WESTERN

e 4 AUSTRALIA

=

PREPPRING RRADATE:[] [~V ¥ ~ ¥ ° v "\ SA~A TS
M OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE
WHAT SITUATIONS

° L~~~
EVERGOES (NPT DANGEROUS? LETS SEE.. THE RESERRCH OMRRING
MIGHT T FREPPRE. RR?) A) SNAKERITE DA)D (RN SNAKE s Amm&sqmm
1) MEDICAL EMERGENCY 8) LIGHTNNG STRIKE. &) GARTER SNAKE 7 ,, D WOONSISTENT. TLL

2) DANCING A SPREADSHEET T ORGANIZE IT:

Search Algorithmsj

IMHERETOPKK. BY (D, THE INLAND
YOUUP. YOURE TAIPAN HAS THE DEADUEST

CITS3001 Algorithms, Agents and Artificial Intelligence \ = YS!

2 2021, Semester 2
Tim French

Department of Computer Science and Software Engineering
The University of Western Australia

: WESTERN
Introduction %?if AUSTRALIA

We will formalise the definition of a problem —
for an agent to solve, conceptualising :

— The environment //mx \:\1

— The goal to achieve e : 5
— The actions available X

e /46 /mv\o

We will describe the fundamental search 1 o R =
algorithms available to agents L 3 & \ (‘ \ (‘.\
max | 1 max |0 max \ 1 max \ 0
FI"(D‘SP£Y<3°°_I)_ oflxfo x[x]o x[|x|o x[x|o
‘/Display 300 \ x|l x| o Xxflol o offx|o xof o
Fatse if (Fuel > 70) e Falseii (Dam < 100)Tme

Search FW

l Path 2

if (Dam > 70)
False True

if (Display < 500)
False True
J

if (Amo = 0)
False True

| Evade | SD

Fo/zTnlo] THE UNIVERSITY OF
Problem Solving and Search gx\{g%gm

We have seen that most intelligent agent models have

— Some knowledge of the state of the world

— Anotion of how actions or operations change the state of the world

— A notion of the cost of each possible action

— One or more goals, or states of the world, that they would like to bring about
Finding a sequence of actions that changes the world from its current state to a
desired goal state is a search problem

— Or a basic planning problem
Usually we want to find the cheapest sequence

— The cost of a sequence of actions (or a path) is just the sum of their individual costs

Search algorithms are the cornerstone of Al
We will examine

— How all of the above concepts are formalised
— The most common search strategies

A Running Example

Our running example (taken from AIMA) is a

WESTERN
%am? AUSTRALIA

simplified road map of part of Romania

The state of the world is our current location

The only operator available is to drive from one
city to a connected city

The cost of an action is the distance between
the cities

The start state is where we start from (Arad)

The goal state is where we want to get to
(Bucharest)

A solution is a sequence of cities that we drive |

through

In general the state of the world is described
abstractly, focussing only on the features
relevant to the problem

Figure 3.2 A simplified road map of part of Romania.

A second example: the 8-puzzie

Slide the tiles in the puzzle until the goal state is reached
The state is the current layout of the tiles

The only operator is to slide a tile into the blank square
— Or to slide the blank square...

The cost of each action is 1

The start state is the puzzle’s initial configuration
The goal state is as shown

A solution is a sequence of tile-moves

7 ~ 1 2 4 ‘ 1 2

| 5 i , 6 3 4 5

8 3 ’ 1 6 7/ 8
Start State Goal State

Figure 3.4 A typical instance of the 8-puzzle.

THE UNIVERSITY OF

WESTERN

e 4 AUSTRALIA

3rd example: Missionaries and Canmbals&&{,@%{ﬁm

« Start state: 3 missionaries, 3 cannibals, and one boat that holds up to 2 people, all
on one side of a river

» Goal state: everybody on the other side of the river

MMMCCCB - ¢

» Current state: the positions of the people and the boat 7 AN
— A state is legal only if no one gets eaten MMCC‘MCB\ MMMci‘CCB MMMCC -CB
— i.e. cannibals never outnumber missionaries MMMCCB — C
» QOperator: 1 or 2 people cross the river in the boat MMM_¢CCCB
. 0
« Cost: 1 MMMCB - CC
!
° MC - MMCCB
1¢c v 1c o ¢
- >.,‘ * < MMCCB — MC
> m ° 1 i
P CC - MMMCB
}
CCCB - MMM
0
C - MMMCCB
e N
CCB - MMMC MCB - MMCC
\ /

¢ - MMMCCCB

Fo/zTnlo] THE UNIVERSITY OF
A Generalised Search Algorithm g WESTERN

 The fundamental idea is
— At any given moment we are in some state s
— s will usually offer several possible actions
— Choose one action to explore first
— Keep s and the other actions to explore later, in case the first one doesn’t deliver

« Action-selection is determined by a search strategy
» We picture a search tree of states, expanding outwards from the initial state of the
problem
GeneralSearch (problem, strategy):
initialise the tree with the initial state of problem
while no solution found
1f there are no possible expansions left
then return failure
else use strategy to choose a leaf node x to expand
1f x 1s a goal state
then return success
else expand x

add the new nodes to the tree

Exploring Romania

THE UNIVERSITY OF

WESTERN
A &% AUSTRALIA

11
8 L Vaslui

=1 Timisoara

L] Hi
] Mehadia s

75 86

Drobeta []

Craiova [] Giurgiu Efori

Figure 3.2 A simplified road map of part of Romania.

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

.Oradea

Figure 3.6 Partial search trees for finding a route from Arad to Bucharest. Nodes that
have been expanded are shaded; nodes that have been generated but not yet expanded are
outlined in bold; nodes that have not yet been generated are shown in faint dashed lines.

Alternative Formulation @ PSRN

Given
— Aset of possible states S U= {sg} —-—- unvisited nodes
— Astart state s V= {} —-— visited nodes
— A goal function g(s) — {true, false} while UT {i e .
. . S = selecC a noae rom
— Aterminal condition {(s) — {true, false} if s e v __ occurs check
then discard s
The data structure used to store U can else if g(s)
impose then return success
an order in which the nodes will be visited else 1f t(s) -- cut-off check
y then discard s
— e.g. a priority queue where nodes are stored else

in the order in which they should be visited V=V+ {s)

U= U - {s} + successors(s)

Frzg=ey 1HE UNIVERSITY OF
Comparing Search Strategies g%@gglﬁg

The performance of search strategies is generally compared in four ways

Completeness: is the strategy guaranteed to find a solution, assuming that there is
one?

Optimality: is the strategy guaranteed to find the optimal solution?
Time complexity: how long does the strategy take to find a solution?
Space complexity: how much memory is needed to conduct the search?

The complexities are often expressed in terms of
— b: maximum branching factor of the tree
— m: maximum depth of the search space
— d: depth of the least-cost solution

Frzg=ey 1HE UNIVERSITY OF
Uninformed Search Strategies g WESTERN

Breadth-first search
— Expand the shallowest node next
Uniform-cost search
— Expand the lowest-cost node next
Depth-first search
— Expand the deepest node next
Depth-limited search
— Depth-first, but with a cut-off depth
lterative deepening depth-first search
— Repeated depth-limited, with increasing cut-offs

Bidirectional search
— Search from both ends concurrently

In the next lecture, we will look at informed search strategies, that use additional
information

Breadth-first Search

Expand the shallowest node next

— Expand all nodes at one level before
moving down

Complete: yes, if b is finite

Optimal: yes, if all step-costs are equal
Time: O(1 + b + b2 + ... + b)) = O(b?)
Space: O(b9), because all of the nodes at
one level must be stored simultaneously
Space is the big problem

You might wait thirteen days to solve a
problem
— But who has a petabyte of memory!?

WESTERN

%as? AUSTRALIA
Depth Nodes Time Memory

2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 10'2 13 days 1 petabyte
14 1015 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

Figure3.13 Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Welcome to Al! >®

Figure 3.12

Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker.

Uniform cost saerch éﬁ%;‘; WESTERN

Expand the lowest-cost node next
— Basically a version of breadth-first that allows for varying step-costs

Complete: yes, if all step-costs 20

Optimal: as above

Time: O(n), where n is the number of nodes with cost less than the optimum
Space: as above

Bucharest

Figure 3.15 Part of the Romania state space, selected to illustrate uniform-cost search.

WESTERN
%am? AUSTRALIA

Depth-first search

Expand the deepest node next

— Follow one path until you can go no further, then backtrack to the last choice point and
try an alternative

Usually needs an occurs-check (as per
Page 10) to prevent looping

*Complete: no, fails in infinite-depth
spaces

*Optimal: no, could hit any solution
first

*Time: O(b™), follows paths “all the
way down”

*Space: O(bm), because it only needs
to store the current path plus untried

alternatives
Figure 3.16 Depth-first search on a binary tree. The unexplored region is shown in light Space IS a huge advantage
gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes
at depth 3 have no successors and M is the only goal node. The Other metrlcs can be blg

disadvantages

Fo/zTnlo] THE UNIVERSITY OF
Depth-limited search g WESTERN

» Depth-first, but with a cut-off depth
— Terminate paths at depth /
— cf. t(s) on Page 10
« Sometimes used to apply depth-first search to infinite (or effectively infinite) spaces
— Find best solution with limited resources
— e.g. game-playing (Lecture 8)
» Works well if we have a good way to choose /
— e.g. the Romanian map has diameter 9

Iterative deepening depth-first search <> & WESRERN

Repeated depth-limited, with increasing

Complete: yes

cut-offs * Optimal: yes, for constant step-costs
Probe deeper and deeper, iteratively * And easily adapted to varying step-costs
: : o« Time: O((d+1)b’ + db! + (d—DB + ... + bd) =
increasing / p
Limit=0 >® e O(b)

* Space: O(bd)

Limit = 1 >® ®

The multiplying factors in the time complexity come

K\@ | from the repeated expansion of nodes near the
root

But this 1s not normally a big problem

For typical values of b, the last layer of the tree
dominates the space requirements

And it’s worth 1t for the space complexity!

Iterative deepening allows a system to adapt
to resource limits
In this context it acts an anytime algorithm
Find an 1nitial (hopefully usable) solution,
then try to find a better one
A common optimisation is start off / bigger than 0

Figure 3.19 Four iterations of iterative deepening search on a binary tree.

Bi-directional search é%;‘; PSRN

Search from both ends concurrently

Usually expands many fewer nodes than unidirectional
_ 2p¥2 << pd
But raises many other difficulties
— There may be many goal states to start from
— Formalising backward steps may be difficult
— The “backwards branching factor” may be much bigger than b
— The cost of checking when the two sides meet may be high

e.g. chess

— There are many, many checkmate positions
— Was the last move a capture?

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a
branch from the start node meets a branch from the goal node.

Summary

lterative deepening offers
— the completeness and optimality of breadth-first
— the space advantage of depth-first

THE UNIVERSITY OF

WESTERN

e # AUSTRALIA

Crteriog Breadth- Uniform- Depth- Depth- [terative Bidirectional
First Cost First Limited Deepening (if applicable)
Complete? Yes® Yes®? No No Yes? Yes®:d
Time O(b%) O(bl‘_-cx""fi)its SOE) O(b") O(b%) O(b%/?)
Space o@®%) Oo@tlC/d)y ombm) O O(bd) O(b%?)
Optimal? Yes© Yes No No Yes? Yes®¢
Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth

of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: @ complete if b is finite; ° complete if step costs > ¢ for

positive e; © optimal if step costs are all identical; ¢ if both directions use breadth-first search. 1

