
String
Algorithms
CITS3001 Algorithms, Agents and Artificial Intelligence

2019, Semester 2CLRS Chapter 32
Tim French

Department of Computer Science and Software Engineering

The University of Western Australia

Summary

• String a sequences of characters and symbols. Many different applications require
fast processing of such data:

– Search and regular expression matching
– Bioinformatics and gene sequencing
– Data compression
– Plagiarism detection
– …

• We will look at two of the most common
string operations

– Four algorithms for pattern-matching
– Two algorithms for the longest common

subsequence problem

• We will look at the design, the correctness, and the complexity of each algorithm

2

Pattern matching

• Consider two strings T (the text)
and P (the pattern) over a finite
alphabet Σ, respectively with
lengths n and m

• The pattern-matching problem is to
find occurrences
of P in T
– Either all occurrences, or just the

first occurrence

• Pattern-matching has many
important applications, e.g.
– Text-editing programs
– DNA processing
– Searching bitmaps and other types

of files

 3

• We shall use a running example
where

T = abaaabacccaabbaccaababacaababaac

P = aab

• We describe a match by giving the
number of characters s that the
pattern must be moved along the
text to give a valid shift
– s  {3, 10, 17, 24} are the valid

matches for P in T

The Naïve Method

• We could simply consider each
possible shift in turn

• e.g. when s = 0 we compare

/abaaabacccaabbaccaababacaababaac

 aab
– Which fails at the second character

• When s = 1 we compare

a/baaabacccaabbaccaababacaababaac

 aab
– Which fails at the first character
–

• s = 3 succeeds

4

procedure naive(T, P):
result = { }
for s = 0 to n – m // for each possible shift

 match = true
 for j = 0 to m – 1 // check each item in P

 if T[s+j] ≠ P[j]
 match = false
 if match
 result = result + {s}

Analysis of the naïve method

• There are n–m+1 possible shifts
• In the worst case, each possible shift might fail at the last (the mth) character
• Thus the worst case involves O(m(n – m + 1)) time
• The naïve string matcher is inefficient in two ways

5

In the shifting process: when it checks
the shift s, it ignores whatever information
it has learned while checking earlier shifts
s’ < s e.g. given:

00000010000000100000010000001
0000000
s = 0 fails at the 7th item.That item is also
involved in checking s = 1, 2,…, 6, so we
should be able to re-use this information
Knuth-Morris-Pratt and Boyer-Moore
exploit this inefficiency

In the comparison process: it
compares the pattern and the text
item-by-item

Surely there’s a better way!

Rabin-Karp exploits this inefficiency

Rabin-Karp Algorithm

• Rabin-Karp tries to replace the
innermost loop of the naïve method
with a single comparison, wherever
possible

e.g. if the alphabet is decimal digits, and
given

122938491281760821308176283101

176

• We can represent the pattern as a

single (multi-digit) integer; then at each
shift we just need to perform
a single comparison

– e.g. at s = 0, instead of comparing the
sequences “176” and “122”, we
compare numbers 176 and 122

 6

• We can calculate all of the numbers to
compare with in (amortised) O(n) time

• Calculate the first number z = 122 in O(m)
time

• Calculate the next number in O(1) time by
z mod 10m–1 * 10 + T[m] = 229

• Total time = O(m + 1 * (n – m)) = O(n)

Pseudo-Code

procedure rabinkarp(T, P):

p’ = 0

for j = 0 to m – 1 //
turn P into a number

 p’ = p’ * 10 + P[j]

z = 0

for j = 0 to m – 2 //
get the first number in T

 z = z * 10 + T[j]

result = { }

for s = 0 to n – m //
check each possible shift

 z = z mod 10m–1 * 10 + T[s+m–1]
// update z

 if z == p’

 result = result + {s}

7

• If | Σ | = d, we can use d-ary
numbers instead of decimal
– But still this version assumes that the

calculated values can be stored in
one word, and hence can
be compared in a single operation

• The complexity of Rabin-Karp is
– O(m) for the pre-processing
– O(n – m) for the main loop

What if P doesn’t fit in one word?

• Sometimes the combination of m and d means that the comparisons can’t
be done in one word
– The biggest possible number is dm – 1,

which might be huge
• We can still use a filter value derived from P to speed up the pattern-

matching process
• Choose a prime number q such that dq fits into one word

– Best to make q as large as possible
• Calculate p’’ = p’ mod q, and z’ = z mod q

– It should be clear that z’ can be updated in O(1) time
• At each iteration, compare p’’ and z’

– If they are different, then p’ and z are different
– If they are the same, compare P and the relevant characters in T

• In the worst case where p’’ and z’ match often, this is O(m(n – m + 1))
• In the more common case where there are few matches, it is a lot faster

8

Example

Consider this example

T = 54142135621414

P = 414

Assume q = 13, so p’’ = 414 mod 13 = 11

What values does z’ take, associated with T?

A bigger q means a bigger range of values
for z’, which (usually) means fewer spurious
hits

9

T = (541)42135621414
z’ = 8

filter!
T = 5(414)2135621414
z’ = 11

check: valid!
T = 54(142)135621414
z’ = 12

filter!
…
T = 5414213562(141)4
z’ = 11

check: spurious!

Pattern-matching with a FSM

Suppose we want to build an FSA that recognises any string ending with aab

We can start by building the backbone of the machine

Clearly this will recognise the string aab
But what about other strings?

And what about longer strings?

i.e. what about the other five arrows?

In each case, we need to go to the state that captures the longest prefix of aab we
have seen so far

e.g. if State aab gets an a, that means the last four characters were aaba
We should go to State a

e.g. if State aa gets an a, that means the last three characters were aaa
We should stay in the same state

10

─ a aa aaba a b

Building a FSM

11

Thus the complete machine will be Make sure you understand all of these arrows
The machine basically encodes the pattern P

Once we have this machine, we can do
pattern-matching just by executing it for the
text T and counting the characters as we
go

e.g. run the machine for

T = abaaabacccaabbaccaababacaababaac

Pattern-matching in O(n) time!

How long does it take to build the FSA?
It has m+1 states, each of which needs |Σ| arrows
With clever implementation, we can find these arrows in O(m|Σ|) time
Thus the overall complexity is O(n+m|Σ|)
But we can do even better…

Knuth-Morris-Pratt algorithm

Knuth-Morris-Pratt uses the same principle as the FSA
When we find a character x that doesn’t match, go to a state
that recognises what we have already seen

Consider P = abbabaa and T = abbabxyz

In the FSA, there is a different arrow for each possible value
of x

We move to the state where abbabx matches the longest prefix
of P

Hence quite a complex machine, for big alphabets

In KMP, we ignore x
We move to the state where abbab matches the longest prefix
of P, and we inspect x again

Hence each state needs only two arrows: one for a match, and
one for a non-match

We pre-compute a prefix function that returns, for each index
q into P, the largest k < q such that Pk is a suffix of Pq 12

The prefix function

We need to consider each prefix of P = abbabaa

Thus the prefix function for P is {(1,0), (2,0), (3,0), (4,1), (5,2), (6,1), (7,1)}

Because the prefix function depends only on P, it can be derived in O(m) time

Much faster for big alphabets

13

In each row of the table:
q is an index into P
Pq is the first q characters of P
The third column lists all proper prefixes
of Pq

k is the length of the longest sequence
from
the third column which is a suffix of Pq

Knuth-Morris-Pratt algorithm

procedure kmp(T, P):

 = prefix-function(P)

q = 0 // stores the no. of
items matched

result = { }

for s = 0 to n – 1 // for each possible
shift

 while q > 0 and P[q] ≠ T[s]

 q = [q]

 if P[q] == T[s]

 q = q + 1

 if q == m

 result = result + {s–m+1}

 q = [q]

14

The computation of the prefix
function is broadly similar to
this pseudo-code for the main
algorithm

Ps. 1005–6, CLRS

Notice that KMP has nested
loops – yet it is a linear
algorithm. How can this be?

Heuristics

• Knuth-Morris-Pratt is O(m+n), which is clearly the optimal complexity in the worst
case

– In the worst case, we have to examine every character in both strings
– But there are heuristic approaches that can perform better for some common cases

• A heuristic is a strategy that is used to guide a process or algorithm
– e.g. if you lose your keys, look first in the place where you last remember seeing them
– Heuristics can come from maths, logic, experience, common sense, …

• A well-designed heuristic helps in common and/or important cases, but not
necessarily in all cases

– If it worked well in all cases, it would be a rule!

• Two pattern-matching heuristics in particular are very effective with large alphabets
and/or long patterns

– The heuristics are incorporated into the Boyer-Moore algorithm

15

Basic Boyer-Moore algorithm

16

The basic Boyer-Moore algorithm is the same as the naïve
algorithm, with only one change:

The characters in the pattern are checked right-to-left
instead of left-to-right

If a mismatch is found, the shift is invalid, and we try the next
possible shift: s = s + 1

Both heuristics operate by providing a number other than 1 by
which s can be incremented

•Hopefully usually bigger than 1!
•Effectively we can avoid checking some shifts
•Thus reducing the run-time of the algorithm!

The bad-character heuristic

Consider this example

T = once_we_noticed_that

P = imbalance

Matching right-to-left, we fail at the i in T: This is known as a bad character

We know the i in T can only match an i in P. Therefore we can shift by 6 immediately
No smaller shift can possibly work, Several shifts are never checked at all!

We pre-compute a function λ: Σ → {0,1, …,m} such that for each character c  Σ, λ(c) is the
rightmost position where c occurs in P

Or 0 if c  P

Then when a mismatch occurs while looking at the jth character in P, the bad-character
heuristic suggests the shift-advance

s = s + (j – λ(T[s+j]))

The bad-character heuristic sometimes suggests a negative shift, so it cannot be used alone
Consider T = brabham and P = drab

At s = 0, when comparing the d with the first b in T, the suggested shift will be 1 – 4 = –3 17

The good-suffix heuristic

Consider this example

T = the_late_edition_of

P = edited

Matching right-to-left, the good suffix comprises the characters that match at a given
shift, i.e. here ed

We know the ed in T can only match an ed in P

Therefore we can shift by 4 immediately
Again, no smaller shift can possibly work

We pre-compute a function γ:{0,1, …,m} → {0,1, …,m}
such that γ(j) is the smallest positive shift where P matches all of the characters that it
still overlaps

Then when a mismatch occurs while looking at the jth character in P, the good-suffix
heuristic suggests the shift-advance

s = s + γ(j) 18

Example heurstic calculations

Consider the pattern

P = one_shone_the_one_phone

λ is easy to work out: simply the index of the rightmost instance of each
character in Σ

e.g. λ(e) = 23, λ(h) = 20, λ(a) = 0

γ is a tad more complicated

19

Given that γ(18) ≥ 18, we can infer
that γ(j) = 20, j ≤ 18

Boyer-Moore just applies both
heuristics and uses
the better value

Improving good suffix

The good-suffix heuristic can be improved further, by not re-testing characters that we
know are wrong

P = one_shone_the_one_phone

If we match the e on the end then fail at the n, there’s actually no point doing a shift of 6
We would be looking for an n again!

So the biggest safe shift is to the next occurrence of the good suffix which is preceded
by a different character

e.g. for the e we can do a shift of 10

The new table would be

20

The pre-processing is now a bit more expensive
We have lost monotonicity in the table
But very likely it’s worth the extra work

Longest common subsequence

Finally, we’ll consider the problem of comparing string to see how similar they are…

Given two sequences X and Y, what is their longest common subsequence?

A subsequence of X is X with zero or more items omitted
e.g. ABC has seven subsequences: ABC, AB, AC, BC, A, B, C

A sequence with n items has 2n–1 subsequences

So e.g. the LCSs of ABCBDAB and BDCABA are

BCBA

BCAB

BDAB

We can solve this problem efficiently using dynamic programming

21

A recursive relationship

The first step is to find a recursive rule
whereby the main problem can be
solved by solving smaller sub-problems

Assume that

X = x1 x2 … xm

Y = y1 y2 … yn

 and that they have an LCS

 Z = z1 z2 … zk

Clearly either xm = yn, or not

22

If xm = yn, then zk = xm = yn and
Zk–1 is an LCS of Xm–1 and Yn–1

e.g. X = abcd, Y = paqd

If xm ≠ yn, then at least one of xm and
yn was discarded, and Zk is an LCS of
either Xm–1 and Y, or X and Yn–1

For this case there are three
possibilities

e.g. X = abcd, Y = padq
(q discarded)

e.g. X = abcd, Y = apqc
(d discarded)

e.g. X = abcd, Y = apbr
(both d and r discarded)

The recursive relationship

This allows us to define a recursive relationship:

LCS(Xi, Yj) = [], if ij =
0

 = LCS(Xi–1, Yj–1) + [xi], if xi = yj

 = longer(LCS(Xi–1, Yj), LCS(Xi, Yj–1)), if xi ≠ yj

And a corresponding relationship on lengths:

len(Xi, Yj) = 0, if ij = 0

 = len(Xi–1, Yj–1) + 1, if xi = yj

 = max(len(Xi–1, Yj), len(Xi, Yj–1)), if xi ≠ yj

Applying this rule directly as an algorithm requires the calculation of LCS(Xi, Yj) for all 0 ≤
i ≤ m and 0 ≤ j ≤ n

It should also be clear that it requires the repeated calculation of some sub-expressions
e.g. LCS(abcd, pqr)

= longer(LCS(abc, pqr), LCS(abcd, pq))

= longer(longer(LCS(ab, pqr), LCS(abc, pq)),
 longer(LCS(abc, pq), LCS(abcd, p)))

= …

23

Dynamic Programming

These are the two essential features which tell us that dynamic programming can be
applied

Recursive sub-structure

Overlapping sub-problems

The basic principle is known as memoisation and is very simple:
When we evaluate an application, remember the result so that we don’t have to evaluate it
again

We maintain a table of applications that have been evaluated. For every new
application, we check first to see if we have done it previously

If we have, just look up the result

If we haven’t, do the evaluation and store the result

Dynamic programming applies this principle in a slightly cleverer way
We know what applications have to be evaluated, so we order them in such a way that
repetition is avoided and no checking is needed

24

Recall: Fibaonacci numbers

The recursive program

 fib(k) = fib(k–1) + fib(k–2), if k > 1

= 1, if k <= 1

Recursive sub-structure and
overlapping sub-problems

The “dynamic programming” version

 fib(k) = fib’(k, 1, 1)

 fib’(k, x, y) = x, if k == 0

= fib’(k–1, y, x+y), if k > 0

Checking to see if an application has been evaluated previously is avoided, because
we have ordered the evaluation so that at every point we know we have already done
what’s needed

With LCS, the information that needs to be stored is more complicated… 25

Dynamic Programming for LCS

• Given X of length m and Y of length n,
we need to build a table of applications
LCS(Xi, Yj),
for all 0 ≤ i ≤ m and 0 ≤ j ≤ n

• The (i, j) entry holds two pieces of
information:

– the length of LCS(Xi, Yj)

– an arrow denoting the rule used for that
entry

• Consider X = 01101001 and Y =
110110

• We know all of the boundary cases
– Whenever either string is empty, the

LCS is empty
– So the initial table looks like this
– The yellow entry will hold the info for

LCS(01101, 110)

26

Populating the table

Each entry depends on three other
entries:

– The one to the left of it
– The one above it
– The one diagonally above-left of it

Therefore we can fill in the table one row
at a time, working down the rows and
going right along each row

– (Clearly we could do it column-wise
instead)

– For each entry, use the LCS
recurrence relation

27

len(Xi, Yj) = 0, if ij = 0
 = len(Xi–1, Yj–1) + 1, if xi = yj

 = len(Xi–1, Yj), if xi ≠ yj & len(Xi–1, Yj) ≥ len(Xi, Yj–1)
 = len(Xi, Yj–1), if xi ≠ yj & len(Xi–1, Yj) ≤ len(Xi, Yj–1)

The final table

• The final table looks like this
– When different rules would give the same

number, we can use any of them

• The length of LCS(01101001, 110110) is
given by
the last (bottom-right) entry

• To extract the LCS, follow the arrows up to
the top-left

– Wherever we encounter a \, add that
character

– Thus the LCS is 11010, denoted by yellow
entries

• Note that if we had chosen different arrows
(when we could), we may have gotten a
different LCS

– e.g. if (8,6) was “← 5”, what would the LCS
be?

• The complexity now is O(mn)!
28

Next time: Optimisation!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

