

Uninformed Search Algorithms

CITS3001 Algorithms, Agents and Artificial Intelligence

I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

2021, Semester 2

Tim French Department of Computer Science and Software Engineering The University of Western Australia

Introduction

- We will formalise the definition of a problem for an agent to solve, conceptualising
 - The environment
 - The goal to achieve
 - The actions available
 - etc.
- We will describe the fundamental search algorithms available to agents

Problem Solving and Search

- We have seen that most intelligent agent models have
 - Some knowledge of the state of the world
 - A notion of how actions or operations change the state of the world
 - A notion of the *cost* of each possible action
 - One or more *goals*, or states of the world, that they would like to bring about
- Finding a sequence of actions that changes the world from its current state to a desired goal state is a *search problem*
 - Or a basic *planning problem*
- Usually we want to find the cheapest sequence
 - The cost of a sequence of actions (or a *path*) is just the sum of their individual costs
- Search algorithms are the cornerstone of Al
- We will examine
 - How all of the above concepts are formalised
 - The most common search strategies

A Running Example

- Our running example (taken from AIMA) is a simplified road map of part of Romania
- The state of the world is our current location
- The only operator available is to drive from one city to a connected city
- The *cost* of an action is the distance between the cities
- The *start state* is where we start from (Arad)
- The *goal state* is where we want to get to (Bucharest)
- A *solution* is a sequence of cities that we drive through
- In general the state of the world is described abstractly, focussing only on the features relevant to the problem

A second example: the 8-puzzle

- Slide the tiles in the puzzle until the goal state is reached
- The state is the current layout of the tiles
- The only operator is to slide a tile into the blank square
 - Or to slide the blank square...
- The cost of each action is 1
- The start state is the puzzle's initial configuration
- The goal state is as shown
- A solution is a sequence of tile-moves

3rd example: Missionaries and Cannibals

- Start state: 3 missionaries, 3 cannibals, and one boat that holds up to 2 people, all on one side of a river
- Goal state: everybody on the other side of the river
- Current state: the positions of the people and the boat
 - A state is *legal* only if no one gets eaten
 - i.e. cannibals never outnumber missionaries
- Operator: 1 or 2 people cross the river in the boat
- Cost: 1

A Generalised Search Algorithm

- The fundamental idea is
 - At any given moment we are in some state s
 - *s* will usually offer several possible actions
 - Choose one action to explore first
 - Keep s and the other actions to explore later, in case the first one doesn't deliver
- Action-selection is determined by a search strategy
- We picture a *search tree* of states, expanding outwards from the initial state of the problem

```
GeneralSearch (problem, strategy):
initialise the tree with the initial state of problem
while no solution found
  if there are no possible expansions left
  then return failure
  else use strategy to choose a leaf node x to expand
  if x is a goal state
     then return success
  else expand x
     add the new nodes to the tree
```

Exploring Romania

Figure 3.6 Partial search trees for finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are shown in faint dashed lines.

Alternative Formulation

• Given

- A set of possible states S
- A start state s_0
- A goal function $g(s) \rightarrow \{true, false\}$
- A terminal condition $t(s) \rightarrow \{true, false\}$
- The data structure used to store *U* can impose

an order in which the nodes will be visited

 e.g. a priority queue where nodes are stored in the order in which they should be visited

```
U = \{ S_0 \}
               -- unvisited nodes
V = \{ \}
                -- visited nodes
while U \neq \{\}
  s = select a node from U
  if s \in V
                -- occurs check
    then discard s
  else if q(s)
    then return success
  else if t(s) -- cut-off check
    then discard s
  else
    V = V + \{s\}
    U = U - \{s\} + successors(s)
```

Comparing Search Strategies

- The performance of search strategies is generally compared in four ways
- Completeness: is the strategy guaranteed to find a solution, assuming that there is one?
- *Optimality*: is the strategy guaranteed to find the optimal solution?
- *Time complexity*: how long does the strategy take to find a solution?
- *Space complexity*: how much memory is needed to conduct the search?
- The complexities are often expressed in terms of
 - b: maximum branching factor of the tree
 - *m*: maximum *depth* of the search space
 - *d*: depth of the *least-cost* solution

Uninformed Search Strategies

- Breadth-first search
 - Expand the shallowest node next
- Uniform-cost search
 - Expand the lowest-cost node next
- Depth-first search
 - Expand the deepest node next
- Depth-limited search
 - Depth-first, but with a cut-off depth
- Iterative deepening depth-first search
 - Repeated depth-limited, with increasing cut-offs
- Bidirectional search
 - Search from both ends concurrently
- In the next lecture, we will look at *informed search strategies*, that use additional information

Breadth-first Search

- Expand the shallowest node next
 - Expand all nodes at one level before moving down
- Complete: yes, if b is finite
- Optimal: yes, if all step-costs are equal
- Time: $O(1 + b + b^2 + ... + b^d) = O(b^d)$
- Space: O(*b^d*), because all of the nodes at one level must be stored simultaneously
- Space is the big problem
- You might wait thirteen days to solve a problem
 - But who has a petabyte of memory!?
- Welcome to AI!

Depth	Nodes	Time		Memory	
2	110	.11	milliseconds	107	kilobytes
4	11,110	11	milliseconds	10.6	megabytes
6	10^{6}	1.1	seconds	1	gigabyte
8	10 ⁸	2	minutes	103	gigabytes
10	10^{10}	3	hours	10	terabytes
12	10^{12}	13	days	1	petabyte
14	10 ¹⁴	3.5	years	99	petabytes
16	10 ¹⁶	350	years	10	exabytes

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Uniform cost saerch

- Expand the lowest-cost node next
 - Basically a version of breadth-first that allows for varying step-costs
- Complete: yes, if all step-costs ≥ 0
- Optimal: as above
- Time: O(n), where *n* is the number of nodes with cost less than the optimum
- Space: as above

Depth-first search

- Expand the deepest node next
 - Follow one path until you can go no further, then backtrack to the last choice point and try an alternative

Figure 3.16 Depth-first search on a binary tree. The unexplored region is shown in light gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes at depth 3 have no successors and M is the only goal node.

Usually needs an occurs-check (as per Page 10) to prevent looping

- •Complete: no, fails in infinite-depth spaces
- •Optimal: no, could hit any solution first
- •Time: O(*b^m*), follows paths "all the way down"
- •Space: O(*bm*), because it only needs to store the current path plus untried alternatives

Space is a *huge* advantage The other metrics can be big disadvantages

Depth-limited search

- Depth-first, but with a cut-off depth
 - Terminate paths at depth /
 - cf. *t(s)* on Page 10
- Sometimes used to apply depth-first search to infinite (or effectively infinite) spaces
 - Find best solution with limited resources
 - e.g. game-playing (Lecture 8)
- Works well if we have a good way to choose *I*
 - e.g. the Romanian map has diameter 9

Iterative deepening depth-first search

- Repeated depth-limited, with increasing cut-offs
- Probe deeper and deeper, iteratively increasing *I*

- Complete: yes
- Optimal: yes, for constant step-costs
 - And easily adapted to varying step-costs
- Time: $O((d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d) = O(b^d)$
- Space: O(*bd*)

The multiplying factors in the time complexity come from the repeated expansion of nodes near the root

But this is not normally a big problemFor typical values of *b*, the last layer of the tree dominates the space requirementsAnd it's worth it for the space complexity!

Iterative deepening allows a system to adapt to resource limits In this context it acts an *anytime algorithm* Find an initial (hopefully usable) solution, then try to find a better one

A common optimisation is start off l bigger than 0

Bi-directional search

- Search from both ends concurrently
- Usually expands many fewer nodes than unidirectional
 - $2b^{d/2} << b^d$
- But raises many other difficulties
 - There may be many goal states to start from
 - Formalising backward steps may be difficult
 - The "backwards branching factor" may be much bigger than b
 - The cost of checking when the two sides meet may be high
- e.g. chess
 - There are many, many checkmate positions
 - Was the last move a capture?

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a branch from the start node meets a branch from the goal node.

Summary

- Iterative deepening offers
 - the completeness and optimality of breadth-first
 - the space advantage of depth-first

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	Yes ^a	Yes ^{<i>a,b</i>}	No	No	Yes ^a	Yes ^{a,d}
Time	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	$O(b^m)$	$O(b^{\ell})$	$O(b^d)$	$O(b^{d/2})$
Space	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	O(bm)	$O(b\ell)$	O(bd)	$O(b^{d/2})$
Optimal?	Yes ^c	Yes	No	No	Yes ^c	Yes ^{c,d}

Figure 3.21 Evaluation of tree-search strategies. *b* is the branching factor; *d* is the depth of the shallowest solution; *m* is the maximum depth of the search tree; *l* is the depth limit. Superscript caveats are as follows: ^{*a*} complete if *b* is finite; ^{*b*} complete if step costs $\geq \epsilon$ for positive ϵ ; ^{*c*} optimal if step costs are all identical; ^{*d*} if both directions use breadth-first search.