Feey THE UNIVERSITY OF

VN WESTERN

A~

“ams? AUSTRALIA

Informed Search

GREETINGS, STRANGER.
WHATEVER QUEST DRIVES You,

AlgOritth YOU SHALL FIND NO ANSWERS

IN THESE DESOLATE WASTES.

T KNEW I WOULDN'T

|
TGUESST ... JusT
CITS3001 Algorithms, Agents and Artificial Intelligence

L HATE FEEUNG DESPERATE. ENOUGH To VISIT]
THE. SECOND PAGE OF GOOGLE RESULTS.

Tim French

Department of Computer Science and Software Engineering

2021, Semester 2
The University of Western Australia

: WESTERN
Introduction A& AUSTRALIA

We will introduce informed search algorithms

We will discuss the A* algorithm
— Its proof of optimality
— Heuristics for improving its performance
— Memory-bounded versions of A*

x| xl |x x|o X x|o X
lo [Iol L Jof —» Io X
o| x ol |>< o| X ol X
xl /x I X xl X |x
o —»fo ol oo x—»olo X |—» 0 olx
P clissclisscYoscilionc RCECOOC
><| | oo x—>o|o X
OI x[o]o xloo ¥ x |o X Io 1 o61% XIOX
I —»{ x) olx-»o olx
| ‘xl X |>< X Ix\x °|0 X °|°
o o|><—>o o|><
x| To x[Jo xl |o xl |o x| |o xl Io % |x % XIX
| T o[o[[]]
y \Eir\owpossible X XI xl Ix xlo X xlolx
win [y 0| oY o| X OI X o Ix oI X
L] \‘AOI X/' [x] F—{x][x] F—{x][x] —{x]x[x o|><|>< olxlx
X OI ol) oI olo| x|x|o_.><|x|o
I ol \o Ix o |x\o| X olxlx/olol ololx
x| X o[x][F—o]x] x| x] o x[x] 0 olxx o|x|><
NG N 3 0 O 2 I e B B3 Y e R B
\ o Y To |oo x[ofo xolo xolo OI ° OIXIO
X | = X[= X = X[s x]x]
><| x| x| % |o % |o

Fo/zTnlo] THE UNIVERSITY OF
Uniformed vs Informed Search @%%%EE&

* Recall uninformed search
— Selects nodes for expansion on the basis of distance/cost from the start state
* e.g. which level in the tree is the node?

— Uses only information contained in the graph
(i.e. in the problem definition)

— No indication of distance to go

» Informed search
— Selects nodes for expansion on the basis of some estimate of distance to the goal state
— Requires additional information:
* heuristic rules, or
» evaluation function
— Selects “best” node, i.e. most promising

« Examples

— Greedy search
— A*

Greedy search of Romania @X‘{,E%E‘E&

« To the map of Romanian roads, add the straight-line distance from each city to the
goal

» These straight-line distances are estimates of how far is left to go.

5
2 Arad 366 Mehadia 241
Arad B Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
118 Ll Vaslui Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
2 g8 Hirsova 151 Urziceni 80
i Timiscara asi 226 Vaslui 199
Lugoj 244 Zerind 374

Pitesti

Figure 3.22 Values of hgy p—straight-line distances to Bucharest.

LJd Hirsova

Urziceni

Bucharest

Drobeta [

Craiova Efori
Figure 3.2 A simplified road map of part of Romania. i

Greedy Search ¥, WESTERN

Greedy search always selects the unvisited
node with the smallest estimate

— The one that appears to be closest to the goal | © ™™
The evaluation function or heuristic h(n) here | ® After expanding Arad -
is the estimate of the cost of getting from n to
the goal
— hg p(n) = straight-line distance from n to St

Bucharest

Complete: not always
Optimal: no, returns first goal found

Time: O(b™) (worst case), but highly
dependent on the heuristic’s performance

Space: O(b™), keeps all nodes in memory

The complexities are expressed in terms of s

Figure 3.23 Stages in a greedy best-first tree search for Bucharest with the straight-line

—_ b maleum branchlng factor of the tree distance heuristic hgz p. Nodes are labeled with their A-values.
— m: maximum depth of the search space
— d: depth of the least-cost solution

A* search

Greedy search minimises estimated path-cost to goal
— But it's neither optimal nor even always complete

Uniform-cost search minimises path-cost from the
start

— Complete and optimal, but expensive
Can we get the best of both worlds?

Yes — use estimate of total path-cost as our heuristic

f(n) = g(n) + h(n)
— g(n) = actual cost from start to n
— h(n) = estimated cost from n to goal

— f(n) = estimated total cost from start to goal via n

Hence A*

— There were a series of algorithms, A1, A2, etc. that
combined to make A*

WESTERN
%am? AUSTRALIA

(a) The initial state

366=0+366

(b) After expanding Arad Card >
> Sibiu D imisoarD Czerind>
393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

Card D Gagars> COraden P G Visd

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

418=418+0 615=455+160 607=414+193

Figure3.24 Stages in an A" search for Bucharest. Nodes are labeled with f = g+ h. The

h values are the straight-line distances to Bucharest taken from Figure 3.22.

A* demonstrations

Dijkstra JE&%

THE UNIVERSITY OF

WESTERN

e # AUSTRALIA

|

EEE| .

L WESTERN
A* Optimality & AUSTRALIA

A* search is complete and optimal under two conditions

— The heuristic must be admissible
— The costs along a given path must be monotonic

A heuristic h is admissible iff h(n) < h*(n), for all n We want to avoid this sort
of situation:

— h*(n) is the actual path-cost from n to the goal

s

i.e. h must never over-estimate the cost " "
: gn) =5 1 g(n’) = g(n)+1= 6
— e.g. hg p never over-estimates ° o
h(n) =4 hn’)=2
f(n)=9 fin’) = 8!

A heuristic h is monotonic iff h(n) < ¢(n, a, n’) + h(n’), for

alln, a, n’
— n’is a successor to n by action a

— This is basically the triangle inequality
— nto the goal “directly” should be no more than n to the goal

via any successor n’
Pathmax modification: f(n’) = max(g(n’)+h(n’), f(n))
Note that optimal here means “finds the best goal”
We are not arguing that h itself is optimal in any sense

Frzg=ey 1HE UNIVERSITY OF
A* proof of optimality ¥, WESTERN

To show that A* is optimal, it is sufficient to show that no sub-optimal goal is ever
visited
Suppose that the optimal goal is G4, and that the unvisited set contains both
— Anode n on the shortest path to G,

— Asub-optimal goal G, Start
n
We can prove that n is always visited before G, .-
Gi g G;

f(G,) =9(G,) + h(G,) definition of f

=9(Gy) since G, is a goal, h(G,) =0
>9(Gy) since only Gy is optimal
=9g(G,) +h(G;) since G;is agoal, h(G;) =0
=f(Gy) definition of f

> f(n) since h is monotonic

» Thus all nodes on the shortest path to G; will be visited before G, is visited

— Which means that G, will be visited before G,

A* viewed operationally @%@?{Eﬁﬁ

A* visits nodes in order of increasing f

*
It creates contours of nodes, “stretching” to Performance of A

the goal | | If x is the number of nodes n
— cf. breadth-first or uniform-cost search with f(n) < f*
If *is the actual cost of the optimal solution
— A*visits all nodes n with f(n) < f* «Complete: yes, unless x is
— And it visits some nodes n with f(n) = f* infinite
*Optimal: yes
*Time: O(x)

*Space: O(x), keeps all
nodes in memory

Clearly x depends on the
quality of the heuristic...

Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f-costs less than or equal to the
contour value.

Assessing Heuristics

Straight-line distance is an obvious heuristic for travel
— And it is obviously admissible

Consider again the 8-puzzle

A heuristic should be defined so that nodes/states
which are “closer to the goal” return smaller values
Two possible heuristics are

— h4(n) =the number of misplaced tiles

— hy(n) = the total Manhattan distance of all tiles

hi(sg) =7 _
ho(sg) = ? 7 il 2]l 4 |
Is either or both admissible? 5 6

— How can we compare them?

8 3 1

Start State

THE UNIVERSITY OF

WESTERN

e 4 AUSTRALIA

1

4

7

Goal State

Figure3.4 A typical instance of the 8-puzzle.

Heuristic Quality

e 4 AUSTRALIA

THE UNIVERSITY OF

WESTERN

The quality of a heuristic can be expressed as its effective branching factor

Assume A* visits N nodes, and finds a solution at depth d

The effective branching factor b* is the branching factor of a “perfect tree” with

these measurements

ie. N=1+b*+ (b*)2+ ...+ (b*)?

b* tends to be fairly constant over problem instances

— therefore b* can be determined empirically
A good heuristic would have b* close to 1

h, beats h,, which beats uninformed
— But is this always true?

Search Cost (nodes generated) Effective Branching Factor

d IDS A*(h1) A*(h2) IDS A*(hy) A*(ha)
2 10 6 6 245 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2:73 1.34 1.30
8 6384 39 25 2.80 2333 1.24
10 47127 93 39 2579, 1.38 1.22
12 || 3644035 227 73 2.78 1.42 1.24
14 - 539 113 = 1.44 1.23
16 — 1301 211 - 1.45 1205
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 15077
22 - 18094 1219 - 1.48 1.28
24 — 39135 1641 - 1.48 1.26

Figure 3.29 Comparison of the search costs and effective branching factors for the

ITERATIVE-DEEPENING-SEARCH and A* algorithms with A1, he. Data are averaged over
100 instances of the 8-puzzle for each of various solution lengths d.

Fo/zTnlo] THE UNIVERSITY OF
Heuristic dominance g WESTERN

We say that h, dominates h; iff they are both admissible, and h,(n) = h4(n), for all
nodes n

— i.e. h*(n) 2 hy(n) = h4(n)

If h, dominates h,, then A* with h, will usually visit fewer nodes than A* with h;
The “proof” is obvious

— A% visits all nodes n with f(n) < f*

— i.e. it visits all nodes with h(n) < f*—g(n)

— f*and g(n) are fixed

— Soif h(n) is bigger, n is less likely to be below-the-line

Normally you should always favour a dominant heuristic
— The only exception would be if it is computationally much more expensive...

But suppose we have two admissible heuristics,
neither of which dominates the other

— We can just use both!
— h(n) = max(hs4(n), hy(n))
— Generalises to any number of heuristics

Fo/zTnlo] THE UNIVERSITY OF
Deriving heuristics g WESTERN

Coming up with good heuristics can be difficult

— So can we get the computer to do it?
Given a problem p, a relaxed version p’ of p is derived by reducing restrictions on
operators

— Then the cost of an exact solution to p’is often a good heuristic to use for p
e.g. if the rules of the 8-puzzle are relaxed so that a tile can be moved anywhere in
one go

— hy gives the cost of the best solution
e.g. if the rules are relaxed so that a tile can be moved to any adjacent space
(whether blank or not)

— h, gives the cost of the best solution
We must always consider the cost of the heuristic

— In the extreme case, a perfect heuristic is to perform a complete search on the original
problem

Note that in the examples above, no searching is required
— The problem has been separated into eight independent sub-problems

Deriving heuristics cont. %ﬁ; WESTERN

« If a problem is expressed in a suitable formal language, relaxation can be
performed automatically

» The 8-puzzle operator is defined by

A $1,000.00 Cash Prize Puzzle

adjacent(A, B) & blank(B) — canmove(A, B)

« We can relax the problem by eliminating
one or more conditions

adjacent(A, B) — canmove(A, B) (hy)
blank(B) — canmove(A, B) (hy)

* e.g. Absolver [Prieditis 1993]
— Discovered a new heuristic for the 8-puzzle, better than any previous one
— Discovered the first useful heuristic for the Rubik’s cube

Frzg=ey 1HE UNIVERSITY OF
Memory bounded A* & 5

The limiting factor on what problems A* can solve is normally space availability
— cf. breadth-first search

We solved the space problem for uninformed strategies by iterative deepening
— Basically trades space for time, in the form of repeated calculation of some nodes

We can do the same here
— IDA* uses the same idea as ID
— But instead of imposing a depth cut-off, it imposes an f-cost cut-off

IDA* performs depth-limited search on all nodes n
such that f(n) < k

— Then if it fails, it increases k and tries again

IDA* suffers from three problems
— By how much do we increase k?
— It doesn’t use all of the space available
— The only information communicated between iterations is the f~cost limit

Fo/zTnlo] THE UNIVERSITY OF
Simplified Memory-Bounded A* g%@?ﬁﬁﬁﬁ

SMA* implements A*, but it uses all memory available

SMA* expands the most promising node (as in A*) until memory is full

— Then it must drop a node in order to generate more nodes and continue the search
SMA* drops the least promising node in order to make space for exploring new
nodes

— But we don’t want to lose the benéefit of all the work that has already been done...

— ltis possible that the dropped node may become important again later in the search
When a node x is dropped, the f-cost of x is backed-up in x’s parent node

— The parent thus has a lower bound on the cost of solutions in the dropped sub-tree

— Note this again depends on admissibility
If at some later point in the search, all other nodes have higher estimates than the
dropped sub-tree, it is re-generated

— Again, we are trading space for time

THE UNIVERSITY OF

WESTERN
%am? AUSTRALIA

SMA* example

Each node is labelled with its g + h = f values, and the goal nodes (D, F, /, J)
are shown in squares. The memory can hold only three nodes.

Each node is labelled with its current f~cost, and values in parentheses store
the values of the best dropped descendants.

At each stage, a successor is added to the deepest, lowest f-cost node that P
has successors not in the tree. Add B to A.

A is more promising than B, so add G to A. Now we have completely
expanded A, we update its f-cost to 13, the minimum of its descendants.
Memory is now full.

G is more promising than B, but room must be made first. We drop the \
shallowest, highest f~cost leaf, i.e. B. Store B’s f-cost in its parent A, and add ol o/ \
H to G. But H is not a goal, and it fills up memory, so we cannot find a goal

down that path. Set H to .

Drop H and store its f-cost in G; add / to G; update G’s f-cost; update A’s f- 0 |
cost. / is a goal with cost 24, but because A’s cost is 15, there may be a more || ..
promising one. \ /

A is once again the most promising, so drop / and re-generate B.

Drop G and store its f~cost in A; add C to B. C is not a goal, and it fills up
memory, so set C to «.

Drop C and store its f-cost in B; add D to B; update B’s f-cost; update A’s f-
cost.

D is now the deepest, lowest f~cost node, and because it is a goal, the search
is complete.

Frzg=ey 1HE UNIVERSITY OF
SMA* performance & {5i{5{)

Complete: yes, if any solution is reachable with the memory available
— i.e. if a linear path to the depth d can be stored

Optimal: yes, if an optimal solution is reachable with the memory available, o/w
returns the best possible
Time: O(x), x being the number of nodes n with f(n) < f*

Space: all of it!

In very hard cases, SMA* can end up continually switching between candidate
solutions

— i.e. it spends a lot of time re-generating
dropped nodes

— cf. thrashing in paging-memory systems
But it is still a robust search process for many problems

