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Summary

• String a sequences of characters and symbols. Many different applications require 
fast processing of such data:

– Search and regular expression matching
– Bioinformatics and gene sequencing
– Data compression
– Plagiarism detection
– …

• We will look at two of the most common 
string operations

– Four algorithms for pattern-matching 
– Two algorithms for the longest common 

subsequence problem

• We will look at the design, the correctness, and the complexity of each algorithm 
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Pattern matching

• Consider two strings T (the text) 
and P (the pattern) over a finite 
alphabet Σ, respectively with 
lengths n and m 

• The pattern-matching problem is to 
find occurrences 
of P in T
– Either all occurrences, or just the 

first occurrence

• Pattern-matching has many 
important applications, e.g. 
– Text-editing programs 
– DNA processing 
– Searching bitmaps and other types 

of files 
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• We shall use a running example 
where 

 
T = abaaabacccaabbaccaababacaababaac 

P = aab 

 

• We describe a match by giving the 
number of characters s that the 
pattern must be moved along the 
text to give a valid shift 
– s  {3, 10, 17, 24} are the valid 

matches for P in T



The Naïve Method

• We could simply consider each 
possible shift in turn 

• e.g. when s = 0 we compare 

 

/abaaabacccaabbaccaababacaababaac 

  aab 
– Which fails at the second character

 

• When s = 1 we compare 

a/baaabacccaabbaccaababacaababaac 

    aab  
– Which fails at the first character
–  

• s = 3 succeeds
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procedure naive(T, P): 
result = { } 
for s = 0 to n – m    // for each possible shift

     match = true 
     for j = 0 to m – 1  // check each item in P

          if T[s+j] ≠ P[j]
               match = false
     if match
          result = result + {s} 



Analysis of the naïve method

•  There are n–m+1 possible shifts 
• In the worst case, each possible shift might fail at the last (the mth) character 
• Thus the worst case involves O(m(n – m + 1)) time
• The naïve string matcher is inefficient in two ways
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In the shifting process: when it checks 
the shift s, it ignores whatever information 
it has learned while checking earlier shifts 
s’ < s e.g. given:
 
00000010000000100000010000001 
0000000
s = 0 fails at the 7th item.That item is also 
involved in checking s = 1, 2,…, 6, so we 
should be able to re-use this information 
Knuth-Morris-Pratt and Boyer-Moore 
exploit this inefficiency 

In the comparison process: it 
compares the pattern and the text 
item-by-item

Surely there’s a better way! 

Rabin-Karp exploits this inefficiency 



Rabin-Karp Algorithm

•  Rabin-Karp tries to replace the 
innermost loop of the naïve method 
with a single comparison, wherever 
possible 

e.g. if the alphabet is decimal digits, and 
given 

 

122938491281760821308176283101

176

 
• We can represent the pattern as a 

single (multi-digit) integer; then at each 
shift we just need to perform 
a single comparison 

– e.g. at s = 0, instead of comparing the 
sequences “176” and “122”, we 
compare numbers 176 and 122 
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• We can calculate all of the numbers to 
compare with in (amortised) O(n) time

• Calculate the first number z = 122 in O(m) 
time 

• Calculate the next number in O(1) time by 
z mod 10m–1 * 10 + T[m] = 229 

• Total time = O(m + 1 * (n – m)) = O(n)



Pseudo-Code

procedure rabinkarp(T, P): 

p’ = 0

for j = 0 to m – 1 // 
turn P into a number

     p’ = p’ * 10 + P[j]

z = 0

for j = 0 to m – 2 // 
get the first number in T

     z = z * 10 + T[j]

result = { } 

for s = 0 to n – m // 
check each possible shift

     z = z mod 10m–1 * 10 + T[s+m–1]
// update z

     if z == p’

          result = result + {s} 
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• If | Σ | = d, we can use d-ary 
numbers instead of decimal 
– But still this version assumes that the 

calculated values can be stored in 
one word, and hence can 
be compared in a single operation 

• The complexity of Rabin-Karp is 
– O(m) for the pre-processing 
– O(n – m) for the main loop 



What if P doesn’t fit in one word?

• Sometimes the combination of m and d means that the comparisons can’t 
be done in one word 
– The biggest possible number is dm – 1, 

which might be huge
• We can still use a filter value derived from P to speed up the pattern-

matching process 
• Choose a prime number q such that dq fits into one word 

– Best to make q as large as possible 
• Calculate p’’ = p’ mod q, and z’ = z mod q 

– It should be clear that z’ can be updated in O(1) time
• At each iteration, compare p’’ and z’

– If they are different, then p’ and z are different 
– If they are the same, compare P and the relevant characters in T

• In the worst case where p’’ and z’ match often, this is O(m(n – m + 1)) 
• In the more common case where there are few matches, it is a lot faster 
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Example

Consider this example 

 

T = 54142135621414

P = 414

 

Assume q = 13, so p’’ = 414 mod 13 = 11 

What values does z’ take, associated with T? 

 

 

A bigger q means a bigger range of values 
for z’, which (usually) means fewer spurious 
hits 
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T  = (541)42135621414
z’ =    8

filter!
T  = 5(414)2135621414
z’ =     11

check: valid!
T  = 54(142)135621414
z’ =     12

filter!
…
T  = 5414213562(141)4
z’ =             11

check: spurious!



Pattern-matching with a FSM

Suppose we want to build an FSA that recognises any string ending with aab

We can start by building the backbone of the machine

Clearly this will recognise the string aab
But what about other strings?

And what about longer strings? 

i.e. what about the other five arrows? 

In each case, we need to go to the state that captures the longest prefix of aab we 
have seen so far 

e.g. if State aab gets an a, that means the last four characters were aaba
We should go to State a

e.g. if State aa gets an a, that means the last three characters were aaa
We should stay in the same state
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─ a aa aaba a b



Building a FSM
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Thus the complete machine will be Make sure you understand all of these arrows 
The machine basically encodes the pattern P 

Once we have this machine, we can do 
pattern-matching just by executing it for the 
text T and counting the characters as we 
go  

e.g. run the machine for 

T = abaaabacccaabbaccaababacaababaac 
 
Pattern-matching in O(n) time! 

How long does it take to build the FSA? 
It has m+1 states, each of which needs |Σ| arrows
With clever implementation, we can find these arrows in O(m|Σ|) time 
Thus the overall complexity is O(n+m|Σ|) 
But we can do even better… 



Knuth-Morris-Pratt algorithm

Knuth-Morris-Pratt uses the same principle as the FSA
When we find a character x that doesn’t match, go to a state 
that recognises what we have already seen 

 

Consider P = abbabaa and T = abbabxyz

In the FSA, there is a different arrow for each possible value 
of x

We move to the state where abbabx matches the longest prefix 
of P

Hence quite a complex machine, for big alphabets 

In KMP, we ignore x
We move to the state where abbab matches the longest prefix 
of P, and we inspect x again

Hence each state needs only two arrows: one for a match, and 
one for a non-match

 

We pre-compute a prefix function that returns, for each index 
q into P, the largest k < q such that Pk is a suffix of Pq 12



The prefix function

We need to consider each prefix of P = abbabaa

 

Thus the prefix function for P is {(1,0), (2,0), (3,0), (4,1), (5,2), (6,1), (7,1)}

 

Because the prefix function depends only on P, it can be derived in O(m) time

Much faster for big alphabets 
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In each row of the table: 
q is an index into P
Pq is the first q characters of P
The third column lists all proper prefixes 
of Pq

k is the length of the longest sequence 
from 
the third column which is a suffix of Pq 

 



Knuth-Morris-Pratt algorithm

procedure kmp(T, P): 

 = prefix-function(P)

q = 0 // stores the no. of 
items matched

result = { } 

for s = 0 to n – 1 // for each possible 
shift

     while q > 0 and P[q] ≠ T[s]

          q = [q]

     if P[q] == T[s]

          q = q + 1

     if q == m

          result = result + {s–m+1} 

          q = [q]

14

The computation of the prefix 
function is broadly similar to 
this pseudo-code for the main 
algorithm 

Ps. 1005–6, CLRS 
 
Notice that KMP has nested 
loops – yet it is a linear 
algorithm. How can this be? 



Heuristics

• Knuth-Morris-Pratt is O(m+n), which is clearly the optimal complexity in the worst 
case 

– In the worst case, we have to examine every character in both strings 
– But there are heuristic approaches that can perform better for some common cases 

• A heuristic is a strategy that is used to guide a process or algorithm 
– e.g. if you lose your keys, look first in the place where you last remember seeing them 
– Heuristics can come from maths, logic, experience, common sense, … 

• A well-designed heuristic helps in common and/or important cases, but not 
necessarily in all cases 

– If it worked well in all cases, it would be a rule! 

• Two pattern-matching heuristics in particular are very effective with large alphabets 
and/or long patterns 

– The heuristics are incorporated into the Boyer-Moore algorithm 
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Basic Boyer-Moore algorithm
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The basic Boyer-Moore algorithm is the same as the naïve 
algorithm, with only one change:
 

The characters in the pattern are checked right-to-left 
instead of left-to-right

If a mismatch is found, the shift is invalid, and we try the next 
possible shift: s = s + 1

Both heuristics operate by providing a number other than 1 by 
which s can be incremented 

•Hopefully usually bigger than 1!
•Effectively we can avoid checking some shifts
•Thus reducing the run-time of the algorithm! 



The bad-character heuristic

Consider this example 

T = once_we_noticed_that

P =            imbalance

Matching right-to-left, we fail at the i in T:  This is known as a bad character

We know the i in T can only match an i in P. Therefore we can shift by 6 immediately 
No smaller shift can possibly work, Several shifts are never checked at all!

 

We pre-compute a function λ: Σ → {0,1, …,m} such that for each character c  Σ, λ(c) is the 
rightmost position where c occurs in P

Or 0 if c  P

Then when a mismatch occurs while looking at the jth character in P, the bad-character 
heuristic suggests the shift-advance 

s = s + (j – λ(T[s+j]))

The bad-character heuristic sometimes suggests a negative shift, so it cannot be used alone 
Consider T = brabham and P = drab 

At s = 0, when comparing the d with the first b in T, the suggested shift will be 1 – 4 = –3 17



The good-suffix heuristic

Consider this example 

 

T = the_late_edition_of

P =          edited

 

Matching right-to-left, the good suffix comprises the characters that match at a given 
shift, i.e. here ed

We know the ed in T can only match an ed in P

Therefore we can shift by 4 immediately 
Again, no smaller shift can possibly work

 

We pre-compute a function γ:{0,1, …,m} → {0,1, …,m} 
such that γ(j) is the smallest positive shift where P matches all of the characters  that it 
still overlaps 

Then when a mismatch occurs while looking at the jth character in P, the good-suffix  
heuristic suggests the shift-advance 

s = s + γ(j) 18



Example heurstic calculations

Consider the pattern

 

P = one_shone_the_one_phone

 

λ is easy to work out: simply the index of the rightmost instance of each 
character in Σ

e.g. λ(e) = 23, λ(h) = 20, λ(a) = 0

 

γ is a tad more complicated 
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Given that γ(18) ≥ 18, we can infer 
that γ(j) = 20, j ≤ 18
 
Boyer-Moore just applies both 
heuristics and uses 
the better value 



Improving good suffix

The good-suffix heuristic can be improved further, by not re-testing characters that we 
know are wrong 

 

P = one_shone_the_one_phone

 

If we match the e on the end then fail at the n, there’s actually no point doing a shift of 6 
We would be looking for an n again!

So the biggest safe shift is to the next occurrence of the good suffix which is preceded 
by a different character 

e.g. for the e we can do a shift of 10 

The new table would be 
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The pre-processing is now a bit more expensive 
We have lost monotonicity in the table 
But very likely it’s worth the extra work 



Longest common subsequence

Finally, we’ll consider the problem of comparing string to see how similar they are…

Given two sequences X and Y, what is their longest common subsequence? 

 

A subsequence of X is X with zero or more items omitted 
e.g. ABC has seven subsequences: ABC, AB, AC, BC, A, B, C

A sequence with n items has 2n–1 subsequences

 

So e.g. the LCSs of ABCBDAB and BDCABA are

 

BCBA

BCAB

BDAB

 

We can solve this problem efficiently using dynamic programming
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A recursive relationship

The first step is to find a recursive rule 
whereby the main problem can be 
solved by solving smaller sub-problems 

Assume that 

X = x1 x2 … xm

Y = y1 y2 … yn

 and that they have an LCS 

 Z = z1 z2 … zk

 

Clearly either xm = yn, or not 
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If xm = yn, then zk = xm = yn and 
Zk–1 is an LCS of Xm–1 and Yn–1

e.g. X = abcd, Y = paqd

 

If xm ≠ yn, then at least one of xm and 
yn was discarded, and Zk is an LCS of 
either Xm–1 and Y, or X and Yn–1

For this case there are three 
possibilities 

e.g. X = abcd, Y = padq      
(q discarded)

e.g. X = abcd, Y = apqc      
(d discarded)

e.g. X = abcd, Y = apbr      
(both d and r discarded) 



The recursive relationship

This allows us to define a recursive relationship:

LCS(Xi, Yj) = [ ], if ij = 
0

     = LCS(Xi–1, Yj–1) + [xi], if xi = yj

     = longer(LCS(Xi–1, Yj), LCS(Xi, Yj–1)), if xi ≠ yj

 

And a corresponding relationship on lengths: 

len(Xi, Yj) = 0, if ij = 0

     = len(Xi–1, Yj–1) + 1, if xi = yj

     = max(len(Xi–1, Yj), len(Xi, Yj–1)), if xi ≠ yj

 

Applying this rule directly as an algorithm requires the calculation of LCS(Xi, Yj) for all 0 ≤ 
i ≤ m and 0 ≤ j ≤ n

It should also be clear that it requires the repeated calculation of some sub-expressions
e.g. LCS(abcd, pqr)

= longer(LCS(abc, pqr), LCS(abcd, pq))

= longer(longer(LCS(ab, pqr), LCS(abc, pq)),     
                longer(LCS(abc, pq), LCS(abcd, p)))

= … 
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Dynamic Programming

These are the two essential features which tell us that dynamic programming can be 
applied

Recursive sub-structure

Overlapping sub-problems

 

The basic principle is known as memoisation and is very simple:
When we evaluate an application, remember the result so that we don’t have to evaluate it 
again

 

We maintain a table of applications that have been evaluated. For every new 
application, we check first to see if we have done it previously 

If we have, just look up the result

If we haven’t, do the evaluation and store the result

 

Dynamic programming applies this principle in a slightly cleverer way
We know what applications have to be evaluated, so we order them in such a way that 
repetition is avoided and no checking is needed 
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Recall: Fibaonacci numbers

The recursive program 

      fib(k) = fib(k–1) + fib(k–2), if k > 1 

= 1, if k <= 1 

Recursive sub-structure and 
overlapping sub-problems

 

The “dynamic programming” version  

    fib(k) = fib’(k, 1, 1) 

    fib’(k, x, y) = x, if k == 0

= fib’(k–1, y, x+y), if k > 0

 

Checking to see if an application has been evaluated previously is avoided, because 
we have ordered the evaluation so that at every point we know we have already done 
what’s needed 

 

With LCS, the information that needs to be stored is more complicated… 25



Dynamic Programming for LCS

• Given X of length m and Y of length n, 
we need to build a table of applications 
LCS(Xi, Yj), 
for all 0 ≤ i ≤ m and 0 ≤ j ≤ n 

• The (i, j) entry holds two pieces of 
information: 

– the length of LCS(Xi, Yj) 

– an arrow denoting the rule used for that 
entry 

• Consider X = 01101001 and Y = 
110110 

• We know all of the boundary cases 
– Whenever either string is empty, the 

LCS is empty 
– So the initial table looks like this
– The yellow entry will hold the info for 

LCS(01101, 110)
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Populating the table

Each entry depends on three other 
entries: 

– The one to the left of it 
– The one above it 
– The one diagonally above-left of it 

Therefore we can fill in the table one row 
at a time, working down the rows and 
going right along each row 

– (Clearly we could do it column-wise 
instead)

– For each entry, use the LCS 
recurrence relation 
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len(Xi, Yj) = 0, if ij = 0 
     = len(Xi–1, Yj–1) + 1, if xi = yj

     = len(Xi–1, Yj), if xi ≠ yj & len(Xi–1, Yj) ≥ len(Xi, Yj–1)
     = len(Xi, Yj–1), if xi ≠ yj & len(Xi–1, Yj) ≤ len(Xi, Yj–1)



The final table

• The final table looks like this
– When different rules would give the same 

number, we can use any of them 

• The length of LCS(01101001, 110110) is 
given by 
the last (bottom-right) entry 

• To extract the LCS, follow the arrows up to 
the top-left 

– Wherever we encounter a \, add that 
character 

– Thus the LCS is 11010, denoted by yellow 
entries 

• Note that if we had chosen different arrows 
(when we could), we may have gotten a 
different LCS 

– e.g. if (8,6) was “← 5”, what would the LCS 
be?

• The complexity now is O(mn)! 
28

Next time: Optimisation!
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