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Introduction

• We will formalise the definition of a problem 
for an agent to solve, conceptualising 

– The environment 
– The goal to achieve 
– The actions available 
– etc. 

• We will describe the fundamental search 
algorithms available to agents 
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Problem Solving and Search

• We have seen that most intelligent agent models have 
– Some knowledge of the state of the world 
– A notion of how actions or operations change the state of the world 
– A notion of the cost of each possible action 
– One or more goals, or states of the world, that they would like to bring about 

• Finding a sequence of actions that changes the world from its current state to a 
desired goal state is a search problem

– Or a basic planning problem
• Usually we want to find the cheapest sequence 

– The cost of a sequence of actions (or a path) is just the sum of their individual costs 

• Search algorithms are the cornerstone of AI
• We will examine 

– How all of the above concepts are formalised 
– The most common search strategies 
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A Running Example

• Our running example (taken from AIMA) is a 
simplified road map of part of Romania 

• The state of the world is our current location 
• The only operator available is to drive from one 

city to a connected city 
• The cost of an action is the distance between 

the cities 
• The start state is where we start from (Arad) 
• The goal state is where we want to get to 

(Bucharest) 
• A solution is a sequence of cities that we drive 

through 
• In general the state of the world is described 

abstractly, focussing only on the features 
relevant to the problem 
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A second example: the 8-puzzle

• Slide the tiles in the puzzle until the goal state is reached
• The state is the current layout of the tiles 
• The only operator is to slide a tile into the blank square 

– Or to slide the blank square… 
• The cost of each action is 1 
• The start state is the puzzle’s initial configuration 
• The goal state is as shown 
• A solution is a sequence of tile-moves 
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3rd example: Missionaries and Cannibals

• Start state: 3 missionaries, 3 cannibals, and one boat that holds up to 2 people, all 
on one side of a river 

• Goal state: everybody on the other side of the river 
• Current state: the positions of the people and the boat 

– A state is legal only if no one gets eaten 
– i.e. cannibals never outnumber missionaries 

• Operator: 1 or 2 people cross the river in the boat 
• Cost: 1 
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A Generalised Search Algorithm

• The fundamental idea is 
– At any given moment we are in some state s
– s will usually offer several possible actions 
– Choose one action to explore first 
– Keep s and the other actions to explore later, in case the first one doesn’t deliver 

• Action-selection is determined by a search strategy
• We picture a search tree of states, expanding outwards from the initial state of the 

problem 
GeneralSearch (problem, strategy): 
initialise the tree with the initial state of problem
while no solution found 

if there are no possible expansions left 
then return failure
else use strategy to choose a leaf node x to expand 
if x is a goal state 

then return success
else expand x

add the new nodes to the tree 7



Exploring Romania
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Alternative Formulation

• Given 
– A set of possible states S
– A start state s0

– A goal function g(s) → {true, false}
– A terminal condition t(s) → {true, false}

• The data structure used to store U can 
impose 
an order in which the nodes will be visited 

– e.g. a priority queue where nodes are stored 
in the order in which they should be visited 
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U = {s0} -- unvisited nodes 
V = {} -- visited nodes 
while U ≠ {} 

s = select a node from U
if s Î V -- occurs check

then discard s
else if g(s)

then return success 
else if t(s) -- cut-off check

then discard s
else

V = V + {s}
U = U – {s} + successors(s)



Comparing Search Strategies

• The performance of search strategies is generally compared in four ways 
• Completeness:  is the strategy guaranteed to find a solution, assuming that there is 

one? 
• Optimality:  is the strategy guaranteed to find the optimal solution? 
• Time complexity:  how long does the strategy take to find a solution?
• Space complexity:  how much memory is needed to conduct the search? 
• The complexities are often expressed in terms of 

– b: maximum branching factor of the tree 
– m: maximum depth of the search space 
– d: depth of the least-cost solution 
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Uninformed Search Strategies

• Breadth-first search 
– Expand the shallowest node next 

• Uniform-cost search 
– Expand the lowest-cost node next 

• Depth-first search 
– Expand the deepest node next 

• Depth-limited search 
– Depth-first, but with a cut-off depth 

• Iterative deepening depth-first search 
– Repeated depth-limited, with increasing cut-offs 

• Bidirectional search 
– Search from both ends concurrently 

• In the next lecture, we will look at informed search strategies, that use additional 
information 
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Breadth-first Search
• Expand the shallowest node next 

– Expand all nodes at one level before 
moving down 

• Complete: yes, if b is finite 
• Optimal: yes, if all step-costs are equal 
• Time: O(1 + b + b2 + … + bd) = O(bd) 
• Space: O(bd), because all of the nodes at 

one level must be stored simultaneously
• Space is the big problem 
• You might wait thirteen days to solve a 

problem 
– But who has a petabyte of memory!? 

• Welcome to AI!  
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Uniform cost saerch

• Expand the lowest-cost node next 
– Basically a version of breadth-first that allows for varying step-costs 

• Complete: yes, if all step-costs ≥ 0 
• Optimal: as above 
• Time: O(n), where n is the number of nodes with cost less than the optimum 
• Space: as above 
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Depth-first search

• Expand the deepest node next 
– Follow one path until you can go no further, then backtrack to the last choice point and 

try an alternative 
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Usually needs an occurs-check (as per 
Page 10) to prevent looping 

•Complete: no, fails in infinite-depth 
spaces 
•Optimal: no, could hit any solution 
first 
•Time: O(bm), follows paths “all the 
way down” 
•Space: O(bm), because it only needs 
to store the current path plus untried 
alternatives 

Space is a huge advantage 
The other metrics can be big 
disadvantages 



Depth-limited search

• Depth-first, but with a cut-off depth 
– Terminate paths at depth l
– cf. t(s) on Page 10 

• Sometimes used to apply depth-first search to infinite (or effectively infinite) spaces 
– Find best solution with limited resources 
– e.g. game-playing (Lecture 8) 

• Works well if we have a good way to choose l
– e.g. the Romanian map has diameter 9 
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Iterative deepening depth-first search

• Repeated depth-limited, with increasing 
cut-offs 

• Probe deeper and deeper, iteratively 
increasing l

16

• Complete: yes 
• Optimal: yes, for constant step-costs 

• And easily adapted to varying step-costs 
• Time: O((d+1)b0 + db1 + (d–1)b2 + … + bd) = 

O(bd) 
• Space: O(bd) 

The multiplying factors in the time complexity come 
from the repeated expansion of nodes near the 
root 

But this is not normally a big problem 
For typical values of b, the last layer of the tree 

dominates the space requirements 
And it’s worth it for the space complexity! 

Iterative deepening allows a system to adapt 
to resource limits 
In this context it acts an anytime algorithm
Find an initial (hopefully usable) solution, 

then try to find a better one 
A common optimisation is start off l bigger than 0 



Bi-directional search

• Search from both ends concurrently 
• Usually expands many fewer nodes than unidirectional 

– 2bd/2 << bd

• But raises many other difficulties 
– There may be many goal states to start from 
– Formalising backward steps may be difficult 
– The “backwards branching factor” may be much bigger than b
– The cost of checking when the two sides meet may be high 

• e.g. chess 
– There are many, many checkmate positions 
– Was the last move a capture? 
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Summary

• Iterative deepening offers 
– the completeness and optimality of breadth-first 
– the space advantage of depth-first 
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