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Introduction

• We will define sequential decision problems
(SDPs)

• We will discuss two major algorithms for 
solving SDPs

– Value iteration:  
• estimate rewards 
• refine rewards, repeatedly 
• use rewards to make plan 

– Policy iteration: 
• make initial plan 
• calculate rewards and re-make plan, 

repeatedly 
• We will discuss the related issues of 

– Delayed rewards 
– Immortal/eternal agents
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Sequential decision problems

• A sequential decision problem (SDP) is a problem where the utility obtained by an 
agent depends on a sequence of decisions 

• SDPs in known, accessible, deterministic domains can be solved using search 
algorithms that we have already seen

– The result is a sequence of actions that lead (inevitably) to a “good” state 
• But SDPs typically include utilities, uncertainty, sensing issues, etc.

– They generalise the searching and planning problems that we have seen up to now
– An agent needs to know what action to take in each possible state, allowing for future 

uncertainties 
• A policy is a set of state-action rules 

– For each state, which action to take? 
– Providing a policy basically turns a utility-based agent into
a simple reflex agent 

• We need algorithms that can derive optimal policies for an 
agent faced with an SDP
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An example SDP

• Beginning from the start state of 17.1(a): 
– The agent must select an action at each time step, from the set {Up, Down, Left, Right}

• Each non-terminal state incurs a step-cost
– The agent’s interaction finishes when it reaches 

any terminal state 
• Each terminal state confers a “reward” 

– The agent wants to maximise its overall utility 
• The utility of a sequence of states is the sum of the step-costs, plus the terminal utility 

• If actions are deterministic, it’s trivial!
– [Up, Up, Right, Right, Right]
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• But each action has a pre-defined 
probability of “failure”
• Given by the transition model in 

17.1(b) 
• Non-determinism limits the 

usefulness of search 
• So what’s the best policy now? 



Optimal Policies

• The optimal policy for this environment 
depends on many factors 

– Each of the following points assumes 
“all else being equal” 

• It depends on the transition model: 
– Less-certain actions imply 

a more conservative policy 

• It depends on the terminal utilities: 
– A bigger discrepancy between the two 

implies a more conservative policy 

• It depends on the step-cost: 
– A lower step-cost implies a more 

conservative policy 
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Optimal policies for various step costs

• 17.2(b1): get to any 
terminal ASAP! 

• 17.2(b2): risk the bad 
terminal 

• 17.2(a):   ditto, but 
less 

• 17.2(b3): avoid the 
bad terminal at all 
costs 

• 17.2(b4): I want to live 
forever! 
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Before we describe our two algorithms, we need to describe two fundamental processes 
that they employ 



A policy determines a set of utilities

• Given any policy, we can determine the agent’s corresponding utilities if it follows 
that policy 

• For each non-terminal state, an equation describes its expected utility as a function 
of the transition model 

e.g. for the policy in 17.2(a):
• x33 = 0.8 ´ 1 + 0.1 ´ x33 + 0.1 ´ x32 – 0.04
• x32 = 0.8 ´ x33 + 0.1 ´ x32 + 0.1 ´ –1 – 0.04
• x23 = 0.8 ´ x33 + 0.1 ´ x23 + 0.1 ´ x23 – 0.04
• …

• In general, n non-terminal states gives n simultaneous linear equations 
• Solving with Gaussian elimination gives the utilities

– But Gaussian elimination is O(n3)… 
• This process is often called value determination
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A set of utilities determines a policy

• Correspondingly: given a utility for each state, we can determine the optimal policy 

for the agent 

• For each state independently, calculate the expected outcome for each action, and 

choose the best action

• e.g. for State 3,1 in 17.3: 

– Up: 0.8 ´ x32 + 0.1 ´ x21 + 0.1 ´ x41 – 0.04 ≈ 0.592 

– Down: 0.8 ´ x31 + 0.1 ´ x41 + 0.1 ´ x21 – 0.04 ≈ 0.553 

– Right:  0.8 ´ x41 + 0.1 ´ x32 + 0.1 ´ x31 – 0.04 ≈ 0.398 

– Left:    0.8 ´ x21 + 0.1 ´ x31 + 0.1 ´ x32 – 0.04 ≈ 0.611 
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So the best action in State 3,1 is Left
Note that the agent shouldn’t just 

head for the adjacent state with the 

highest utility… 

We shall call this process action 
determination



The Bellman Equation

• The utility of a state is specified formally by the Bellman equation [1957] 

• is the probability that doing Action a in State i leaves the agent in State j
– i.e. it represents the transition model 

• is the weighted sum of all possible outcomes of doing Action a in State i

• is the expected outcome of the best action to do in State i

• is the cost of being in State i, plus the optimal cost from then on.

• The Bellman equation underpins both SDP algorithms 
• But it cannot be solved directly because 

– The equations for the states are mutually dependent
– The use of maxa means the equation is non-linear 
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Value iteration

• Basic idea: 
– Determine the true utility of each state 
– Then determine the optimal action in each state, 

by action determination 
• To determine the utility of each state, use an iterative approximation algorithm 

– start with arbitrary utilities U
– update U to make them locally consistent with Bellman 
– repeat until U is “close enough” 

• This has been proven to converge, under reasonable assumptions 

10



Aside: iterative approximation 
algorithms

• An iterative approximation algorithm 
that you may know is Newton’s 
algorithm for finding square roots. 
Find the square root of y by 
repeatedly improving an initial 
estimate x0, using xk+1 = (xk + y/xk) / 2

– e.g. y = 25
– x0 = 1
– x1 = 13
– x2 = 7.46
– x3 = 5.41
– x4 = 5.02
– x5 = 5.00002
– x6 = 5.00000000005
– etc. 
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• The key point in an iterative 
approximation algorithm is that the 
update step f is a contraction
i.e.  u ≠ v  →  |f(u) – f(v)| < |u – v|
e.g. f might be “divide by 2” 

• Applying f brings points closer 
together 

• f(fixf) = fixf
•e.g. the fixed point of “divide by 2” 
is 0 
•Therefore f brings any point closer 
to its fixed point 
•And any contraction has only one 
fixed point 



Value iteration approximation

• The key to the algorithm 
is that in the (iterated) 
update step, the link 
between U and U’ is 
broken 

• U’ (the new set of utilities) 
is created under the 
assumption that U (the 
old set of utilities) is 
correct 

– If U is correct, there will 
be no change and the 
iteration terminates 

– If U is not correct, U’ will 
be closer to the correct 
values than U
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Value iteration performance

• 17.5(a) shows how the utility of 
each state approaches the 
correct value as value iteration 
proceeds 

• State 4,3 (a terminal) is 
immediately correct 

• 3,3 achieves correctness early 
– It is “close to” a terminal 

– The other states get worse 
before they get better, 
i.e. until they are “connected to” 
a terminal 

• As usual with iterative 
approximation algorithms, 
diminishing returns applies 

– The utilities approach the correct 
values asymptotically, and a 
threshold cut-off must be used 
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Assessing performance

• But we can derive the optimal 
policy without knowing the exact 
utilities

• Calculate the policy loss at each 
iteration by using the current 
value of U to derive the “current 
policy” π 

– Then compare π with the 
optimal policy 

• 17.6 shows, for each iteration, 
the error in the utilities vs. the 
policy loss 

– The policy loss is uniformly less 
than the error in the utilities 

– The optimal policy is derived 
long before the exact utilities are 
derived 

• Can we use this idea to develop 
a faster algorithm? 14



Policy iteration

• Basic idea: 
– We (usually) don’t need to know exact utilities; we just need to know what to do! 

• e.g. is jumping off a bridge  –100  or  –1,000? 
– Hence iterate on the actual policy, not its utilities 

• To determine the optimal policy, use an iterative approximation algorithm 

– start with an arbitrary policy π 
– compute the utilities U of π, by value determination 
– update π according to U, by action determination 
– repeat until no change in π 

• This also has been proven to converge, under reasonable assumptions 
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Policy iteration operation

• In each iteration 
– Derive the utilities from the current policy, then 
– Check each state to see if its action is optimal 

• If there are any updates, iterate again 
– But updating a policy is a much “coarser” operation than updating a utility value 
– Hence convergence is quicker 

• Deriving the utilities can be slow 
– Gaussian elimination is cubic in the no. of states 
– For large problems, it may be better to use (a simplified form of ) value iteration itself! 
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Utilities over time

• In many disciplines where rewards are distributed through time, it is normal to regard 
present returns as being more valuable than future returns 

– “a bird in the hand is worth two in the bush” 
– From economic theory: Net Present Value

• In our context that is usually implemented by discounting future rewards 
• Our additive rewards for a sequence of states 

U([s0, s1, s2, …, sn]) = R(s0) + R(s1) + R(s2) + …

becomes 

U([s0, s1, s2, …, sn]) = R(s0) + γ R(s1) + γ2 R(s2) + …

• For a constant discount rate γ, this is equivalent to paying an interest rate of 1 / γ – 1
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Eternal agents

• This acquires especial importance in the context of eternal 
agents 

– Some environments have no terminal states 
– Some agents don’t want to die! 

• If two summations are infinitely long, it becomes difficult to 
compare them meaningfully without discounting 

– Quite likely they both grow indefinitely 

• But with discounting they will be bounded 
• Discounting also appeals intuitively to the idea that we 

cannot look too far ahead
– cf. limited horizons in game-playing 
– A smaller value of γ implies a shorter horizon 
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