
Informed Search
Algorithms
CITS3001 Algorithms, Agents and Artificial Intelligence

2021, Semester 2
Tim French
Department of Computer Science and Software Engineering
The University of Western Australia

Introduction

• We will introduce informed search algorithms
• We will discuss the A* algorithm

– Its proof of optimality
– Heuristics for improving its performance
– Memory-bounded versions of A*

2

Uniformed vs Informed Search

• Recall uninformed search
– Selects nodes for expansion on the basis of distance/cost from the start state

• e.g. which level in the tree is the node?
– Uses only information contained in the graph

(i.e. in the problem definition)
– No indication of distance to go

• Informed search
– Selects nodes for expansion on the basis of some estimate of distance to the goal state
– Requires additional information:

• heuristic rules, or
• evaluation function

– Selects “best” node, i.e. most promising

• Examples
– Greedy search
– A*

3

Greedy search of Romania

• To the map of Romanian roads, add the straight-line distance from each city to the
goal

• These straight-line distances are estimates of how far is left to go.

4

Greedy Search

• Greedy search always selects the unvisited
node with the smallest estimate

– The one that appears to be closest to the goal
• The evaluation function or heuristic h(n) here

is the estimate of the cost of getting from n to
the goal

– hSLD(n) = straight-line distance from n to
Bucharest

• Complete: not always
• Optimal: no, returns first goal found
• Time: O(bm) (worst case), but highly

dependent on the heuristic’s performance
• Space: O(bm), keeps all nodes in memory

• The complexities are expressed in terms of
– b: maximum branching factor of the tree
– m: maximum depth of the search space
– d: depth of the least-cost solution 5

A* search

• Greedy search minimises estimated path-cost to goal
– But it’s neither optimal nor even always complete

• Uniform-cost search minimises path-cost from the
start

– Complete and optimal, but expensive
• Can we get the best of both worlds?

• Yes – use estimate of total path-cost as our heuristic

• f(n) = g(n) + h(n)
– g(n) = actual cost from start to n
– h(n) = estimated cost from n to goal
– f(n) = estimated total cost from start to goal via n

•
• Hence A*

– There were a series of algorithms, A1, A2, etc. that
combined to make A* 6

A* demonstrations

7

A* Optimality
• A* search is complete and optimal under two conditions

– The heuristic must be admissible
– The costs along a given path must be monotonic

• A heuristic h is admissible iff h(n) ≤ h*(n), for all n
– h*(n) is the actual path-cost from n to the goal

• i.e. h must never over-estimate the cost
– e.g. hSLD never over-estimates

• A heuristic h is monotonic iff h(n) ≤ c(n, a, n’) + h(n’), for
all n, a, n’

– n’ is a successor to n by action a
– This is basically the triangle inequality
– n to the goal “directly” should be no more than n to the goal

via any successor n’
• Pathmax modification: f(n’) = max(g(n’)+h(n’), f(n))
• Note that optimal here means “finds the best goal”
• We are not arguing that h itself is optimal in any sense 8

n n’

• We want to avoid this sort
of situation:

A* proof of optimality

• To show that A* is optimal, it is sufficient to show that no sub-optimal goal is ever
visited

Suppose that the optimal goal is G1, and that the unvisited set contains both
– A node n on the shortest path to G1

– A sub-optimal goal G2

• We can prove that n is always visited before G2

f(G2) = g(G2) + h(G2) definition of f
= g(G2) since G2 is a goal, h(G2) = 0
> g(G1) since only G1 is optimal
= g(G1) +h(G1) since G1 is a goal, h(G1) = 0
= f(G1) definition of f
≥ f(n) since h is monotonic

• Thus all nodes on the shortest path to G1 will be visited before G2 is visited
– Which means that G1 will be visited before G2

9

A* viewed operationally

• A* visits nodes in order of increasing f
• It creates contours of nodes, “stretching” to

the goal
– cf. breadth-first or uniform-cost search

• If f* is the actual cost of the optimal solution
– A* visits all nodes n with f(n) < f*
– And it visits some nodes n with f(n) = f*

10

Performance of A*

If x is the number of nodes n
with f(n) ≤ f*

•Complete: yes, unless x is
infinite
•Optimal: yes
•Time: O(x)
•Space: O(x), keeps all
nodes in memory

Clearly x depends on the
quality of the heuristic…

Assessing Heuristics

• Straight-line distance is an obvious heuristic for travel
– And it is obviously admissible

• Consider again the 8-puzzle
• A heuristic should be defined so that nodes/states

which are “closer to the goal” return smaller values
• Two possible heuristics are

– h1(n) = the number of misplaced tiles
– h2(n) = the total Manhattan distance of all tiles

• h1(s0) = ?
• h2(s0) = ?
• Is either or both admissible?

– How can we compare them?

11

Heuristic Quality

• The quality of a heuristic can be expressed as its effective branching factor
• Assume A* visits N nodes, and finds a solution at depth d
• The effective branching factor b* is the branching factor of a “perfect tree” with

these measurements

• i.e. N = 1 + b* + (b*)2 + … + (b*)d

• b* tends to be fairly constant over problem instances
– therefore b* can be determined empirically

• A good heuristic would have b* close to 1
• h2 beats h1, which beats uninformed

– But is this always true?

12

Heuristic dominance

• We say that h2 dominates h1 iff they are both admissible, and h2(n) ≥ h1(n), for all
nodes n

– i.e. h*(n) ≥ h2(n) ≥ h1(n)

• If h2 dominates h1, then A* with h2 will usually visit fewer nodes than A* with h1

• The “proof” is obvious
– A* visits all nodes n with f(n) < f*
– i.e. it visits all nodes with h(n) < f* – g(n)
– f* and g(n) are fixed
– So if h(n) is bigger, n is less likely to be below-the-line

• Normally you should always favour a dominant heuristic
– The only exception would be if it is computationally much more expensive…

• But suppose we have two admissible heuristics,
neither of which dominates the other

– We can just use both!
– h(n) = max(h1(n), h2(n))
– Generalises to any number of heuristics 13

Deriving heuristics

• Coming up with good heuristics can be difficult
– So can we get the computer to do it?

• Given a problem p, a relaxed version p’ of p is derived by reducing restrictions on
operators

– Then the cost of an exact solution to p’ is often a good heuristic to use for p
• e.g. if the rules of the 8-puzzle are relaxed so that a tile can be moved anywhere in

one go
– h1 gives the cost of the best solution

• e.g. if the rules are relaxed so that a tile can be moved to any adjacent space
(whether blank or not)

– h2 gives the cost of the best solution

• We must always consider the cost of the heuristic
– In the extreme case, a perfect heuristic is to perform a complete search on the original

problem

• Note that in the examples above, no searching is required
– The problem has been separated into eight independent sub-problems

14

Deriving heuristics cont.

• If a problem is expressed in a suitable formal language, relaxation can be
performed automatically

• The 8-puzzle operator is defined by

adjacent(A, B) & blank(B) → canmove(A, B)

• We can relax the problem by eliminating
one or more conditions

adjacent(A, B) → canmove(A, B) (h2)
blank(B) → canmove(A, B) (h1)

• e.g. Absolver [Prieditis 1993]
– Discovered a new heuristic for the 8-puzzle, better than any previous one
– Discovered the first useful heuristic for the Rubik’s cube

15

Memory bounded A*

• The limiting factor on what problems A* can solve is normally space availability
– cf. breadth-first search

• We solved the space problem for uninformed strategies by iterative deepening
– Basically trades space for time, in the form of repeated calculation of some nodes

• We can do the same here
– IDA* uses the same idea as ID
– But instead of imposing a depth cut-off, it imposes an f-cost cut-off

• IDA* performs depth-limited search on all nodes n
such that f(n) ≤ k

– Then if it fails, it increases k and tries again
• IDA* suffers from three problems

– By how much do we increase k?
– It doesn’t use all of the space available
– The only information communicated between iterations is the f-cost limit

16

Simplified Memory-Bounded A*

• SMA* implements A*, but it uses all memory available

• SMA* expands the most promising node (as in A*) until memory is full
– Then it must drop a node in order to generate more nodes and continue the search

• SMA* drops the least promising node in order to make space for exploring new
nodes

– But we don’t want to lose the benefit of all the work that has already been done…
– It is possible that the dropped node may become important again later in the search

• When a node x is dropped, the f-cost of x is backed-up in x’s parent node
– The parent thus has a lower bound on the cost of solutions in the dropped sub-tree
– Note this again depends on admissibility

• If at some later point in the search, all other nodes have higher estimates than the
dropped sub-tree, it is re-generated

– Again, we are trading space for time

17

SMA* example

• Each node is labelled with its g + h = f values, and the goal nodes (D, F, I, J)
are shown in squares. The memory can hold only three nodes.

• Each node is labelled with its current f-cost, and values in parentheses store
the values of the best dropped descendants.

• At each stage, a successor is added to the deepest, lowest f-cost node that
has successors not in the tree. Add B to A.

• A is more promising than B, so add G to A. Now we have completely
expanded A, we update its f-cost to 13, the minimum of its descendants.
Memory is now full.

• G is more promising than B, but room must be made first. We drop the
shallowest, highest f-cost leaf, i.e. B. Store B’s f-cost in its parent A, and add
H to G. But H is not a goal, and it fills up memory, so we cannot find a goal
down that path. Set H to ∞.

• Drop H and store its f-cost in G; add I to G; update G’s f-cost; update A’s f-
cost. I is a goal with cost 24, but because A’s cost is 15, there may be a more
promising one.

• A is once again the most promising, so drop I and re-generate B.
• Drop G and store its f-cost in A; add C to B. C is not a goal, and it fills up

memory, so set C to ∞.
• Drop C and store its f-cost in B; add D to B; update B’s f-cost; update A’s f-

cost.
• D is now the deepest, lowest f-cost node, and because it is a goal, the search

is complete. 18

SMA* performance

• Complete: yes, if any solution is reachable with the memory available
– i.e. if a linear path to the depth d can be stored

• Optimal: yes, if an optimal solution is reachable with the memory available, o/w
returns the best possible

• Time: O(x), x being the number of nodes n with f(n) ≤ f*
• Space: all of it!

• In very hard cases, SMA* can end up continually switching between candidate
solutions

– i.e. it spends a lot of time re-generating
dropped nodes

– cf. thrashing in paging-memory systems
• But it is still a robust search process for many problems

19

