optimal policy for this environment
depends on many factors

– Each of the following points assumes
“all else being equal”

• It depends on the transition model:
– Less-certain actions imply

a more conservative policy

• It depends on the terminal utilities:
– A bigger discrepancy between the two

implies a more conservative policy

• It depends on the step-cost:
– A lower step-cost implies a more

conservative policy

5

Optimal policies for various step costs

• 17.2(b1): get to any
terminal ASAP!

• 17.2(b2): risk the bad
terminal

• 17.2(a): ditto, but
less

• 17.2(b3): avoid the
bad terminal at all
costs

• 17.2(b4): I want to live
forever!

6

Before we describe our two algorithms, we need to describe two fundamental processes
that they employ

A policy determines a set of utilities

• Given any policy, we can determine the agent’s corresponding utilities if it follows
that policy

• For each non-terminal state, an equation describes its expected utility as a function
of the transition model

e.g. for the policy in 17.2(a):
• x33 = 0.8 ´ 1 + 0.1 ´ x33 + 0.1 ´ x32 – 0.04
• x32 = 0.8 ´ x33 + 0.1 ´ x32 + 0.1 ´ –1 – 0.04
• x23 = 0.8 ´ x33 + 0.1 ´ x23 + 0.1 ´ x23 – 0.04
• …

• In general, n non-terminal states gives n simultaneous linear equations
• Solving with Gaussian elimination gives the utilities

– But Gaussian elimination is O(n3)…
• This process is often called value determination

7

A set of utilities determines a policy

• Correspondingly: given a utility for each state, we can determine the optimal policy

for the agent

• For each state independently, calculate the expected outcome for each action, and

choose the best action

• e.g. for State 3,1 in 17.3:

– Up: 0.8 ´ x32 + 0.1 ´ x21 + 0.1 ´ x41 – 0.04 ≈ 0.592

– Down: 0.8 ´ x31 + 0.1 ´ x41 + 0.1 ´ x21 – 0.04 ≈ 0.553

– Right: 0.8 ´ x41 + 0.1 ´ x32 + 0.1 ´ x31 – 0.04 ≈ 0.398

– Left: 0.8 ´ x21 + 0.1 ´ x31 + 0.1 ´ x32 – 0.04 ≈ 0.611

8

So the best action in State 3,1 is Left
Note that the agent shouldn’t just

head for the adjacent state with the

highest utility…

We shall call this process action
determination

The Bellman Equation

• The utility of a state is specified formally by the Bellman equation [1957]

• is the probability that doing Action a in State i leaves the agent in State j
– i.e. it represents the transition model

• is the weighted sum of all possible outcomes of doing Action a in State i

• is the expected outcome of the best action to do in State i

• is the cost of being in State i, plus the optimal cost from then on.

• The Bellman equation underpins both SDP algorithms
• But it cannot be solved directly because

– The equations for the states are mutually dependent
– The use of maxa means the equation is non-linear

9

Ui = Ri +maxa Mij
aU j

j
∑

Mij
a

Mij
aU j

j
∑

maxa Mij
aU j

j
∑

Ri +maxa Mij
aU j

j
∑

Value iteration

• Basic idea:
– Determine the true utility of each state
– Then determine the optimal action in each state,

by action determination
• To determine the utility of each state, use an iterative approximation algorithm

– start with arbitrary utilities U
– update U to make them locally consistent with Bellman
– repeat until U is “close enough”

• This has been proven to converge, under reasonable assumptions

10

Aside: iterative approximation
algorithms

• An iterative approximation algorithm
that you may know is Newton’s
algorithm for finding square roots.
Find the square root of y by
repeatedly improving an initial
estimate x0, using xk+1 = (xk + y/xk) / 2

– e.g. y = 25
– x0 = 1
– x1 = 13
– x2 = 7.46
– x3 = 5.41
– x4 = 5.02
– x5 = 5.00002
– x6 = 5.00000000005
– etc.

11

• The key point in an iterative
approximation algorithm is that the
update step f is a contraction
i.e. u ≠ v → |f(u) – f(v)| < |u – v|
e.g. f might be “divide by 2”

• Applying f brings points closer
together

• f(fixf) = fixf
•e.g. the fixed point of “divide by 2”
is 0
•Therefore f brings any point closer
to its fixed point
•And any contraction has only one
fixed point

Value iteration approximation

• The key to the algorithm
is that in the (iterated)
update step, the link
between U and U’ is
broken

• U’ (the new set of utilities)
is created under the
assumption that U (the
old set of utilities) is
correct

– If U is correct, there will
be no change and the
iteration terminates

– If U is not correct, U’ will
be closer to the correct
values than U

12

Value iteration performance

• 17.5(a) shows how the utility of
each state approaches the
correct value as value iteration
proceeds

• State 4,3 (a terminal) is
immediately correct

• 3,3 achieves correctness early
– It is “close to” a terminal

– The other states get worse
before they get better,
i.e. until they are “connected to”
a terminal

• As usual with iterative
approximation algorithms,
diminishing returns applies

– The utilities approach the correct
values asymptotically, and a
threshold cut-off must be used

13

Assessing performance

• But we can derive the optimal
policy without knowing the exact
utilities

• Calculate the policy loss at each
iteration by using the current
value of U to derive the “current
policy” π

– Then compare π with the
optimal policy

• 17.6 shows, for each iteration,
the error in the utilities vs. the
policy loss

– The policy loss is uniformly less
than the error in the utilities

– The optimal policy is derived
long before the exact utilities are
derived

• Can we use this idea to develop
a faster algorithm? 14

Policy iteration

• Basic idea:
– We (usually) don’t need to know exact utilities; we just need to know what to do!

• e.g. is jumping off a bridge –100 or –1,000?
– Hence iterate on the actual policy, not its utilities

• To determine the optimal policy, use an iterative approximation algorithm

– start with an arbitrary policy π
– compute the utilities U of π, by value determination
– update π according to U, by action determination
– repeat until no change in π

• This also has been proven to converge, under reasonable assumptions

15

Policy iteration operation

• In each iteration
– Derive the utilities from the current policy, then
– Check each state to see if its action is optimal

• If there are any updates, iterate again
– But updating a policy is a much “coarser” operation than updating a utility value
– Hence convergence is quicker

• Deriving the utilities can be slow
– Gaussian elimination is cubic in the no. of states
– For large problems, it may be better to use (a simplified form of) value iteration itself!

16

Utilities over time

• In many disciplines where rewards are distributed through time, it is normal to regard
present returns as being more valuable than future returns

– “a bird in the hand is worth two in the bush”
– From economic theory: Net Present Value

• In our context that is usually implemented by discounting future rewards
• Our additive rewards for a sequence of states

U([s0, s1, s2, …, sn]) = R(s0) + R(s1) + R(s2) + …

becomes

U([s0, s1, s2, …, sn]) = R(s0) + γ R(s1) + γ2 R(s2) + …

• For a constant discount rate γ, this is equivalent to paying an interest rate of 1 / γ – 1

17

Eternal agents

• This acquires especial importance in the context of eternal
agents

– Some environments have no terminal states
– Some agents don’t want to die!

• If two summations are infinitely long, it becomes difficult to
compare them meaningfully without discounting

– Quite likely they both grow indefinitely

• But with discounting they will be bounded
• Discounting also appeals intuitively to the idea that we

cannot look too far ahead
– cf. limited horizons in game-playing
– A smaller value of γ implies a shorter horizon

18

