THE UNIVERSITY OF

WN WESTERN
Qwms?

AUSTRALIA

Game-playing

WE COMPUTERS FINALLY
BEAT YOU HUMANS AT GO.

YUP.

SUCKS FOR YOU! \
CITS3001 Algorithms, Agents and Artificial Intelligence S IORYEY

WHAT'S NEXT? WHICH

QUINTESSENTIALLY HUMAN
THING SHOULD WE (EARN
T0 DO BETTER THAN YOU?

BEING ToO COOLTO
CARE ABOUT STUFE

OKAY, TLL APPLY 10,000
YEARS OF CPU TIME TO
THE INITIAL—

SOUNDS UIKE YOU'VE
ALREADY LOST.

DAMIN. THIS IS HARD.)
15 IT? NEVER

Tim French

Department of Computer Science and Software Engineering
The University of Western Australia

2021, Semester 2

. WESTERN
Introduction A& AUSTRALIA

» We will motivate the investigation of games in Al ..
* We will apply our ideas on search to game trees
— Minimax
— Alpha-beta pruning
» We will introduce the idea of an evaluation
function

— And some concepts important to their design

. LEE SEDOL
ANy ® 50.:01:00

e
B e

WESTERN
Broadening our worldview &, WESTERN

In our discussions so far, we have assumed that world descriptions have been

— Complete — all information needed to solve the problem is available to the search
algorithm

— Deterministic — the effects of actions are uniquely determined and predictable

But this is rarely the case with real-world problems!

Sources of incompleteness include
— Sensor limitations — it may be impossible to perceive the entire state of the world
— Intractability — the full state description may be too large to store, or too large to compute

Sources of non-determinism are everywhere
— e.g. people, weather, mechanical failure, dice, efc.

Incompleteness «» non-determinism?
— Both imply uncertainty
— Addressing them involves similar techniques

Fo/zTnlo] THE UNIVERSITY OF
Three Approaches to Uncertainty g WESTERN

» Contingency planning
— Build all possibilities into the plan
— Often makes the tree very large
— Can only guarantee a solution if the number of contingencies is tractable

* Interleaving, or adaptive planning
— Alternate between planning, acting, and sensing
— Requires extra work during execution
— Unsuitable for offline planning

» Strategy learning
— Learn, from examples, strategies that can be applied in any situation
— Must decide on parameterisation, state-evaluation, suitable examples to study, efc.

Why Study Games ¥, WESTERN

AUSTRALIA

Games provide
— An abstraction of the real world
— Well-defined, clear state descriptions
— Limited operations with well-defined consequences
— Away of making incremental, controllable changes
— Away of including hostile agents

So they provide a forum for investigating many of the real-world issues outlined
previously

— More like the real world than previous examples...

The initial state and the set of actions (the moves of the game) define a game tree
that serves as the search tree

— But of course different players get to choose actions at various points
— So our previous search algorithms don’t work!

Games are to Al, as F1 is to car design

Example: noughts and crosses @%@?{E‘E&

« Each level down MAX (x)
represents a move by one
player MIN (o) [* : mlir X X
— Known as one ply e = . :
— Stop when we get to a MAX 0 [T LI [
goal state (three in a line)
« What is the “size” of this MIN() [T RCH Pl

problem? DRy
|

o)
TERMINAL 8 X

O[X[O}— !

x[olx] [x]olx] [x]o[x
0[o[X
x[x[o] [x]o[o
Utility -1 0 +1

Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial
state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (0) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.

THE UNIVERSITY OF

Noughts and Crosses Vital Statistics @XYE%EEIX

The game tree as drawn above has 9/ = 362,880 edges
— But that includes games that continue after a victory
— Removing these gives 255,168 edges
Combining equivalent game boards leaves 26,830
edges
— Mostly this means resolving rotations and reflections

Each square can be a cross, a circle, or empty GREETINGS PROFESSOR FALKEN

— Therefore there are 39 = 19,683 distinct boards g
— But that includes (e.g.) boards with five crosses and two » PN G-

THE ONLY WINNING MOVE IS
circles NOT TO PLAY.

— Removing these gives 5,478 distinct legal boards HOW ABOUT A NICE GAME OF CHESS?

Resolving rotations and reflections leaves 765 distinct
legal boards

The takeaway message is “think before you code”!

Noughts and Crosses Scenarios

THE UNIVERSITY OF

WESTERN
%m? AUSTRALIA

You get to choose your opponent’s moves, and you know the goal, but you don’t

know what is a good move

— Normal search works, because you control every
— What is the best uninformed search strategy?

* How many states does it visit?
— What is a good heuristic for A* here?

* How many states does it visit?

Your opponent plays randomly
— Does normal search work?
— Uninformed strategy?
— A% heuristic?

Your opponent tries
— We know it’s a draw really

OlO|E3
g3
OE3

e

(0] [@)F33

EX3

®)

/\

@3t 3

/

0] (@)X
OK3

/\

RIRB|O| [3]8 $3JOI98] 1£3] 98] [3RIO] [3]O[3
O£ [OIE3E3| [O[EIALI| |O1LES] [OfE3IE3] |O)EIES
ORBIO] [O]O[O] [Olg8lo] |O[0]0] |oR8IO] (O8I0

cross
wins

circle
wins

draw

circle
wins

cross
wins

draw

One important difference with games is that we don’t get to dictate all of the actions

chosen, The opponent has a say too!

. . - - THE UNIVERSITY OF
Perfect Play: the Minimax algorithm %, WESTERN

« Consider a two-player game between MAX and MIN
— Moves alternate between the players
 Assume it is a zero-sum game
— Whatever is good for one player, is bad for the other
« Assume also that we have a utility function that we can apply to any game position
— utility(s) returns r e R
— o if sis a win for MAX
— positive if s is good for MAX
— 0Oifsis even
— negative if s is good for MIN
— — if sis a win for MIN
 Whenever MAX has the move in position s, they choose the move that maximises the value
of utility(s)
— Assuming that MIN chooses optimally
« Conversely for MIN

Minimax(s)
= utility(s), if terminal(s)
= max{Minimax(result(s, a)) | a € actions(s)}, if player(s) = MAX

= min{Minimax(result(s, a)) | a € actions(s)}, if player(s) = MIN

Minimax operation

THE UNIVERSITY OF

WESTERN

e 4 AUSTRALIA

We imagine that the game tree is expanded to some definition of terminals
— This will depend on the search depth

* In the figure, two ply

— This will depend on the available resources
— In general, it won’t be uniform across the tree

The tree is generated top-down, starting from the current position
— Then Minimax is applied bottom-up, from the leaves back to the current position

At each of MAX'’s choices, they (nominally) choose the move that maximises the
utility

Conversely for MIN

MAX

Figure 5.2 A two-ply game tree. The A nodes are “MAX nodes,” in which it is MAX’S
turn to move, and the / nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX: the other nodes are labeled with their minimax values. MAX’s best move at the root
is a;, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

Frzg=ey 1HE UNIVERSITY OF
Minimax Performance g%§§g§l§[§

Complete: yes, for a finite tree

Optimal: yes, against an optimal opponent

Time: O(b™), all nodes examined

Space: O(bm), depth-first (or depth-limited) search

Minimax can be extended straightforwardly
to multi-player games

— Section 5.2.2 of AIMA

But for a “big” game like chess, expanding to the terminals is completely infeasible

The standard approach is to employ
— A cut-off test, e.g. a depth limit
» Possibly with quiescence search
— An evaluation function

* Heuristic used to estimate
the desirability of a position

This will still be perfect play.... If we have a perfect evaluation function...

N WESTERN
Example: Chess &4 AUSTRALIA

Average branching factor is 35
— Search tree has maybe 35'% nodes
— Although only around 104 distinct legal positions

Clearly cannot solve by brute force
— Intractable nature — incomplete search
— So offline contingency planning is impossible

Interleave time- or space-limited search with moves
— This lecture
— Algorithm for perfect play [Von Neumann, 1944] g
— Finite-horizon, approximate evaluation [Zuse, 1945] = '
— Pruning to reduce search costs [McCarthy, 1956] = BEEES

(T

jUevuen.

Or use/learn strategies to facilitate move-choice based on
current position -
— Later in CITS3001

What do humans do?

WESTERN

Evaluation Functions €5 AUSTRALIA

If we cannot expand the game tree to terminal nodes, we expand “as far as we

can” and apply some judgement to decide which positions are best

A standard approach is to define a linear weighted sum of relevant features
— e.g. in chess: 1 for each pawn, 3 for each knight or bishop, 5 for each rook, 9 for each

queen
— Plus positional considerations, e.g. centre control
— Plus dynamic considerations, e.g. threats

eval(s) = wqfy(S) + wofs(s) + ... + w,f,(S)

&

¢ &
i3 24
N& &
Y Y 1
&
A4
E X &

- eg.w,=9
— e.g. f4(s) = number of white Qs — number of black Qs
Non-linear combinations are also used |X W B A ¢
— e.g. reward pairs of bishops & 4 24dd
A 44
LAAR
&\ W
& 4 & A4
¢ p=¢ &

Positional advantage

Material advantage

Properties of good evaluation

functions

Usually the quality of the player depends
critically on the quality of the evaluation
function

An evaluation function should

— Agree with the utility function on terminal
states

— Reflect the probability of winning
— Be time efficient, to allow maximum search
depth

Note that the exact values returned seldom
matter

— Only the ordering matters
An evaluation could also be accompanied
by a measure of certainty

— e.g. we may prefer high certainty when we
are ahead, low certainty when we are behind

WESTERN
%am? AUSTRALIA

e, ST

& g 89
'--._:.‘_?1;-:1
e

: WESTERN
Cutting off Search & AUSTRALIA

We can cut-off search at a fixed depth
— Works well for simple games
— Depth-limited search

Often we are required to manage the time taken per move
— Can be hard to turn time into a cut-off depth
— Use iterative-deepening
« An anytime algorithm
— Sacrifice (some) depth for flexibility

Sometimes we are required to manage the time taken for a series of moves
— More complicated again
— Sometimes we can anticipate changes in the branching factor

Seldom want cut-off depth to be uniform across the tree
— Two particular issues that arise often are quiescence and the horizon effect

THE UNIVERSITY OF

Quiescence & i

A quiescent situation is one where values from the evaluation function are unlikely
to change much in the near future

Using a fixed search-depth can mean relying on the evaluations of non-quiescent
situations

— Can avoid this by e.g. extending the search to the end of a series of captures

(a) White to move (b) White to move

Figure 5.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong
enough to win.

The Horizon Effect @) WESIERN

If we are searching to k ply, something bad that will happen on the k+ 1t ply (or
later) will be invisible

In extreme cases, we may even select bad moves,
simply to postpone the inevitable

— If “the inevitable” scores —x, any move that scores better than —x in the search window
looks good

— Even if the inevitable is still guaranteed

to happen later!

No general solution to this problem
— It is fundamentally a problem with lack of depth

o0 N N N B~ W D =

Figure 5.9 The horizon effect. With Black to move, the black bishop is surely doomed.
But Black can forestall that event by checking the white king with its pawns, forcing the king
to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and thus
the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

Fo/zTnlo] THE UNIVERSITY OF
Alpha-Beta Pruning g WESTERN

One way we can reduce the number of nodes examined by Minimax is to identify
nodes that cannot be better than those that we have already seen

— This will enable a deeper search in the same time
Consider again Fig. 5.2
Minimax(A) = max(min(_, ,), min(_, ,), min(_, ,))
— Working from left-to-right MAX
— First we inspect the 3, 12, and 8

MIN

Minimax(A) = max(3, min(_, ,), min(_, ,))
— Next we inspect the first 2

M i n i maX(A) = maX(3, m i n(2, . _)’ min(_, . _)) Figure 5.2 A two-ply game tree. The A nodes are “MAX nodes,” in which it is MAX’s

turn to move, and the V nodes are “MIN nodes.” The terminal nodes show the utility values
1 1 for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root
- Th IS IS IeSS than the 3 is a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,

because it leads to the state with the lowest minimax value.

— The next two leaves are immediately irrelevant
Minimax(A) = max(3, min(_, ,))=max(3,2)=3
We do not need to inspect the 5th and 6th leaves

— But we do need to inspect the 8t and 9t. ..

Alpha-Beta Operation X, WESTERN

We need to keep track of the range of
possible values for each internal node

In Fig. 5.6, if
— On the left sub-tree, we know definitely

that we can choose a move that gives
score m, and

— On the right sub-tree, we know that the
opponent can choose a move that
limits the scoreton<m

Then we will never (rationally) choose the
move that leads to the right sub-tree

(@ (b)

S ¢ Y (3] ¥

(@

B2 0

)
S
(9]
N

Player

Opponent

Player

Opponent n

Figure 5.6 The general case for alpha—beta pruning. If m is better than n for Player, we
will never get to n in play.

FigureS5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of af most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is af least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of ar most 2. But we know that B is worth 3, so MAX
would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha—beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

WESTERN
%am? AUSTRALIA

Alpha-beta pseudo-code

afsearch (s) :
return a € actions(s) with value maxvalue (s, -—-«, +x)

maxvalue (s, o, pB):
if terminal (s) return utility(s)
else
vV = —o
for a in actions/(s)
v = max (v, minvalue (result(s, a), o, B))
if v 2 B return v o Hax

a = max (o, V) (3) (6) (5) MIN

return v

5] 13 6] 17] [5][8 MaX

minvalue (s, o, pB):

if terminal(s) return utility(s) (5 (4) e ©O06 @E MIN
else)
e 5](6]17][4]5] [3](e](s][9][7][5] [o]{8][6] MAX

for a in actions(s)
w = min(w, maxvalue (result(s, a), o, B))
if w £ o return w

B = min (B, w)

Alpha-beta in action

of3search (A) = maxvalue (A4,

call minvalue (B, =—-«, +«),

— call maxvalue (B;, —%«, +«)
* returns 3,

— call maxvalue (B,, —«, 3)
* returns 12

— call maxvalue (B;, —«, 3)
* returns 8

— returns 3,

call minvalue(C, 3, +«),
— call maxvalue(C;, 3, +*«)
* returns 2,
— returns 2
call minvalue (D, 3, +«),
— call maxvalue(D;, 3, +«)
* returns 14,
— call maxvalue(D,, 3, 14)

* returns 5,

— call maxvalue (D;, 3, 5)
* returns 2,

— returns 2

returns 3

— 00

4

+) ,

\%4

THE UNIVERSITY OF

WESTERN

E%gﬁ

e # AUSTRALIA

eV el (48510

Figure5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of af most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is af least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of af most 2. But we know that B is worth 3, so MAX
would never choose C'. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha-beta pruning. (¢) The first leaf below D has the value 14,
s0 D is worth a most 14. This is still higher than MAXs best alternative (i.¢., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. () The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

Fo/zTnlo] THE UNIVERSITY OF
Alpha-beta discussion gx\{g%gm

Pruning does not affect the final result
— It simply gets us there sooner

A good move ordering means we can prune more
— e.g. if we had inspected Dj; first, we could have pruned D; and D,

We want to test expected good moves first
— “Good” from the POV of that node’s player

“Perfect ordering” can double our search depth
— Obviously perfection is unattainable, but e.g. in chess we might test
« Captures
* Threats
* Forward moves
« Backward moves

Sometimes we can learn good orderings
— Known as speedup learning
— Can play either faster at the same standard, or better in the same time

Game playing agents.... @;X‘{Eﬁﬁﬁ’;’

* Checkers (Draughts)
— Marion Tinsley ruled Checkers for forty years, losing only seven games in that time
— In 1994 Tinsley’s health forced him to resign from a match against Chinook, which was
crowned world champion shortly afterwards
— At that time, Chinook used a database of 443,748,401,247 endgame positions
— Checkers has since been proved to be a draw with perfect play
» The proof was announced at UWA
» Chinook now plays perfectly, using af search and a database of
39,000,000,000,000 positions

 Chess
— Deep Blue defeated Gary Kasparov in a six-game match in 1997 B b oE G
— Deep Blue searches 200,000,000 positions/second, up to 40 ply deep ! .-.-.-.-
.
3 IIIIIIII
« Othello n__ e | |
— Look-ahead is very difficult for humans in Othello)
| IIIIIIII

— The Moor became world champion in 1980
— These days computers are banned from championship play

WESTERN
%am? AUSTRALIA

Game playing agents....

Go
— 19x19 Go has a branching factor of over 300, making look-ahead very difficult
for programs
+ Play at a “good amateur” level, although still improving
— They are much better at 9x9
- Sedol in March 2016.
Backgammon
— Dice rolls increase the branching factor
* 21 possible rolls with two dice
— About 20 legal moves with most positions and rolls
* Although approx 6,000 sometimes with a 1+1!
« Depth 4 means 20 x (21 x 20)3 = 1,500,000,000 possibilities
— Obviously most of this search is “wasted”
* Value of look-ahead is much diminished
— TDGammon (1992) used depth 2 search plus a very good evaluation function
to reach
“almost” world champion level QY. .
+ Players have since copied its style! _
— Modern programs based on neural networks are believed to better than the . ol e
best humans ey v+ +T &
Poker

— Pluribus from Facebook and CMU recently beat a group of professional poker The opponent calls. Pluribus wins far more money
players in this hand than human players would typically earn.

http://www.theverge.com/2016/3/9/11184362/google-alphago-go-deepmind-result

