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Summary

• We will define optimisation problems and we will look at four important algorithmic 
techniques for tackling these problems 

– Greedy algorithms
– Dynamic algorithms
– Approximation algorithms 
– Gradient-based search algorithms

• Many problems that we face are absolute 
– there is a right answer, and there are a lot of wrong answers

• e.g. when we are given a list of n distinct items to sort, there are n! permutations of 
the items, only one of which is sorted

– The other n!–1 permutations are simply wrong
• Sometimes (e.g. with longest common subsequence), there is a set of (equally) 

right answers, and a lot of wrong answers
• In both cases, the distinction between “right” and “wrong” is absolute 
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Optimisation Problems

• But a lot of problems are more complicated
• e.g. consider a piece of machinery whose speed of operation is controlled by a dial 

that can be set to any real number between 1 and 1,000 
• How do we set the dial? 

– We could set it to 1,000 to go as fast as possible
• But then the machine might wear out quickly

– We could set it to 1 to extend the machine’s life
• But then it makes product very slowly 

– We could try to find some compromise setting in the middle of the range
• Probably the usual approach

• The point for now is that no solution is “right”, and no solution is “wrong” 
– Whatever we set the dial to, the machine runs
– Just some settings work “better”, and others work “worse” 
– The distinction is a matter of degree

• These problems are commonly called optimisation problems
– We are trying to find a solution that performs well wrt some criterion (or criteria) 
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Example

• Imagine you have to find a path from Point A to Point B in a complicated road network 

• There will probably be many different paths that will get you from A to B
– So all of them are “solutions”

– But one (or a few) of them will get you there quickest, or safest, or using the least fuel, …

– i.e. some of them will be “better” wrt whatever criteria are important

• Note that many of these problems are often expressed in two different ways:
– Find the best path 

– Find a path, and make it as good as possible 

• The former phrasing obviously has a right answer in the absolute sense  
– The second does not
– Hence only the second is an optimisation problem 
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Optimisation Algorithms

• We discuss four approaches to optimisation problems 
• Greedy algorithms build up a solution bit-by-bit

– At each step they make the locally-optimal choice for the next “bit”
• Dynamic programming we have seen before

– Define recursive rules for solving the problem, then optimise the algorithm by eliminating 
repeated work

• Approximation algorithms focus on returning good solutions, but not necessarily 
the best one

– Often they can operate very quickly
• Gradient-based search algorithms take known solutions and try to improve them

– While they can be slow, they can work well in difficult problem domains 

• Often there will be a trade-off between the run-time of the algorithm and the quality 
of the solution returned 

– We will see this issue again later in CITS3001
– It is also an important issue with so-called “computational intelligence” approaches, 

studied in CITS4404
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An activity selection problem

• Given a set of tasks, each with an 
associated start time and finish time, select 
the largest subset of the tasks that can be 
performed without any incompatibilities

– Two tasks are incompatible if they overlap in 
time

• e.g. for {(6,9), (1,10), (2,4), (1,7), (5,6), 
(8,11), (9,11)}, the following schedules are 
all valid

– {(1,10)},  {(1,7), (8,11)},  {(2,4), (5,6), (9,11)}

• We will assume that the activity intervals are 
closed on the left and open on the right

– A closed end of an interval includes its 
endpoint

– (a,b) = {x Î R | a < x < b}
– [a,b) = {x Î R | a ≤ x < b}
– (a,b] = {x Î R | a < x ≤ b}
– [a,b] = {x Î R | a ≤ x ≤ b} 6

• The natural approach to the activity-
selection problem is to choose the tasks 
one at a time 

– Clearly each choice restricts subsequent 
choices

• e.g. given 
{[6,9),[1,10),[2,4),[1,7),[5,6),[8,11),[9,11)}

– If we (arbitrarily) choose [1,7), subsequent 
choices are restricted to {[8,11), [9,11)}

• This is just a smaller instance of the same 
problem

– Effectively the activity-selection problem 
can be reduced to the question of 
(repeatedly) choosing 
one task from a set

– Which suggests a greedy approach: try to 
make the locally-optimal choice at each 
stage



Greedy rules for activity-selection

• What greedy rules might be reasonable?
• Any of the following rules might be a candidate

– Choose the shortest task
– Choose the task that overlaps with fewest others
– Choose the task that starts earliest
– Choose the task that finishes earliest
– Choose the task that starts latest
– Choose the task that finishes latest
– Or other possibilities, some much more complicated

• The greedy approach is a very local procedure
– Make the choice that seems best now, without worrying about how it affects future 

choices
• Sometimes the greedy approach works well – sometimes it even produces optimal 

answers – but frequently it doesn’t
• Which of these rules work? Can you prove or disprove that they work?
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An optimal choice

• In this case, it turns out there is a provably-optimal greedy rule
– Always choose the task that finishes earliest

• e.g. given {[6,9),[1,10),[2,4),[1,7),[5,6),[8,11),[9,11)}
– Choose [2,4), leaving {[6,9),[5,6),[8,11),[9,11)}
– Choose [5,6), leaving {[6,9),[8,11),[9,11)}
– Choose [6,9), leaving {[9,11)}
– Choose [9,11)

• The formal proof of optimality is by contradiction (CLRS Ps. 373–5), but intuitively: 
– Suppose there exists a solution {t1, t2, …, tk} 

that does not include [2,4) 
– Assume that t1, …, tk are ordered by finish time
– Clearly t1 does not intersect with any of t2 … tk
– Clearly [2,4) finishes no later than t1
– Therefore [2,4) does not intersect with any of t2 … tk
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Running time for activity-selection

• The running time for this algorithm is dominated by the time to sort the 
tasks initially, i.e. O(nlogn)

• Greedy algorithms are often very fast, because they are usually very 
simple

• So why don’t we always use the greedy approach? 
– Because it doesn’t always work! (obviously…)

• There is a theorem identifying precisely the set of problems for which 
greedy algorithms work: They are known as Matroids (see CLRS 16.4), 
and include problems such as shortest path, minimum spanning tree and 
activity selection.

• Unfortunately there are many problems for which greedy algorithms 
(provably) do not work.
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The Vertex Cover Problem

• A vertex cover for a graph G is a set of vertices 
V’ Í V(G) such that every edge in G has 
at least one end in V’
– We say that V’ covers all the edges in G

• The Vertex Cover problem is to find the smallest vertex cover of G
• Exercise: What is the smallest vertex cover of the graph below?
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A Greedy Algorithm?

• One obvious greedy rule would be 
– At each stage, choose the vertex that covers the 

most remaining uncovered edges 
• But for the graph below, this greedy rule would choose the middle vertex, 

whereas there is a better solution: 
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The problem with greedy algorithms

• The problem is that the locally-optimal choice (covering as many uncovered edges 
as possible) reduces our options for later choices 

• Unfortunately most problems are not amenable to the greedy approach
• There is no known algorithm for Vertex Cover which is essentially better than just 

enumerating all possible subsets of the vertices 
• Vertex Cover is an example of an NP-hard problem
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P vs NP

• A computational problem x is in the class P if there is 
a deterministic algorithm that solves x and that runs in polynomial time (i.e. O(nk) 
for some k)

– These are polynomial-time problems, often called feasible or tractable
– …even though for k > 20 they aren’t really either

• A computational problem x is in the class NP if there is a non-deterministic 
algorithm that solves x and that runs in polynomial time 

– These are non-deterministic polynomial-time problems, often called infeasible or 
intractable

– But these algorithms require lucky guesses to work efficiently
– NP complete problems are a class of NP problems which are in NP and polynomially 

equivalent to one another. NP hard problems are problems at least as hard as NP 
complete problems.

– Whether there is a deterministic polynomial algorithm to solve NP-complete problems is 
a well-known open problem.

– In this unit , you will receive a disproportionate penalty if you ever refer to NP as “not 
polynomial”. 
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Two more NP problems

Travelling Salesman (TSP): given a 
finite set of cities C and a distance 
function d(ci, cj) Î R+, find the shortest 
circular tour that visits each city exactly 
once .
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Dominating Set: given a graph G, what is 
the smallest set of vertices V’ Í V(G) such 
that every vertex in V(G) is adjacent to at 
least one vertex in V’



How hard are these problems?

• Every problem x in the NP-hard class has the 
following properties
– There is no known polynomial-time algorithm for x
– The only known algorithms take exponential time
– If you could solve x in polynomial-time, then you could solve them all in 

polynomial-time 
• Vertex Cover, Travelling Salesman, and Dominating Set are all NP-hard

• The most important open problem in theoretical computer science is 
whether or not this class of problems can be solved in polynomial-time 

• Many more interesting complexity classes: 
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
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Longest common subsequence

Finally, we’ll consider the problem of comparing string to see how similar they are…

Given two sequences X and Y, what is their longest common subsequence? 

A subsequence of X is X with zero or more items omitted 
e.g. ABC has seven subsequences: ABC, AB, AC, BC, A, B, C
A sequence with n items has 2n–1 subsequences

So e.g. the LCSs of ABCBDAB and BDCABA are

BCBA
BCAB
BDAB

We can solve this problem efficiently using dynamic programming
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A recursive relationship

The first step is to find a recursive rule 
whereby the main problem can be 
solved by solving smaller sub-problems 

Assume that 
X = x1 x2 … xm
Y = y1 y2 … yn
and that they have an LCS 

Z = z1 z2 … zk

Clearly either xm = yn, or not 

17

If xm = yn, then zk = xm = yn and 
Zk–1 is an LCS of Xm–1 and Yn–1

e.g. X = abcd, Y = paqd

If xm ≠ yn, then at least one of xm
and yn was discarded, and Zk is an 
LCS of either Xm–1 and Y, or X and Yn–1

For this case there are three 
possibilities 
e.g. X = abcd, Y = padq
(q discarded)
e.g. X = abcd, Y = apqc
(d discarded)
e.g. X = abcd, Y = apbr
(both d and r discarded) 



The recursive relationship

This allows us to define a recursive relationship:
LCS(Xi, Yj) = [ ], if ij = 0

= LCS(Xi–1, Yj–1) + [xi], if xi = yj
= longer(LCS(Xi–1, Yj), LCS(Xi, Yj–1)), if xi ≠ yj

And a corresponding relationship on lengths: 
len(Xi, Yj) = 0, if ij = 0

= len(Xi–1, Yj–1) + 1, if xi = yj
= max(len(Xi–1, Yj), len(Xi, Yj–1)), if xi ≠ yj

Applying this rule directly as an algorithm requires the calculation of LCS(Xi, Yj) for all 0 ≤ 
i ≤ m and 0 ≤ j ≤ n

It should also be clear that it requires the repeated calculation of some sub-expressions
e.g. LCS(abcd, pqr)

= longer(LCS(abc, pqr), LCS(abcd, pq))

= longer(longer(LCS(ab, pqr), LCS(abc, pq)),     
longer(LCS(abc, pq), LCS(abcd, p)))

= … 

18



Dynamic Programming

These are the two essential features which tell us that dynamic programming can be 
applied

Recursive sub-structure
Overlapping sub-problems

The basic principle is known as memoisation and is very simple:
When we evaluate an application, remember the result so that we don’t have to evaluate it 
again

We maintain a table of applications that have been evaluated. For every new 
application, we check first to see if we have done it previously 

If we have, just look up the result
If we haven’t, do the evaluation and store the result

Dynamic programming applies this principle in a slightly cleverer way
We know what applications have to be evaluated, so we order them in such a way that 
repetition is avoided and no checking is needed 
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Recall: Fibaonacci numbers

The recursive program 
fib(k) = fib(k–1) + fib(k–2), if k > 1 
= 1, if k <= 1 

Recursive sub-structure and 
overlapping sub-problems

The “dynamic programming” version  

fib(k) = fib’(k, 1, 1) 
fib’(k, x, y) = x, if k == 0

= fib’(k–1, y, x+y), if k > 0

Checking to see if an application has been evaluated previously is avoided, because 
we have ordered the evaluation so that at every point we know we have already done 
what’s needed 

With LCS, the information that needs to be stored is more complicated… 20



Dynamic Programming for LCS

• Given X of length m and Y of length n, 
we need to build a table of applications 
LCS(Xi, Yj), 
for all 0 ≤ i ≤ m and 0 ≤ j ≤ n

• The (i, j) entry holds two pieces of 
information: 

– the length of LCS(Xi, Yj) 
– an arrow denoting the rule used for that 

entry 
• Consider X = 01101001 and Y = 110110 
• We know all of the boundary cases 

– Whenever either string is empty, the 
LCS is empty 

– So the initial table looks like this
– The yellow entry will hold the info for 

LCS(01101, 110)
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Populating the table

Each entry depends on three other 
entries: 

– The one to the left of it 
– The one above it 
– The one diagonally above-left of it 

Therefore we can fill in the table one row 
at a time, working down the rows and 
going right along each row 

– (Clearly we could do it column-wise 
instead)

– For each entry, use the LCS 
recurrence relation 
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len(Xi, Yj) = 0, if ij = 0 
= len(Xi–1, Yj–1) + 1, if xi = yj
= len(Xi–1, Yj), if xi ≠ yj & len(Xi–1, Yj) ≥ len(Xi, Yj–1)
= len(Xi, Yj–1), if xi ≠ yj & len(Xi–1, Yj) ≤ len(Xi, Yj–1)



The final table

• The final table looks like this

– When different rules would give the same 

number, we can use any of them 

• The length of LCS(01101001, 110110) is 

given by 

the last (bottom-right) entry 

• To extract the LCS, follow the arrows up to 

the top-left 

– Wherever we encounter a \, add that 

character 

– Thus the LCS is 11010, denoted by yellow 

entries 

• Note that if we had chosen different arrows 

(when we could), we may have gotten a 

different LCS 

– e.g. if (8,6) was “← 5”, what would the LCS 

be?

• The complexity now is O(mn)! 23

Next time: Optimisation!



The 0-1 knapsack problem

• Given a set of items X, each with a weight and a 
value, and given a knapsack K that can hold 
weight w, find X’ Í X such that 

– the items in X’ fit into K (weight-wise), and 
– the total value of the items in X’ is maximised 

• e.g. K might be your MP3 player with capacity 
w, and X might be the set of songs that you 
have, for each of which the weight represents 
its file-size, and the value represents how much 
you like it 

• Whilst the 0-1 Knapsack problem is known to be 
NP-hard, the seemingly more-complicated 
Fractional Knapsack problem is trivial to solve 
with a greedy algorithm 

– In Fractional Knapsack, you can pack any 
fraction of any item into w

• We will examine a dynamic programming 
algorithm for 0-1 Knapsack that  gives 
reasonable performance 24



Recursion for the 0-1 knapsack problem

• Remember the essential issues with dynamic programming are to 
– Express the problem as one or more recurrence relations 
– Organise the sub-problems so that repeated work is minimised or eliminated 

• An instance of 0-1 Knapsack with n items has the form
({w1, …, wn}, {v1, …, vn}, w)

• Consider solving sub-problems of the form 
({w1, …, wm}, {v1, …, vm}, w’)

where m ≤ n and w’ ≤ w

• Let V(m, w) be the value of the optimal solution where we choose from the first m
items with capacity w

• Either the mth item is packed or it isn’t, so 
V(m, w) = max(vm + V(m – 1, w – wm), V(m – 1, w))

• With the trivial base cases V(0, w) = V(m, 0) = 0, and incorporating checks for 
exceeding w, this gives a (very inefficient) recursive algorithm 25



Dynamic Programming for Knapsack

• We will construct a table in similar fashion to the longest common subsequence 
problem 

• Consider the instance ({1, 2, 3}, {2, 3, 4}, 5) 
• Each entry in the table gives V(m, w)
• The first row and column come from the base case 
• The other entries come from the recursive rule 

– Applied row-by-row left-to-right, as previously
V(m, w) = max(V(m – 1, w – wm) + vm, V(m – 1, w))
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The final result…

• This algorithm is O(nw), because that’s the size of the table 
– And clearly it gives the optimal solution in this case 

• But be clear that this is not a polynomial-time algorithm for an NP-hard problem! 
– Why not?

• We can easily extract the items that form the solution
– Working from the bottom-right, use the equation

T(m, w) = T(m – 1, w), if V(m, w) = V(m – 1, w)
= {m} È T(m – 1, w – wm), otherwise
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Linear Programming Problems

• Recall that Fractional Knapsack is the same as 0-1 Knapsack except that you can 

pack any fraction of any item 

• This is an example of a linear programming problem, which is any problem of the 

form

– Find real numbers x1, …, xn, xi ≥ 0
– That maximise i=1ncixi
– Subject to the constraints i=1naijxi<bj, 1 ≤ j ≤ m

• A linear programming problem is characterised by

– A cost vector c1, …, cn

– A bounds vector b1, …, bm

– An n × m array of constraint coefficients aij

• For Fractional Knapsack:

– The values constitute the cost vector

– The capacity is the only bound (i.e. m = 1)

– The weights constitute the constraint coefficients 

• All linear programming problems can be solved by the simplex algorithm, which 

has exponential complexity but is generally feasible in practice 

– Simplex is effectively a hill-climbing algorithm
28



Integer linear programming problems

• Adding the requirement that all solutions to a 
linear programming problem be integer values 
gives an integer linear programming problem

– i.e. all of the xi are required to be integers 

– if some solutions need to be integers, it’s a mixed 
integer linear programming problem

• 0-1 Knapsack can be written as an integer linear 
programming problem, as can Travelling 
Salesman

• Given that both of these problems are NP-hard, 
as previously stated, we should not expect to 
find a feasible algorithm for solving integer linear 
programming problems 

– But if we did, that’d be great!

• Mixed integer linear programming problems are 
very common and there are some very good 
approximate solvers on the market, so often it is 
enough to translate a problem to a MILP.
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Approximation Algorithms

• An approximation algorithm is an algorithm that produces solutions to NP-hard 
problems

– But with no guarantee that the solutions are optimal
• e.g. an approximation algorithm for Travelling Salesman would return some circular 

tour – hopefully a good tour, but not necessarily the best tour 
• The performance of an approximation algorithm A on a given problem instance I is 

often described by the ratio A(I)/OPT(I)
– A(I) is the value returned by A
– OPT(I) is the optimum value (if known) 
– Sometimes a known bound is substituted for OPT(I)

• For many such problems standard benchmark data exists for comparing 
algorithms’ performance

– e.g. TSPLIB for Travelling Salesman 
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Greedy approximation for TSP

• Consider geometric instances of the TSP
– The distance function is symmetric 

• d(ci, cj) = d(cj, ci)
– And it satisfies the triangle inequality 

• d(ci, ck) ≤ d(ci, cj) + d(cj, ck)

• It is easy to imagine non-geometric instances, but many approximation algorithms 
work well only for geometric 

• One simple algorithm is Nearest Neighbour (NN)
– Start at a randomly-chosen city
– Always visit next the closest unvisited city

• NN is clearly O(n2)
– Unfortunately it is not very good! 

• We could imagine a version of NN that just tries all possible starting cities
– Obviously that would be O(n3)
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NN for a geometric TSP: best case
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NN for a geometric TSP: worst case

33



TSP Theorems

• Theorem: 

For any constant k > 1 there are instances I of the TSP such that NN(I) ≥ k OPT(I)

• Theorem: suppose A is a polynomial-time approximation algorithm for the TSP 
such that A(I) ≤ k OPT(I) for some constant k and for all instances I

– Then there exists a polynomial-time algorithm 
to solve the TSP

– Thus P = NP! 

– (Which most people don’t believe…)

• Thus it seems hopeless to search for a decent approximation algorithm for the 
TSP…

– But for geometric instances we can do better!

34



Minimum spanning trees for TSP

• The following algorithm is guaranteed to find a TSP tour for geometric I that is at 
most twice the optimal length 

– Find a minimum spanning tree for I
– Do a depth-first search on the tree 
– Visit the vertices in order of discovery time 

• Given a graph G, a spanning tree for G is a subset of E(G) that is a tree, and that 
connects all of V(G)

– A minimum spanning tree for G is a spanning tree for G with the smallest possible weight 
– G’s MST can be found in O(|E(G)|) time 
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Create and search the MST
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… and take short cuts

• If we simply follow the depth-first 
search – including the backtracking 
– we would walk along each edge 
once in each direction 
– This would create a tour that 

has length twice the MST, but 
with duplicated vertices 

• The simplest solution is to take 
“shortcuts”, following the ordering 
of the vertices
– i.e. visit them in order of 

discovery 
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Performance of MST-TSP

• The algorithm is guaranteed to find a TSP tour for geometric I that is at most twice 
the optimal length 

• Observe first that removing one edge from the optimal tour for I gives a spanning 
tree for I

OPT(I) – <one edge>  =  SpT 
\ OPT(I) – <one edge>  ≥  MSpT 
\ MSpT  <  OPT(I) 
\ 2 MSpT  <  2 OPT(I) 

A(I)  ≤  2 MSpT 
\ A(I)  <  2 OPT(I) 

38

Still, a factor of 2 (100% error) isn’t great. Can we do better on typical problems?



Insertion Algorithms for the TSP

• Insertion algorithms maintain a cycle through a subset of vertices, and insert new 
vertices into this cycle.

• At each stage we apply an insertion method M that inserts one vertex into a closed 
tour C

– M selects an unused vertex x, then 
it inserts x into C at its best position

• To determine the best position, we consider each edge
(u, v) Î C, and we select the edge that minimises 

d(u, x) + d(x, v) – d(u, v)

• Then (u, v) is deleted, and (u, x) and (x, v) are added, creating a tour with one 
extra city

• Three common insertion methods are:
– Nearest insertion: choose the x closest to C
– Farthest insertion: choose the x furthest from C
– Random insertion: choose x randomly 39



Tours found by nearest insertion

• ranged from 631-701 in length
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Tours found by farthest insertion

• Ranged from 594-679 in length
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Tours found by random insertion

• ranged from 607-667 in length
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Cheapest insertion

• With this method we search through all edges (u, v) Î C and all vertices x Ï C to 
find the pair that minimises 

d(u, x) + d(x, v) – d(u, v)

• The previous three methods work in O(n2) time 
– Because they separate choosing a vertex from choosing an insertion point
– Cheapest insertion seems to require at least an additional factor of logn

• The nearest insertion and cheapest insertion methods can be shown to produce 
tours of length no greater than twice the optimum

– They are related to MST algorithms 
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Example of cheapest insertion
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Iterative improvement

• One common feature of the tours produced by the 
greedy heuristics is that it is usually easy to see how they can be improved by 
changing a few edges here and there 

• This leads to the idea of iterative improvement
– Create a feasible solution (quickly) 
– Modify it slightly (and repeatedly) to improve it 

• An iterative improvement algorithm requires
– A rule for changing one feasible solution to another
– A schedule for deciding which changes to make

45



Improving TSP tours

• A basic move for improving TSP tours involves deleting two edges and replacing 
them with two non-edges 

• Consider the tour  
A → D → … → C → B → … → A

• AD and CB can be replaced by AC and DB

It should be clear that the result of this is still a valid tour 
– And that D → … → C is reversed 

46



2-OPT

• Consider an iterative improvement algorithm that, in every iteration, 
examines every pair of edges in a tour, and performs an exchange if it 
would improve the tour 

• This procedure must eventually terminate
– The resulting tour is called 2-optimal

• More complicated schemes involve deleting three edges and reconnecting 
the tour
– Or in general k edges

• A tour that cannot be improved by a k-edge exchange is called k-optimal
– In practice it is unusual to go beyond 3-optimal, because of the 

expense and because of diminishing returns
– Note that this only applies for geometric instances
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A state space graph

• We can abstract this process to consider a heuristic search on a huge graph called 
the state-space graph or the search space of the problem

• The state-space graph of an instance I of the TSP is denoted by S(I)
– The vertices of S(I) comprise all feasible tours for I
– Two vertices in S(I) are connected iff they can be obtained from each other by the edge-

exchange procedure described previously 

• Each vertex T of S(I) has an associated cost c(T) which is the length of the tour T

• To completely solve the instance I requires finding which of the (n–1)! vertices of 
S(I) has the lowest cost 

48



Gradient-based search

• Needless to say S(I) is usually VAST!

• But note that

– A greedy insertion method returns one 

vertex 

in S(I), i.e. one tour 

– An iterative improvement heuristic allows 

us to “walk” through S(I) by moving from 

one tour to its neighbours

• Conceptually we have a “current” tour T, 

and in each iteration 

– We generate a neighbour T’ of T, and 

– We decide whether or not to “move” to T’

49

• This is the basis of gradient-based search
algorithms

• The simplest gradient-based search 

procedure is known as hill-climbing
• Systematically generate neighbours T’ of 

the current tour T and move to the first one 

with lower cost than T
• The process terminates when it is at a T

that has no neighbours of lower cost

• At this point T is 2-optimal

• An obvious variant (there are always 

variants!) is to always choose the best
move at each step

• Greedy iterative improvement! 



Local optima

• A hill-climb will always finish at a vertex which has a lower cost than its neighbours
– Such a vertex is a local minimum or local optimum of the state-space

• Unfortunately the state-space graph has an enormous number of local optima, only 
one of which is the global optimum that we would like to reach

– Or sometimes there are multiple global optima…
• If we picture the search space as a kind of landscape where the height of a vertex 

corresponds to its cost, 
then S(I) is a savagely jagged landscape of enormously high dimension

– Hill-climbing has no way to avoid the local optima in this landscape
– Because all moves are local improvements 

•
• Many techniques have been proposed which incorporate into gradient search 

some way of escaping local optima
– It is an area of very active research

• We will mention three techniques 
– Simulated annealing 
– Tabu search 
– Genetic algorithms 50



Simulated annealing

• Simulated annealing tries to avoid local optima by allowing the search process to take 
“backward” moves 

• Conceptually, it is based on the physical process of annealing, by which some solids can 
form crystals during cooling, if they cool slowly enough 

– The solid “searches for” the molecular configuration with the lowest potential energy
• Each iteration takes the form

– Randomly generate a neighbour T’ of the current T
– If c(T’) ≤ c(T), accept T’
– If c(T’) > c(T), accept T’ with probability p
– So now “backward moves” are allowed and we can escape local optima

• But of course we don’t want to make backward moves near the end of the process
– Backward move are intended to move us to a new part of the space, so we can search there
– So we dynamically alter p to make backward moves less likely as time goes on

• We maintain a temperature variable t which goes down as time advances, and we relate p
to t

• Simulated annealing has worked well with many optimisation problems, but the 
performance is highly problem-specific and dependent on the cooling schedule 
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Tabu search

• The word tabu (or taboo) means something that is prohibited or forbidden
• Tabu search tries to avoid two weaknesses

– The inability of hill-climbing to escape local optima
– The early randomness of simulated annealing

• The aim is to spend most of the time exploring (near) local optima, whilst retaining 
the ability to escape them

• The fundamental idea is that we maintain a tabu list detailing the last h vertices 
that have been visited, and at each iteration

– Select the best possible neighbour T’ of T
– If T’ is not on the tabu list, move to T’ and update the list

• Tabu search is very aggressive – each attempted move is in the best possible 
direction

– Cycling would be inevitable without the tabu list
• The tabu list prevents the search from spending too much time near one local 

optimum, forcing it to visit other parts of the search space
• Tabu search also has been very successful, e.g. with football pools

– But it is expensive and tricky to implement
– Again results and settings (e.g. h) are highly problem-specific 52



Genetic algorithms

• Genetic algorithms (GAs) try to avoid getting stuck in local optima by maintaining a 
population of solutions

• The expectation is that these solutions will usually be distributed across the search space
– It is highly unlikely that one (or even a few) local optima can trap all of them

• At each generation (iteration), the population of size n is used to create n new solutions, 
and the best n of these “survives” into the next generation

– Again the conceptual inspiration is from the physical world, in this case the principle of evolution 
by natural selection

– As well as being perturbed locally, solutions are combined using crossover in the hope of finding 
improved solutions

• GAs have been extremely successful on a wide range of problems, and they work well in 
difficult domains that often are beyond simpler methods

– But again much fine-tuning is required, and often much computational power too! 
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Thanks!

• Next up…. agents!
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