WESTERN

e 4 AUSTRALIA

Sequential Decision Ess

H'M THE ONE ONTHE LEFT
ACCELERATES FPSTER BUT

Problems o

GOOD TRACTION CONTROL.
ARE THE ROADS LIET?
CITS3001 Algorithms, Agents and Artificial Intelligence 05

PROTIP: |F YOU EVER NEED TO DEFEAT ME,
JUST GIVE. ME TWJO VERY SIMILAR OPTIONS
AND UNLIMITED INTERNET ACCESS.

: 2021, Semester 2
Tim French
Department of Computer Science and Software Engineering
The University of Western Australia

Introduction WESTERN

S? AUSTRALIA
- We will define sequential decision problems EA =]
(SDPS) : : Score
» We will discuss two major algorithms for 357
solving SDPs Level

1
— Value iteration: Lines

» estimate rewards 2

High Score

 refine rewards, repeatedly
« use rewards to make plan ks
— Policy iteration:
* make initial plan
 calculate rewards and re-make plan,
repeatedly
» We will discuss the related issues of
— Delayed rewards

— Immortal/eternal agents

n = = THE UNIVERSITY OF
Sequential decision problems &, WESTERN

A sequential decision problem (SDP) is a problem where the utility obtained by an
agent depends on a sequence of decisions

SDPs in known, accessible, deterministic domains can be solved using search
algorithms that we have already seen
— The result is a sequence of actions that lead (inevitably) to a “good” state
But SDPs typically include utilities, uncertainty, sensing issues, efc.
— They generalise the searching and planning problems that we have seen up to now
— An agent needs to know what action to take in each possible state. allowina for future

uncertainties Loudspeaker
A policy is a set of state-action rules Lights
— For each state, which action to take? _
— Providing a policy basically turns a utility-based agent into :
&®

a simple reflex agent

=
We need algorithms that can derive optimal policies for an Q g
agent faced with an SDP S

Response lever
Electrified

. :
ood dispenser grid

An example SDP @%@?{Eﬁﬁ

Beginning from the start state of 17.1(a):

— The agent must select an action at each time step, from the set {Up, Down, Left, Right}
» Each non-terminal state incurs a step-cost

— The agent’s interaction finishes when it reaches

any terminal state

 Each terminal state confers a “reward”

— The agent wants to maximise its overall utility
» The utility of a sequence of states is the sum of the step-costs, plus the terminal utility

If actions are deterministic, it’s trivial!

— [Up, Up, Right, Right, Right]

But each action has a pre-defined

probability of “failure”

» Given by the transition model in
17.1(b)

* Non-determinism limits the
usefulness of search

So what'’s the best policy now?

0.1

0.8

> 0.1

(@)

(b)

Figure 17.1 (a) A simple 4 x 3 environment that presents the agent with a sequential
decision problem. (b) Illustration of the transition model of the environment: the “intended”
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles
to the intended direction. A collision with a wall results in no movement. The two terminal
states have reward +1 and —1, respectively, and all other states have a reward of —0.04.

u = . THE UNI\',IE"IElﬁ{ﬁ
Optimal Policies S, WESTERN

The optimal policy for this environment
depends on many factors

— Each of the following points assumes
“all else being equal”

It depends on the transition model:

— Less-certain actions imply
a more conservative policy

It depends on the terminal utilities:

— ADbigger discrepancy between the two
implies a more conservative policy

It depends on the step-cost:

— Alower step-cost implies a more
conservative policy

THE UNIVERSITY OF

. " . n
Optimal policies for various step costs % WESIERN

« 17.2(b1): get to any
terminal ASAP!

« 17.2(b2):riskthebad | ™| ™|
terminal
| o }
« 17.2(a): ditto, but
|eSS 1 * - - ———
« 17.2(b3): avoid the 2 ? 5 :
bad terminal at all ol R0
costs (a) (b)
* 1 72(b4) I Want tO live Figure 17.2 (a) An optimal policy for the stochastic environment with R(s) = — 0.04 in
forever! the nonterminal states. (b) Optimal policies for four different ranges of R(s).

Before we describe our two algorithms, we need to describe two fundamental processes
that they employ

" o agugm THE UNIVERSITY OF
A policy determines a set of utilities &, WESIERN

» Given any policy, we can determine the agent’s corresponding utilities if it follows
that policy

* For each non-terminal state, an equation describes its expected utility as a function
of the transition model

3 0.918
e.q. for the policy in 17.2(a):
* X33=0.8x1 +0.1 xX33+0.1xx3,—0.04 s g
* X3p=0.8xX33 +0.1xX3,+0.1x-1-0.C : o
* Xo3=0.8 x X33 + 0.1 x X953 + 0.1 x Xo3 — 0.("~ e e

° Figure 17.3 The utilities of the states in the 4 x 3 world, calculated with y=1 and

R(s)= — 0.04 for nonterminal states.

* In general, n non-terminal states gives n simultaneous linear equations

« Solving with Gaussian elimination gives the utilities
— But Gaussian elimination is O(n3)...

» This process is often called value determination

A set of utilities determines a policy @%@?{Eﬁﬁ

Correspondingly: given a utility for each state, we can determine the optimal policy
for the agent

For each state independently, calculate the expected outcome for each action, and
choose the best action

e.q. for State 3,1in 17.3:
— Up: 0.8 xx35+0.1x X%y, +0.1xx41—0.04=0.592
— Down: 0.8 x X371 + 0.1 x X419 + 0.1 x Xo1 — 0.04 = 0.553
— Right: 0.8 x X471 + 0.1 x X3, + 0.1 x X371 — 0.04 = 0.398

— Left: 0.8 x Xpq + 0.1 x X371 + 0.1 x X3, — 0.04 = 0.611
. .) 3 0.918
So the best action in State 3,1 is Left
Note that the agent shouldn’t just - i
head for the adjacent state with the
hlgheSt Utlllty .. 1 0611 | 0388

We Sha” Ca” thIS process aCtlon Figure 17.3 The utilitigs of the states in the 4 x 3 world, calculated with y=1 and
determlnathn R(s) = — 0.04 for nonterminal states.

The Bellman Equation @%@?{Eﬁﬁ

« The utility of a state is specified formally by the Bellman equation [1957]
U. =R +max, EM;U].

. M,;-l is the probability that doing Action a in State i leaves the agent in State j
— l.e. it represents the transition model

D MU, s the weighted sum of all possible outcomes of doing Action a in State J
. %, EMZ'J'UJ' is the expected outcome of the best action to do in State i
J

. R, +max, EM;UJ- is the cost of being in State J, plus the optimal cost from then on.
j z‘

« The Bellman equation underpins both SDP algorithms

« But it cannot be solved directly because
— The equations for the states are mutually dependent
— The use of max, means the equation is non-linear

Value iteration J&, WESTERN

* Basicidea:
— Determine the true utility of each state

— Then determine the optimal action in each state,
by action determination

» To determine the utility of each state, use an iterative approximation algorithm

— start with arbitrary utilities U
— update U to make them locally consistent with Bellman
— repeat until U is “close enough”

« This has been proven to converge, under reasonable assumptions

y = fix)

Aside: iterative approximation WESTERN
. %am? AUSTRALIA
algorithms

* An iterative approximation algorithm
that you may know is Newton’s
algorithm for finding square roots.
Find the square root of y by
repeatedly improving an initial
estimate xp, using Xu+7 = (X + y/Xy) / 2

* The key point in an iterative
approximation algorithm is that the
update step fis a contraction
ie. uzv — |f(u)—1f(v)| <|u-v|
e.g. f might be “divide by 2”

» Applying f brings points closer

- egy=2s together

- X =1 . f(fix;) = fix;

- X =13 -e.g. the fixed point of “divide by 2”
- X»= 7.46 isO

- X3=95.41 *Therefore f brings any point closer
- x4=5.02 to its fixed point

— x5 =5.00002 *And any contraction has only one

— xg = 5.00000000005 fixed point

— elc.

Value iteration approximation @ WESEERN

« The key to the algorithm
is that in the (iterated)

u pd ate step, the link function VALUE-ITERATION(mdp, €) returns a utility function
between U and U’ is inputs: mdp, an MDP with states S, actions A(s), transition model P(s’ | s, a),
rewards R(s), discount y
broken €, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
9, the maximum change in the utility of any state in an iteration

« U’ (the new set of utilities)
is created under the

repeat

assumption that U (the Biessgrts 50
old set of utilities) is for each state s in S do
U'ls] —R(s) + v max P(s'|s,a) U[s]
correct | . a’€ A(s)
— If Uis correct, there will it|U07[s] ~ Uls]| > & thend—[U"[s] — Uls)
’ until 6 < ¢(1—7)/y
be no changg and the cetasi T
iteration terminates
— If Uis not correct, U’ will Figure 17.4 The value iteration algorithm for calculating utilities of states. The termina-
be closer to the correct tion condition is from Equation (17.8).

values than U

Value iteration performance

17.5(a) shows how the utility of
each state approaches the
correct value as value iteration
proceeds

State 4,3 (a terminal) is
immediately correct

3,3 achieves correctness early

— ltis “close to” a terminal

— The other states get worse
before they get better,
i.e. until they are “connected to”

a terminal

As usual with iterative
approximation algorithms,
diminishing returns applies

— The utilities approach the correct

values asymptotically, and a
threshold cut-off must be used

Utility estimates

WESTERN

le+07 4
1 (4.3)
"""" =57(3:3) le+06 1
0.8 : 55
------------------------------ (1,1) 3 100000 -
0.6 1! (3.1))
o 10000 1
Odaes el e T @.1) =
S 1000 1
0.2 =
O e 100 -
04 i/ &
\i,-" :.' 10 £
-0.2
0 3 {8 e e sl D L= 0T) 0.50.550.60.650.70.750.8 0.850.90.95 1
Number of iterations Discount factor y
(a) (b)

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations % required to guarantee an error of at most
€ = - Rmax, for different values of c, as a function of the discount factor 9.

3 0.812 0.868 0.918

1 0.705 0.655 0.611 0.388
1 2 3 4

Figure 17.3 The utilities of the states in the 4 x 3 -world, calculated with v=1 and
R(s) = — 0.04 for nonterminal states.

Frzg=ey 1HE UNIVERSITY OF
Assessing performance $ {5

But we can derive the optimal
policy without knowing the exact
utilities
Calculate the policy loss at each
iteration by using the current
value of U to derive the “current
policy”
— Then compare 11 with the
optimal policy
17.6 shows, for each iteration,
the error in the utilities vs. the
policy loss
— The policy loss is uniformly less
than the error in the utilities
— The optimal policy is derived
long before the exact utilities are
derived
Can we use this idea to develop
a faster algorithm?

J—
’

Max error
Policy loss ----=---

o o o
SN N o0

Max error/Policy loss

(==}
o

o

2518 4i5n 6.0 SR HAEI0 EE194EA 14

Number of iterations

(=)

Figure 17.6 The maximum error ||U; — U]| of the utility estimates and the policy loss
||U™ — U|, as a function of the number of iterations of value iteration.

Policy iteration

Basic idea:

THE UNIVERSITY OF

™ WESTERN

e 4 AUSTRALIA

— We (usually) don’t need to know exact utilities; we just need to know what to do!

* e.g. is jumping off a bridge —100 or —1,0007?

— Hence iterate on the actual policy, not its utilities
To determine the optimal policy, use an iterative approximation algorithm

— start with an arbitrary policy 1
— compute the utilities U of 11, by value determination
— update 1T according to U, by action determination

— repeat until no change in 1

This also has been proven to converge, under reasonable assumptions

NO, YOU CAN'T Go.

| BUTALLMY FRENDS-

IF ALL YOUR FRIENDS
JUMPED OFF A BRIDGE,
WOULD YOU JOMP To0?

) OH JEEZ. PROBRBLY.

O/

A

WHAT? WHY!?
BECAUSE ALL
WFHEM?SDID
'HNKWIT—

WHICH SCENARIO
15 MORE LIKELY:

y

EVERY SINGLE. PERSON T KNOW,
VIANY OF THEM LEVELHERDED AND
AFRAID OF HEIGHTS, ABRUPTLY WENT
CWZYHFBMWWESNETHE

ORTF\'EBRlDGEISONﬁRE?

G

e
\\\/

v T, UH.. HMML

IMAGINE READING THIS ON CNN: “MANY’
FLED THEIR VEHICLES AMD JOMPED FRort

15 SOMEHING GOAP ABOUT
TO HAPPEN T THOSE PEDPLE?

MAVBE THEYLL \
FIND COOKIES?

IM JUMPNG.

u u n - THE UNIVERSITY OF
Policy iteration operation %?ij WESTERN

* In each iteration
— Derive the utilities from the current policy, then
— Check each state to see if its action is optimal
» If there are any updates, iterate again
— But updating a policy is a much “coarser” operation than updating a utility value
— Hence convergence is quicker
« Deriving the utilities can be slow

— Gaussian elimination is cubic in the no. of states
— For large problems, it may be better to use (a simplified form of) value iteration itself!

| function POLICY-ITERATION(mdp) returns a policy
’ inputs: mdp, an MDP with states S, actions A(s), transition model P(s’ | s, a)
local variables: U, a vector of utilities for states in S, initially zero
7, a policy vector indexed by state, initially random

repeat
U < POLICY-EVALUATION(w, U, mdp)
unchanged? «— true
for each state sin S do
if _max Z P(s'|s,a) U[s'] > Z P(s'|s,w[s]) U[s’] then do

7[s] « argmax g P(s'|s,a) Uls']

a € A(s)
unchanged? — false
until unchanged?
return @

Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

Utilities over time &, WESTERN

In many disciplines where rewards are distributed through time, it is normal to regard
present returns as being more valuable than future returns

— “abird in the hand is worth two in the bush”
— From economic theory: Net Present Value

In our context that is usually implemented by discounting future rewards
Our additive rewards for a sequence of states

U([so, S1, S2, ---, Snl) = R(Sg) + R(s1) + R(s3) + ...
becomes

U([so, S1, Sz, ---, Snl) = R(S0) +V R(s1) + y? R(s) + ...

For a constant discount rate y, this is equivalent to paying an interest rate of 7/y — 1

Eternal agents

This acquires especial importance in the context of eternal
agents

— Some environments have no terminal states

— Some agents don’t want to die!
If two summations are infinitely long, it becomes difficult to
compare them meaningfully without discounting

— Quite likely they both grow indefinitely

But with discounting they will be bounded

Discounting also appeals intuitively to the idea that we
cannot look too far ahead

— cf. limited horizons in game-playing

— A smaller value of y implies a shorter horizon

M WESTERN

e # AUSTRALIA

DAZILING TALES BY

And Other Stories

