

Sequential Decision Problems

CITS3001 Algorithms, Agents and Artificial Intelligence

THERE! IF WE STEAL ONE OF THOSE CARS, WE CAN GET TO THE BASE AND DEFUSE THE BOMB!

> HMM, THE ONE ON THE LEFT ACCELERATES FASTER BUT HAS A LOWER TOP SPEED. OOH, THE RIGHT ONE HAS GOOD TRACTION CONTROL. ARE THE ROADS WET?

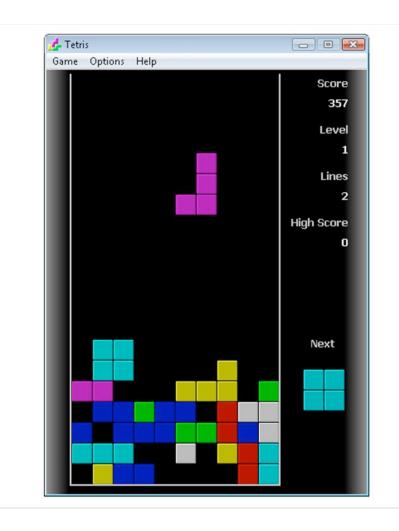
PROTIP: IF YOU EVER NEED TO DEFEAT ME, JUST GIVE ME TWO VERY SIMILAR OPTIONS AND UNLIMITED INTERNET ACCESS.

2021, Semester 2

Tim French Department of Computer Science and Software Engineering The University of Western Australia

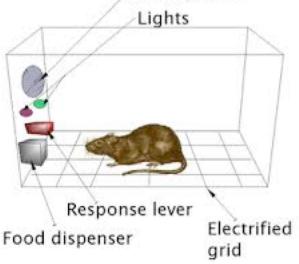
Introduction

- We will define sequential decision problems (SDPs)
- We will discuss two major algorithms for solving SDPs
 - Value iteration:
 - · estimate rewards
 - · refine rewards, repeatedly
 - use rewards to make plan
 - Policy iteration:
 - make initial plan
 - calculate rewards and re-make plan, repeatedly
- We will discuss the related issues of
 - Delayed rewards
 - Immortal/eternal agents



Sequential decision problems

- A sequential decision problem (SDP) is a problem where the utility obtained by an agent depends on a sequence of decisions
- SDPs in known, accessible, deterministic domains can be solved using search algorithms that we have already seen
 - The result is a sequence of actions that lead (inevitably) to a "good" state
- But SDPs typically include utilities, uncertainty, sensing issues, *etc.*
 - They generalise the searching and planning problems that we have seen up to now
 - An agent needs to know what action to take in each possible state. allowing for future uncertainties
- A *policy* is a set of state-action rules
 - For each state, which action to take?
 - Providing a policy basically turns a utility-based agent into a simple reflex agent
- We need algorithms that can derive optimal policies for an agent faced with an SDP



An example SDP

- Beginning from the start state of 17.1(a):
 - The agent must select an action at each time step, from the set {Up, Down, Left, Right}
 - Each non-terminal state incurs a *step-cost*
 - The agent's interaction finishes when it reaches any terminal state
 - Each terminal state confers a "reward"
 - The agent wants to maximise its overall utility
 - The utility of a sequence of states is the sum of the step-costs, plus the terminal utility
- If actions are deterministic, it's trivial!
 - [Up, Up, Right, Right, Right]
- But each action has a pre-defined probability of "failure"
 - Given by the *transition model* in 17.1(b)
 - Non-determinism limits the usefulness of search
- So what's the best policy now?

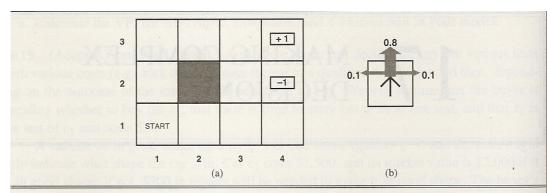


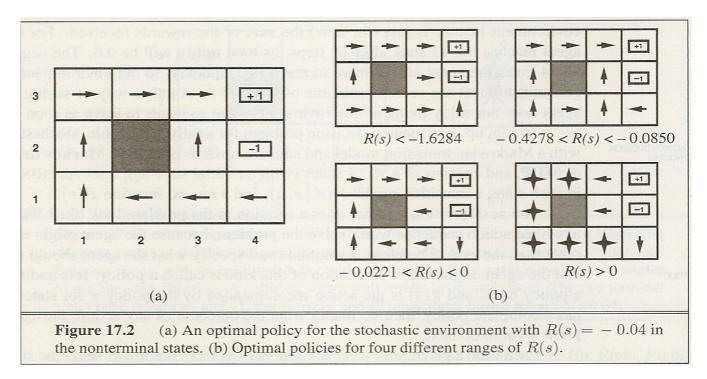
Figure 17.1 (a) A simple 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the "intended" outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. The two terminal states have reward +1 and -1, respectively, and all other states have a reward of -0.04.

Optimal Policies

- The optimal policy for this environment depends on many factors
 - Each of the following points assumes
 "all else being equal"
- It depends on the transition model:
 - Less-certain actions imply a more conservative policy
- It depends on the terminal utilities:
 - A bigger discrepancy between the two implies a more conservative policy
- It depends on the step-cost:
 - A lower step-cost implies a more conservative policy

Optimal policies for various step costs

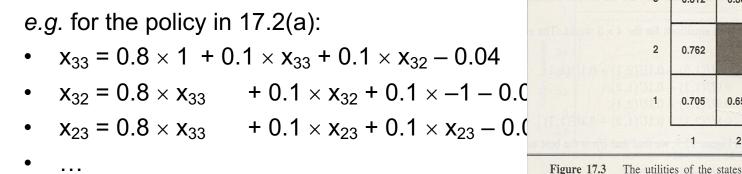
- 17.2(b1): get to any terminal ASAP!
- 17.2(b2): risk the bad terminal
- 17.2(a): ditto, but less
- 17.2(b3): avoid the bad terminal at all costs
- 17.2(b4): I want to live forever!

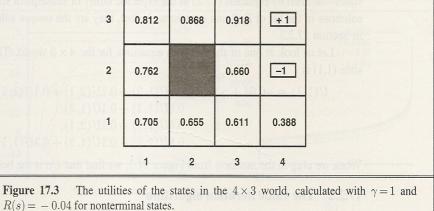


Before we describe our two algorithms, we need to describe two fundamental processes that they employ

A policy determines a set of utilities

- Given any policy, we can determine the agent's corresponding utilities *if it follows* that policy
- For each non-terminal state, an equation describes its expected utility as a function of the transition model





- In general, *n* non-terminal states gives *n* simultaneous linear equations
- Solving with Gaussian elimination gives the utilities
 - But Gaussian elimination is $O(n^3)$...
- This process is often called value determination

A set of utilities determines a policy

- Correspondingly: given a utility for each state, we can determine the optimal policy for the agent
- For each state *independently*, calculate the expected outcome for each action, and choose the best action
- *e.g.* for State 3,1 in 17.3:
 - *Up*: 0.8 × x_{32} + 0.1 × x_{21} + 0.1 × x_{41} − 0.04 ≈ 0.592
 - Down: $0.8 \times x_{31} + 0.1 \times x_{41} + 0.1 \times x_{21} 0.04 \approx 0.553$
 - Right: $0.8 \times x_{41} + 0.1 \times x_{32} + 0.1 \times x_{31} 0.04 \approx 0.398$
 - Left: $0.8 \times x_{21} + 0.1 \times x_{31} + 0.1 \times x_{32} 0.04 \approx 0.611$

So the best action in State 3,1 is *Left* Note that the agent shouldn't just head for the adjacent state with the highest utility...

We shall call this process action determination

3	0.812	0.868	0.918	+1	sintos—do solutions o solution
2	0.762		0.660	-1	shie (1.1)
1	0.705	0.655	0.611	0.388	
		2	3	4	w and we p

Figure 17.3 The utilities of the states in the 4×3 world, calculated with $\gamma = 1$ and R(s) = -0.04 for nonterminal states.

The Bellman Equation

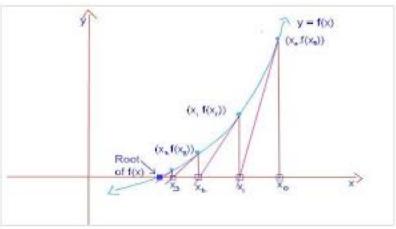
The utility of a state is specified formally by the Bellman equation [1957]

$$U_i = R_i + \max_a \sum_j M^a_{ij} U_j$$

- M_{ii}^{a} is the probability that doing Action *a* in State *i* leaves the agent in State *j* - *i.e.* it represents the transition model • $\sum M_{ij}^{a}U_{j}$ is the weighted sum of all possible outcomes of doing Action *a* in State *i*
- $\max_{a} \sum_{j} M_{ij}^{a} U_{j}$ is the expected outcome of the best action to do in State *i* $R_{i} + \max_{a} \sum_{i} M_{ij}^{a} U_{j}$ is the cost of being in State *i*, plus the optimal cost from then on.
- The Bellman equation underpins both SDP algorithms
- But it cannot be solved directly because ٠
 - The equations for the states are mutually dependent
 - The use of max_a means the equation is non-linear

Value iteration

- Basic idea:
 - Determine the true utility of each state
 - Then determine the optimal action in each state, by action determination
- To determine the utility of each state, use an iterative approximation algorithm
 - start with arbitrary utilities *U*
 - update U to make them *locally consistent* with Bellman
 - repeat until *U* is "close enough"
- This has been proven to converge, under reasonable assumptions



Aside: iterative approximation algorithms

An iterative approximation algorithm that you may know is Newton's algorithm for finding square roots. Find the square root of *y* by repeatedly improving an initial estimate *x*₀, using *x*_{k+1} = (*x*_k + *y*/*x*_k) / 2

- $x_0 = 1$
- $-x_1 = 13$
- $x_2 = 7.46$
- $x_3 = 5.41$
- $x_4 = 5.02$
- $x_5 = 5.00002$
- $x_6 = 5.0000000005$
- etc.

- The key point in an iterative approximation algorithm is that the update step *f* is a *contraction i.e.* u ≠ v → |f(u) f(v)| < |u v|
 e.g. f might be "divide by 2"
- Applying *f* brings points closer together
- f(fix_f) = fix_f
 e.g. the fixed point of "divide by 2" is 0

•Therefore *f* brings any point closer to its fixed point

•And any contraction has only one fixed point

Value iteration approximation

- The key to the algorithm is that in the (iterated) update step, the link between *U* and *U*' is broken
- U' (the new set of utilities) is created *under the assumption that U* (the old set of utilities) is correct
 - If U is correct, there will be no change and the iteration terminates
 - If U is not correct, U' will be closer to the correct values than U

function VALUE-ITERATION(mdp, ϵ) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a), rewards R(s), discount γ ϵ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero δ , the maximum change in the utility of any state in an iteration repeat $U \leftarrow U'; \delta \leftarrow 0$ for each state s in S do $U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U[s']$ if $|U'[s] - U[s]| > \delta$ then $\delta \leftarrow |U'[s] - U[s]|$ until $\delta < \epsilon(1 - \gamma)/\gamma$ return U

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (17.8).

Value iteration performance

- 17.5(a) shows how the utility of each state approaches the correct value as value iteration proceeds
- State 4,3 (a terminal) is immediately correct
- 3,3 achieves correctness early
 - It is "close to" a terminal
 - The other states get worse before they get better, *i.e.* until they are "connected to" a terminal
- As usual with iterative approximation algorithms, diminishing returns applies
 - The utilities approach the correct values asymptotically, and a threshold cut-off must be used

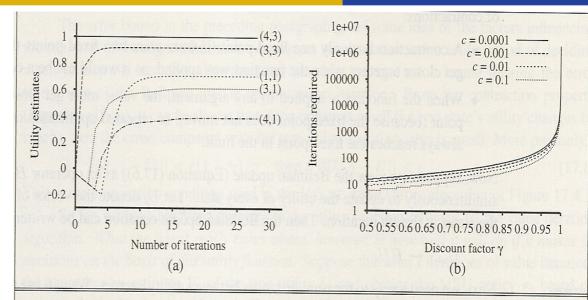
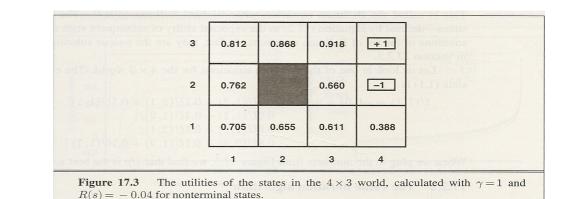


Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value iteration. (b) The number of value iterations k required to guarantee an error of at most $\epsilon = c \cdot R_{\text{max}}$, for different values of c, as a function of the discount factor γ .



Assessing performance

- But we can derive the optimal policy *without knowing the exact utilities*
- Calculate the *policy loss* at each iteration by using the current value of U to derive the "current policy" π
 - Then compare π with the optimal policy
- 17.6 shows, for each iteration, the error in the utilities vs. the policy loss
 - The policy loss is uniformly less than the error in the utilities
 - The optimal policy is derived long before the exact utilities are derived
- Can we use this idea to develop a faster algorithm?

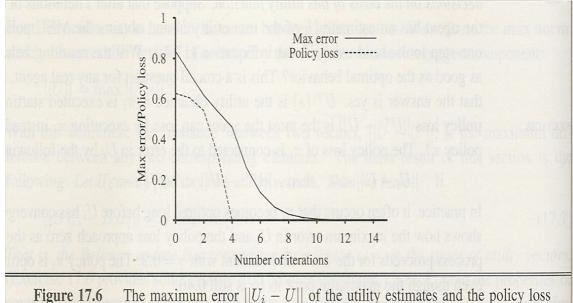
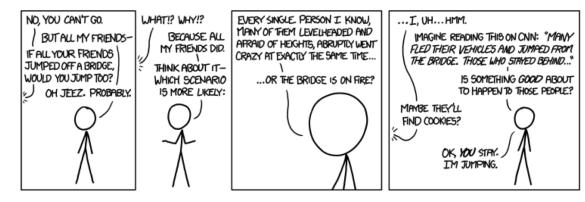


Figure 17.6 The maximum error $||U_i - U||$ of the utility estimates and the policy loss $||U^{\pi_i} - U||$, as a function of the number of iterations of value iteration.

Policy iteration

- Basic idea:
 - We (usually) don't need to know exact utilities; we just need to know what to do!
 - *e.g.* is jumping off a bridge -100 or -1,000?
 - Hence iterate on the actual policy, not its utilities
- To determine the optimal policy, use an iterative approximation algorithm
 - start with an arbitrary policy π
 - compute the utilities U of π , by value determination
 - update π according to *U*, by action determination
 - repeat until no change in π
- This also has been proven to converge, under reasonable assumptions



Policy iteration operation

- In each iteration
 - Derive the utilities from the current policy, then
 - Check each state to see if its action is optimal
- If there are any updates, iterate again
 - But updating a policy is a much "coarser" operation than updating a utility value
 - Hence convergence is quicker
- Deriving the utilities can be slow
 - Gaussian elimination is cubic in the no. of states
 - For large problems, it may be better to use (a simplified form of) value iteration itself!

```
function POLICY-ITERATION(mdp) returns a policy

inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a)

local variables: U, a vector of utilities for states in S, initially zero

\pi, a policy vector indexed by state, initially random

repeat

U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)

unchanged? \leftarrow true

for each state s in S do

if \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U[s'] > \sum_{s'} P(s' | s, \pi[s]) U[s'] then do

\pi[s] \leftarrow \underset{a \in A(s)}{=} \sum_{s'} P(s' | s, a) U[s']

unchanged? \leftarrow false

until unchanged?

return \pi
```

Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

Utilities over time

- In many disciplines where rewards are distributed through time, it is normal to regard present returns as being more valuable than future returns
 - "a bird in the hand is worth two in the bush"
 - From economic theory: Net Present Value
- In our context that is usually implemented by *discounting* future rewards
- Our additive rewards for a sequence of states

$$U([s_0, s_1, s_2, \dots, s_n]) = R(s_0) + R(s_1) + R(s_2) + \dots$$

becomes

 $U([s_0, s_1, s_2, ..., s_n]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...$

• For a constant discount rate γ , this is equivalent to paying an interest rate of $1/\gamma - 1$

Eternal agents

- This acquires especial importance in the context of eternal agents
 - Some environments have no terminal states
 - Some agents don't want to die!
- If two summations are infinitely long, it becomes difficult to compare them meaningfully without discounting
 - Quite likely they both grow indefinitely
- But with discounting they will be bounded
- Discounting also appeals intuitively to the idea that we cannot look too far ahead
 - cf. limited horizons in game-playing
 - A smaller value of γ implies a shorter horizon

