
Algorithms Review
CITS3001 Algorithms, Agents and Artificial Intelligence

2021, Semester 2CLRS Chapters 2-3Tim French
Department of Computer Science and Software Engineering
The University of Western Australia

Summary

2

• We will review some basic
algorithmic concepts from
CITS2200 and CITS2211
– Algorithm design
– Complexity
– Recurrence relations
– Numerical stability
– Proof techniques

• We will present examples of
these concepts in action
– Fibonacci numbers
– Sorting algorithms

Problems, instances, algorithms, and
programs

• A computational problem is a general (usually parameterised) description of
a question to be answered

• A problem instance is a specific question usually obtained by providing
concrete values for the parameters

• An algorithm is a well-defined finite set of rules that specifies a series of
elementary operations that are applied to some input, producing after a finite
amount
of time some output
– An algorithm solves any problem instance

presented to it
– Algorithms can be presented in many forms:

code, pseudo-code, equations, tables, flowcharts, graphs, pictures, etc.

3

Problems, instances, algorithms, and
programs (cont.)

• A program is (largely) the implementation of some algorithm(s) in some
programming language

• Algorithms and data structures are the fundamental building blocks from
which programs are constructed
– Data structures represent the state of a program
– Algorithms transform (parts of) this state as the program executes

4

Example

• Calculating Fibonacci numbers is a problem
– The kth Fibonacci number is the sum of

the previous two Fibonacci numbers

• Calculating the eighth Fibonacci number is a
problem instance

• The following two rules are a simple algorithm for solving this problem
– fibk = fibk–1 + fibk–2, k > 1
– fib0 = fib1 = 1

• A (basic, inefficient) program for fib might work by implementing these rules

5

Design and Analysis

• An algorithmic solution to a computational problem involves designing an algorithm
for the problem, and analysing the algorithm, usually with respect to its correctness
and performance

• Design requires both the background knowledge of algorithmic techniques and the
creativity to apply them to new problems

– Art as much as science

• Analysis is more mathematical/logical in nature, and usually more systematic
– Science/engineering more than art

• In this unit (and in CITS2200) you will learn about both

6

Design Process

1. What problem are we trying to solve?
2. Does a solution exist already?
3. Otherwise can we find a solution, and

are there multiple solutions?
4. Is the algorithm correct?
5. Is the algorithm efficient? Is it efficient
enough?

6. Does the implementation of the
algorithm present any problems?

7

An Example: Fibonacci Numbers

The most obvious algorithm for calculating
Fibonacci numbers is the one we saw earlier

fib(k)= fib(k–1) + fib(k–2), if k > 1
= 1, if k <= 1

Consider the runtime of this algorithm: ->

What do you notice about these times?

8

Fibonacci Numbers cont.

We can improve this algorithm easily, just by calculating “from the
bottom up”

fib(k) = fib’(k, 1, 1)
fib’(k, x, y) = x, if k == 0

= fib’(k–1, y, x+y), if k > 0

This is a linear algorithm: the times are better

This is a (very) basic instance of dynamic programming (or
memoisation), which we will meet later

We can also derive a closed form for the Fibonacci sequence, by
solving the recurrence relation

9

Comparing sorting algorithms

Sorting a sequence of items means generating
a permutation of the sequence where each
adjacent pair
of items obeys some comparison relation

Sorting is one of the most studied problems in
CS
In pre-Internet days, it was often said that at any
given moment, 90% of the computers in the
world would be sorting

One common sorting algorithm is insertSort

10

procedure insertSort(L):
for j = 2 to length(L)

key = L[j]
i = j – 1
while i > 0 and L[i] > key

L[i + 1] = L[i]
i = i – 1

L[i + 1] = key

This is an example of pseudo-code

Correctness of insertSort

• We can establish the correctness of insertSort by considering an invariant INV
• The invariant in this case is that “after n iterations of the main loop, the first n+1

items on L are sorted”
• There are three parts to verification using invariants

• Initialisation: INV must be true at the start:
– After zero iterations, the first item is sorted

• Termination: if INV is true at the end of the procedure,
that must imply that the procedure has sorted L

– The procedure performs length(L) – 1 iterations, after which length(L) items are sorted

• Maintenance: we must prove that if INV is true after n iterations, then it is also true
after n+1 iterations

– Usually done using mathematical induction
– Informally, the inner loop doesn’t change the order of the already-sorted items, and it

places the new item into the list in front of all bigger items, and behind all smaller items
11

Aside 1: proof by contradiction

• Another proof technique you need to
be familiar with is proof by
contradiction

• The idea is that to prove that a
proposition P is true,
we assume that P is false, and show
that that assumption leads to a
contradiction

– If ~P leads to a falsehood, P must
be true

• e.g. prove that it is impossible to
construct a set S
that contains all of the real numbers
between 0 and 1

12

Proof:

We assume that we can construct such a
set: call the set S
List the elements of S as shown

0.x11x12x13x14x15x16…
0.x21x22x23x24x25x26…
0.x31x32x33x34x35x36…
…
(we can pad any number with 0s)

Now construct a number 0.y1y2y3y4y5y6…
where
yk = 5, if xkk ≠ 5
yk = 6, if xkk = 5
Clearly 0 < y < 1, and clearly y ≠ xk, for all k
So y Ï S: contradiction!

Aside 2: Numerical Stability

• Another aspect of the correctness of
an algorithm is its numerical stability,
if it performs real arithmetic

– This is an implementation issue
really

• Computers represent real numbers
to a certain precision

– Thus most real numbers must be
approximated, implying small
errors

• Computers use a lot of digits in their
precision, so usually these errors
don’t matter

• But for algorithms with many
arithmetic operations, the errors can
accumulate and get big enough to
matter

13

• Two common operations to watch
out for are

– subtracting nearly-equal
numbers

• if x – y = z, then (x+e) – (y–
e) = z+2e,
which might be
substantially different if z ≈
e

– dividing by very small numbers

• x / y and x / (y±e)
might be substantially
different if y ≈ e

• We won’t explore this issue
explicitly any further

Numerical Stability and the ACM

14

• Find out about the ACM ICPC and other programming competitions at:
https://pcs.org.au/

Complexity of InsertSort

For simple procedures, it is easy to figure out the

complexity from the pseudo-code (or from the

code)

Given n = length(L), the main loop does n–1

iterations,

each of which does 3 assignments

In the worst case, the inner loop does j–1

iterations,

each of which does 2 assignments

Thus insertSort does 3(n–1)+2(1 + 2 + .. n–1)

assignments, i.e. n2+2n–3

How many assignments does it perform in the best

case?

How many assignments does it perform if we use

binary search to find the appropriate place for L[j]?
15

procedure insertSort(L):
for j = 2 to length(L)
key = L[j]
i = j – 1
while i > 0 and L[i] > key

L[i + 1] = L[i]
i = i – 1
L[i + 1] = key

Big-O notation

• The complexity of an algorithm gives us a device-independent measure of
how much time it consumes
– Does not depend on the details of any particular machine, or language,

or programmer, etc.

• What we normally care about is the growth-rate of this measure, i.e. how it
changes with the size of a problem instance
– For insertSort, the size of an instance is the

length of its argument

• Big-O notation abstracts away from the details of the calculation, focusing
on the largest term
– Thus insertSort is O(n2)

16

Asymptotic Analysis

• Growth-wise, this is more important than the coefficients of the terms in
the expression
– Over time, we need to solve bigger instances
– Over time, our capability tends to grow – leading us to look at bigger

instances!

• Big-O notation specifies an upper-bound on growth
– Technically an algorithm that is O(n2) is also O(n3)

• Big-Θ notation specifies both lower- and upper-bounds
– So an algorithm that is Θ(n2) is not also Θ(n3)

• You may also come across Ω-notation, little-o notation, ω-notation, …
17

Some Graphs

18

More Graphs

19

…and More Graphs

20

…and More Graphs

21

…and More Graphs

22

Complexity

Notice that each new line (complexity) completely dominates all previous
ones

Mathematicians and theoretical computer scientists distinguish only between
Polynomial/tractable algorithms
Exponential/intractable algorithms

Engineers (and users!) also distinguish between other categories of
algorithms

But people even care about intractable problems too…

23

Back to sorting

mergeSort works by separately sorting the front and back halves of a list, then
merging them together whilst maintaining the ordering

procedure mergeSort(L, p, r): // sorting indices p ─ r of L
if p < r

q = floor ((p + r) / 2)
mergeSort(L, p, q)
mergeSort(L, q+1, r)
merge(L, p, q, r)

procedure merge(L, p, q, r)
// pre: items p ─ q are sorted, items q+1 ─ r are sorted
// post: items p ─ r are sorted

24

Complexity of mergeSort

• In each call to mergeSort:

– The call to merge takes O(r – p) time

– The argument-length is halved for the recursion

• Letting n be the length of the original list:

– Because of the halving, there are log(n) “levels”

– At the first level, there is 1 call to merge with size n

– At the second level, 2 calls each with size n/2

– At the third level, 4 calls each with size n/4

• At each level, the total time to run merge is O(n),
so the total time taken is nlog(n)

– Far better than insertSort!
25

Worst-case, best-case and average
case analysis

• Different problem instances of the same size may take different amounts of time to
process

• The analyses so far have been worst-case
– Assumes the data is in its least favourable form
– This is important because it gives a guaranteed upper bound on the algorithm’s performance

• Best-case analysis assumes the data is in its most favourable form
– Usually leads to less runtime

(e.g. for insertSort, best-case is O(n))
– But not always

(e.g. makes no difference for mergeSort)

• Average-case analysis attempts to analyse how much time the algorithm needs on
“typical” data

– Much harder to do!

• Note though that worst-case analysis can be difficult too
– Sometimes we have to imagine data that is worse than any possible real data 26

