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Introduction

• We will introduce informed search algorithms 
• We will discuss the A* algorithm 

– Its proof of optimality 
– Heuristics for improving its performance 
– Memory-bounded versions of A*
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Uniformed vs Informed Search

• Recall uninformed search 
– Selects nodes for expansion on the basis of distance/cost from the start state 

• e.g. which level in the tree is the node? 
– Uses only information contained in the graph 

(i.e. in the problem definition) 
– No indication of distance to go

• Informed search 
– Selects nodes for expansion on the basis of some estimate of distance to the goal state 
– Requires additional information: 

• heuristic rules, or 
• evaluation function

– Selects “best” node, i.e. most promising 

• Examples 
– Greedy search 
– A* 
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Greedy search of Romania

• To the map of Romanian roads, add the straight-line distance from each city to the 
goal

• These straight-line distances are estimates of how far is left to go.
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Greedy Search

• Greedy search always selects the unvisited 
node with the smallest estimate 

– The one that appears to be closest to the goal 
• The evaluation function or heuristic h(n) here 

is the estimate of the cost of getting from n to 
the goal 

– hSLD(n) = straight-line distance from n to 
Bucharest

• Complete: not always 
• Optimal: no, returns first goal found 
• Time: O(bm) (worst case), but highly 

dependent on the heuristic’s performance 
• Space: O(bm), keeps all nodes in memory 

• The complexities are expressed in terms of 
– b: maximum branching factor of the tree 
– m: maximum depth of the search space 
– d: depth of the least-cost solution 5



A* search

• Greedy search minimises estimated path-cost to goal 
– But it’s neither optimal nor even always complete 

• Uniform-cost search minimises path-cost from the 
start 

– Complete and optimal, but expensive 
• Can we get the best of both worlds? 

• Yes – use estimate of total path-cost as our heuristic 

• f(n) = g(n) + h(n)
– g(n) = actual cost from start to n 
– h(n) = estimated cost from n to goal 
– f(n) = estimated total cost from start to goal via n

•
• Hence A*

– There were a series of algorithms, A1, A2, etc. that 
combined to make A* 6



A* demonstrations
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A* Optimality
• A* search is complete and optimal under two conditions 

– The heuristic must be admissible
– The costs along a given path must be monotonic

• A heuristic h is admissible iff h(n) ≤ h*(n), for all n
– h*(n) is the actual path-cost from n to the goal 

• i.e. h must never over-estimate the cost 
– e.g. hSLD never over-estimates 

• A heuristic h is monotonic iff h(n) ≤ c(n, a, n’) + h(n’), for 
all n, a, n’

– n’ is a successor to n by action a
– This is basically the triangle inequality 
– n to the goal “directly” should be no more than n to the goal 

via any successor n’
• Pathmax modification:    f(n’) = max(g(n’)+h(n’), f(n))
• Note that optimal here means “finds the best goal” 
• We are not arguing that h itself is optimal in any sense 8

n n’

• We want to avoid this sort 
of situation: 



A* proof of optimality

• To show that A* is optimal, it is sufficient to show that no sub-optimal goal is ever 
visited 

Suppose that the optimal goal is G1, and that the unvisited set contains both 
– A node n on the shortest path to G1

– A sub-optimal goal G2

• We can prove that n is always visited before G2

f(G2) = g(G2) + h(G2)    definition of f 
= g(G2) since G2 is a goal, h(G2) = 0
> g(G1) since only G1 is optimal 
= g(G1) +h(G1)     since G1 is a goal, h(G1) = 0
= f(G1) definition of f
≥ f(n) since h is monotonic 

• Thus all nodes on the shortest path to G1 will be visited before G2 is visited 
– Which means that G1 will be visited before G2
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A* viewed operationally

• A* visits nodes in order of increasing f
• It creates contours of nodes, “stretching” to 

the goal
– cf. breadth-first or uniform-cost search 

• If f* is the actual cost of the optimal solution
– A* visits all nodes n with f(n) < f*
– And it visits some nodes n with f(n) = f*
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Performance of A*

If x is the number of nodes n
with f(n) ≤ f*

•Complete: yes, unless x is 
infinite 
•Optimal: yes 
•Time: O(x) 
•Space: O(x), keeps all 
nodes in memory 

Clearly x depends on the 
quality of the heuristic… 



Assessing Heuristics

• Straight-line distance is an obvious heuristic for travel 
– And it is obviously admissible 

• Consider again the 8-puzzle 
• A heuristic should be defined so that nodes/states 

which are “closer to the goal” return smaller values 
• Two possible heuristics are 

– h1(n) = the number of misplaced tiles 
– h2(n) = the total Manhattan distance of all tiles 

• h1(s0) = ? 
• h2(s0) = ? 
• Is either or both admissible? 

– How can we compare them? 
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Heuristic Quality

• The quality of a heuristic can be expressed as its effective branching factor
• Assume A* visits N nodes, and finds a solution at depth d
• The effective branching factor b* is the branching factor of a “perfect tree” with 

these measurements 

• i.e. N = 1 + b* + (b*)2 + … + (b*)d

• b* tends to be fairly constant over problem instances 
– therefore b* can be determined empirically 

• A good heuristic would have b* close to 1
• h2 beats h1, which beats uninformed 

– But is this always true? 
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Heuristic dominance

• We say that h2 dominates h1 iff they are both admissible, and h2(n) ≥ h1(n), for all 
nodes n

– i.e. h*(n) ≥ h2(n) ≥ h1(n)

• If h2 dominates h1, then A* with h2 will usually visit fewer nodes than A* with h1

• The “proof” is obvious 
– A* visits all nodes n with f(n) < f*
– i.e. it visits all nodes with h(n) < f* – g(n)
– f* and g(n) are fixed  
– So if h(n) is bigger, n is less likely to be below-the-line 

• Normally you should always favour a dominant heuristic
– The only exception would be if it is computationally much more expensive… 

• But suppose we have two admissible heuristics, 
neither of which dominates the other 

– We can just use both! 
– h(n) = max(h1(n), h2(n))
– Generalises to any number of heuristics 13



Deriving heuristics

• Coming up with good heuristics can be difficult 
– So can we get the computer to do it?

• Given a problem p, a relaxed version p’ of p is derived by reducing restrictions on 
operators 

– Then the cost of an exact solution to p’ is often a good heuristic to use for p
• e.g. if the rules of the 8-puzzle are relaxed so that a tile can be moved anywhere in 

one go 
– h1 gives the cost of the best solution 

• e.g. if the rules are relaxed so that a tile can be moved to any adjacent space 
(whether blank or not) 

– h2 gives the cost of the best solution

• We must always consider the cost of the heuristic
– In the extreme case, a perfect heuristic is to perform a complete search on the original 

problem 

• Note that in the examples above, no searching is required 
– The problem has been separated into eight independent sub-problems 
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Deriving heuristics cont.

• If a problem is expressed in a suitable formal language, relaxation can be 
performed automatically 

• The 8-puzzle operator is defined by 

adjacent(A, B) & blank(B)  →  canmove(A, B)

• We can relax the problem by eliminating 
one or more conditions 

adjacent(A, B)  →  canmove(A, B) (h2)
blank(B)  →  canmove(A, B) (h1)

• e.g. Absolver [Prieditis 1993] 
– Discovered a new heuristic for the 8-puzzle, better than any previous one 
– Discovered the first useful heuristic for the Rubik’s cube
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Memory bounded A*

• The limiting factor on what problems A* can solve is normally space availability 
– cf. breadth-first search 

• We solved the space problem for uninformed strategies by iterative deepening 
– Basically trades space for time, in the form of repeated calculation of some nodes 

• We can do the same here 
– IDA* uses the same idea as ID 
– But instead of imposing a depth cut-off, it imposes an f-cost cut-off 

• IDA* performs depth-limited search on all nodes n
such that f(n) ≤ k

– Then if it fails, it increases k and tries again 
• IDA* suffers from three problems 

– By how much do we increase k? 
– It doesn’t use all of the space available 
– The only information communicated between iterations is the f-cost limit 
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Simplified Memory-Bounded A*

• SMA* implements A*, but it uses all memory available 

• SMA* expands the most promising node (as in A*) until memory is full 
– Then it must drop a node in order to generate more nodes and continue the search 

• SMA* drops the least promising node in order to make space for exploring new 
nodes 

– But we don’t want to lose the benefit of all the work that has already been done… 
– It is possible that the dropped node may become important again later in the search 

• When a node x is dropped, the f-cost of x is backed-up in x’s parent node 
– The parent thus has a lower bound on the cost of solutions in the dropped sub-tree 
– Note this again depends on admissibility 

• If at some later point in the search, all other nodes have higher estimates than the 
dropped sub-tree, it is re-generated 

– Again, we are trading space for time 
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SMA* example

• Each node is labelled with its g + h = f values, and the goal nodes (D, F, I, J) 
are shown in squares. The memory can hold only three nodes.

• Each node is labelled with its current f-cost, and values in parentheses store 
the values of the best dropped descendants. 

• At each stage, a successor is added to the deepest, lowest f-cost node that 
has successors not in the tree. Add B to A. 

• A is more promising than B, so add G to A. Now we have completely 
expanded A, we update its f-cost to 13, the minimum of its descendants. 
Memory is now full. 

• G is more promising than B, but room must be made first. We drop the 
shallowest, highest f-cost leaf, i.e. B. Store B’s f-cost in its parent A, and add 
H to G. But H is not a goal, and it fills up memory, so we cannot find a goal 
down that path. Set H to ∞. 

• Drop H and store its f-cost in G; add I to G; update G’s f-cost; update A’s f-
cost. I is a goal with cost 24, but because A’s cost is 15, there may be a more 
promising one. 

• A is once again the most promising, so drop I and re-generate B. 
• Drop G and store its f-cost in A; add C to B. C is not a goal, and it fills up 

memory, so set C to ∞. 
• Drop C and store its f-cost in B; add D to B; update B’s f-cost; update A’s f-

cost. 
• D is now the deepest, lowest f-cost node, and because it is a goal, the search 

is complete. 18



SMA* performance

• Complete: yes, if any solution is reachable with the memory available 
– i.e. if a linear path to the depth d can be stored 

• Optimal: yes, if an optimal solution is reachable with the memory available, o/w 
returns the best possible 

• Time: O(x), x being the number of nodes n with f(n) ≤ f*
• Space: all of it! 

• In very hard cases, SMA* can end up continually switching between candidate 
solutions 

– i.e. it spends a lot of time re-generating 
dropped nodes 

– cf. thrashing in paging-memory systems 
• But it is still a robust search process for many problems 
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