

Informed Search Algorithms

CITS3001 Algorithms, Agents and Artificial Intelligence

GREETINGS, STRANGER. WHATEVER QUEST DRIVES YOU, ABANDON IT. YOU SHALL FIND NO ANSWERS IN THESE DESOLATE WASTES. I KNEW I WOULDN'T. I GUESSI ... JUST HAD TO SEE. I HATE FEELING DESPERATE ENOUGH TO VISIT THE SECOND PAGE OF GOOGLE RESULTS.

2021, Semester 2

Tim French Department of Computer Science and Software Engineering The University of Western Australia

Introduction

- We will introduce informed search algorithms
- We will discuss the A* algorithm
 - Its proof of optimality
 - Heuristics for improving its performance
 - Memory-bounded versions of A*

Uniformed vs Informed Search

- Recall uninformed search
 - Selects nodes for expansion on the basis of distance/cost from the start state
 - e.g. which level in the tree is the node?
 - Uses only information contained in the graph (i.e. in the problem definition)
 - No indication of *distance to go*
- Informed search
 - Selects nodes for expansion on the basis of some *estimate* of distance to the goal state
 - Requires additional information:
 - heuristic rules, or
 - evaluation function
 - Selects "best" node, i.e. most promising
- Examples
 - Greedy search

Greedy search of Romania 🧶 WES

- To the map of Romanian roads, add the straight-line distance from each city to the • goal
- These straight-line distances are *estimates* of how far is left to go. •

Greedy Search

- Greedy search always selects the unvisited node with the smallest estimate
 - The one that appears to be closest to the goal
- The evaluation function or heuristic *h(n)* here is the estimate of the cost of getting from *n* to the goal
 - $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Complete: not always
- Optimal: no, returns first goal found
- Time: O(*b^m*) (worst case), but highly dependent on the heuristic's performance
- Space: O(*b^m*), keeps all nodes in memory
- The complexities are expressed in terms of
 - b: maximum branching factor of the tree
 - *m*: maximum *depth* of the search space
 - *d*: depth of the *least-cost* solution

A* search

- Greedy search minimises estimated path-cost to goal
 - But it's neither optimal nor even always complete
- Uniform-cost search minimises path-cost from the start
 - Complete and optimal, but expensive
- Can we get the best of both worlds?
- Yes use estimate of total path-cost as our heuristic
- f(n) = g(n) + h(n)
 - -g(n) = actual cost from start to n
 - h(n) = estimated cost from n to goal
 - f(n) = estimated total cost from start to goal **via n**
- Hence A*
 - There were a series of algorithms, A1, A2, etc. that combined to make A*

Figure 3.24 Stages in an A* search for Bucharest. Nodes are labeled with f = g + h. The *h* values are the straight-line distances to Bucharest taken from Figure 3.22.

A* demonstrations

A* Optimality

- A* search is *complete* and *optimal* under two conditions
 - The heuristic must be *admissible*
 - The costs along a given path must be *monotonic*
- A heuristic *h* is admissible iff $h(n) \le h^*(n)$, for all *n*
 - $h^*(n)$ is the *actual* path-cost from *n* to the goal
- i.e. h must never over-estimate the cost
 - e.g. h_{SLD} never over-estimates
- A heuristic h is monotonic iff h(n) ≤ c(n, a, n') + h(n'), for all n, a, n'
 - *n*' is a successor to *n* by action *a*
 - This is basically the triangle inequality
 - *n* to the goal "directly" should be no more than *n* to the goal via any successor *n*'
- Pathmax modification: f(n') = max(g(n')+h(n'), f(n))
- Note that optimal here means "finds the best goal"
- We are not arguing that *h* itself is optimal in any sense

• We want to avoid this sort of situation:

A* proof of optimality

 To show that A* is optimal, it is sufficient to show that no sub-optimal goal is ever visited

Suppose that the optimal goal is G_1 , and that the unvisited set contains both

- A node *n* on the shortest path to G_1
- A sub-optimal goal G_2
- We can prove that n is always visited before G_2

<i>f</i> (<i>G</i> ₂)	= g(G ₂)	+ h(G ₂)	definition of <i>f</i>
$= g(G_2)$		since G_2	is a goal, $h(G_2) = 0$
$> g(G_1)$		since on	y G₁ is optimal
$= g(G_1)$	+h(G₁)	since G	$_{1}$ is a goal, $h(G_{1}) = 0$
$= f(G_1)$		definition	of f
≥ <i>f(n)</i>		since h is	s monotonic

- Thus **all** nodes on the shortest path to G_1 will be visited before G_2 is visited
 - Which means that G_1 will be visited before G_2

A* viewed operationally

- A* visits nodes in order of increasing f
- It creates *contours* of nodes, "stretching" to the goal
 - cf. breadth-first or uniform-cost search
- If *f** is the actual cost of the optimal solution
 - A^* visits all nodes *n* with $f(n) < f^*$
 - And it visits some nodes *n* with $f(n) = f^*$

Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour have f-costs less than or equal to the contour value.

Performance of A*

If x is the number of nodes n with $f(n) \le f^*$

Complete: yes, unless x is infinite
Optimal: yes

- •Time: O(*x*)
- •Space: O(*x*), keeps all nodes in memory

Clearly *x* depends on the quality of the heuristic...

Assessing Heuristics

- Straight-line distance is an obvious heuristic for travel
 - And it is obviously admissible
- Consider again the 8-puzzle
- A heuristic should be defined so that nodes/states which are "closer to the goal" return smaller values
- Two possible heuristics are
 - $h_1(n)$ = the number of misplaced tiles
 - $h_2(n)$ = the total Manhattan distance of all tiles
- $h_1(s_0) = ?$
- $h_2(s_0) = ?$
- Is either or both admissible?
 - How can we compare them?

Heuristic Quality

- The quality of a heuristic can be expressed as its effective branching factor
- Assume A* visits N nodes, and finds a solution at depth d
- The effective branching factor *b** is the branching factor of a "perfect tree" with these measurements
- i.e. $N = 1 + b^* + (b^*)^2 + \dots + (b^*)^d$
- *b** tends to be fairly constant over problem instances
 - therefore b* can be determined empirically
- A good heuristic would have *b** close to 1
- h_2 beats h_1 , which beats uninformed
 - But is this always true?

d	Search Cost (nodes generated)			Effective Branching Factor		
	IDS	$\mathbf{A}^{*}(h_{1})$	$A^*(h_2)$	IDS	$\mathbf{A}^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14		539	113	and - Roll	1.44	1.23
16	all_of the g	1301	211	m lo redarior	1.45	1.25
18	oldizen-os r	3056	363	a man-add of	1.46	1.26
20		7276	676	-	1.47	1.27
22		18094	1219	17678 <u>-</u> 1864	1.48	1.28
24	diacon dezes a	39135	1641	100 00 1002	1.48	1.26

Figure 3.29 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A^{*} algorithms with h_1 , h_2 . Data are averaged over 100 instances of the 8-puzzle for each of various solution lengths *d*.

Heuristic dominance

- We say that h₂ dominates h₁ iff they are both admissible, and h₂(n) ≥ h₁(n), for all nodes n
 - i.e. $h^*(n) ≥ h_2(n) ≥ h_1(n)$
- If h_2 dominates h_1 , then A^* with h_2 will usually visit fewer nodes than A^* with h_1
- The "proof" is obvious
 - A^* visits all nodes *n* with $f(n) < f^*$
 - i.e. it visits all nodes with $h(n) < f^* g(n)$
 - f^* and g(n) are fixed
 - So if h(n) is bigger, n is less likely to be below-the-line
- Normally you should always favour a dominant heuristic
 - The only exception would be if it is computationally much more expensive...
- But suppose we have two admissible heuristics, neither of which dominates the other
 - We can just use both!
 - $h(n) = max(h_1(n), h_2(n))$
 - Generalises to any number of heuristics

Deriving heuristics

- Coming up with good heuristics can be difficult
 - So can we get the computer to do it?
- Given a problem p, a relaxed version p' of p is derived by reducing restrictions on operators
 - Then the cost of an exact solution to p' is often a good heuristic to use for p
- e.g. if the rules of the 8-puzzle are relaxed so that a tile can be moved anywhere in one go
 - h_1 gives the cost of the best solution
- e.g. if the rules are relaxed so that a tile can be moved to any adjacent space (whether blank or not)
 - h_2 gives the cost of the best solution
- We must always consider the cost of the heuristic
 - In the extreme case, a perfect heuristic is to perform a complete search on the original problem
- Note that in the examples above, no searching is required
 - The problem has been *separated* into eight independent sub-problems

Deriving heuristics cont.

- If a problem is expressed in a suitable formal language, relaxation can be performed automatically
- The 8-puzzle operator is defined by

 $adjacent(A, B) \& blank(B) \rightarrow canmove(A, B)$

• We can relax the problem by eliminating one or more conditions

 $\begin{array}{ll} adjacent(A, B) \rightarrow canmove(A, B) & (h_2) \\ blank(B) \rightarrow canmove(A, B) & (h_1) \end{array}$

- e.g. Absolver [Prieditis 1993]
 - Discovered a new heuristic for the 8-puzzle, better than any previous one
 - Discovered the first useful heuristic for the Rubik's cube

Memory bounded A*

- The limiting factor on what problems A* can solve is normally space availability
 - cf. breadth-first search
- We solved the space problem for uninformed strategies by iterative deepening
 - Basically trades space for time, in the form of repeated calculation of some nodes
- We can do the same here
 - IDA* uses the same idea as ID
 - But instead of imposing a depth cut-off, it imposes an *f*-cost cut-off
- IDA* performs depth-limited search on all nodes n such that f(n) ≤ k
 - Then if it fails, it increases k and tries again
- *IDA** suffers from three problems
 - By how much do we increase *k*?
 - It doesn't use all of the space available
 - The only information communicated between iterations is the *f*-cost limit

Simplified Memory-Bounded A*

- *SMA** implements *A**, but it uses all memory available
- SMA* expands the most promising node (as in A*) until memory is full
 - Then it must drop a node in order to generate more nodes and continue the search
- SMA* drops the least promising node in order to make space for exploring new nodes
 - But we don't want to lose the benefit of *all* the work that has already been done...
 - It is possible that the dropped node may become important again later in the search
- When a node x is dropped, the *f*-cost of x is backed-up in x's parent node
 - The parent thus has a lower bound on the cost of solutions in the dropped sub-tree
 - Note this again depends on admissibility
- If at some later point in the search, all other nodes have higher estimates than the dropped sub-tree, it is re-generated
 - Again, we are trading space for time

SMA* example

- Each node is labelled with its *g* + *h* = *f* values, and the goal nodes (*D*, *F*, *I*, *J*) are shown in squares. *The memory can hold only three nodes.*
- Each node is labelled with its current *f*-cost, and values in parentheses store the values of the best dropped descendants.
- At each stage, a successor is added to the deepest, lowest *f*-cost node that has successors not in the tree. Add *B* to *A*.
- *A* is more promising than *B*, so add *G* to *A*. Now we have completely expanded *A*, we update its *f*-cost to 13, the minimum of its descendants. Memory is now full.
- G is more promising than B, but room must be made first. We drop the shallowest, highest *f*-cost leaf, i.e. B. Store B's *f*-cost in its parent A, and add H to G. But H is not a goal, and it fills up memory, so we cannot find a goal down that path. Set H to ∞.
- Drop *H* and store its *f*-cost in *G*; add *I* to *G*; update *G*'s *f*-cost; update *A*'s *f*-cost. *I* is a goal with cost 24, but because *A*'s cost is 15, there may be a more promising one.
- A is once again the most promising, so drop I and re-generate B.
- Drop *G* and store its *f*-cost in *A*; add *C* to *B*. *C* is not a goal, and it fills up memory, so set *C* to ∞.
- Drop *C* and store its *f*-cost in *B*; add *D* to *B*; update *B*'s *f*-cost; update *A*'s *f*-cost.
- *D* is now the deepest, lowest *f*-cost node, and because it is a goal, the search is complete.

SMA* performance

- Complete: yes, if any solution is reachable with the memory available
 - i.e. if a linear path to the depth *d* can be stored
- Optimal: yes, if an optimal solution is reachable with the memory available, o/w returns the best possible
- Time: O(x), x being the number of nodes n with $f(n) \le f^*$
- Space: all of it!
- In very hard cases, SMA* can end up continually switching between candidate solutions
 - i.e. it spends a lot of time re-generating dropped nodes
 - cf. thrashing in paging-memory systems
- But it is still a robust search process for many problems