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Summary
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• We will review some basic 
algorithmic concepts from 
CITS2200 and CITS2211 
– Algorithm design 
– Complexity 
– Recurrence relations 
– Numerical stability 
– Proof techniques 

• We will present examples of 
these concepts in action 
– Fibonacci numbers 
– Sorting algorithms 



Problems, instances, algorithms, and 
programs

• A computational problem is a general (usually parameterised) description of 
a question to be answered 

• A problem instance is a specific question usually obtained by providing 
concrete values for the parameters

• An algorithm is a well-defined finite set of rules that specifies a series of 
elementary operations that are applied to some input, producing after a finite 
amount 
of time some output
– An algorithm solves any problem instance 

presented to it 
– Algorithms can be presented in many forms: 

code, pseudo-code, equations, tables, flowcharts, graphs, pictures, etc. 
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Problems, instances, algorithms, and 
programs (cont.)

• A program is (largely) the implementation of some algorithm(s) in some 
programming language 

• Algorithms and data structures are the fundamental building blocks from 
which programs are constructed  
– Data structures represent the state of a program 
– Algorithms transform (parts of) this state as the program executes 
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Example

• Calculating Fibonacci numbers is a problem
– The kth Fibonacci number is the sum of 

the previous two Fibonacci numbers 

• Calculating the eighth Fibonacci number is a 
problem instance

• The following two rules are a simple algorithm for solving this problem 
– fibk = fibk–1 + fibk–2, k > 1 
– fib0 = fib1 = 1 

• A (basic, inefficient) program for fib might work by implementing these rules 
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Design and Analysis

• An algorithmic solution to a computational problem involves designing an algorithm 
for the problem, and analysing the algorithm, usually with respect to its correctness 
and performance 

• Design requires both the background knowledge of algorithmic techniques and the 
creativity to apply them to new problems 

– Art as much as science

• Analysis is more mathematical/logical in nature, and usually more systematic 
– Science/engineering more than art 

• In this unit (and in CITS2200) you will learn about both  

6



Design Process

1. What problem are we trying to solve? 
2. Does a solution exist already? 
3. Otherwise can we find a solution, and 

are there multiple solutions? 
4. Is the algorithm correct? 
5. Is the algorithm efficient? Is it efficient 
enough? 

6. Does the implementation of the 
algorithm present any problems? 
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An Example: Fibonacci Numbers

The most obvious algorithm for calculating 
Fibonacci numbers is the one we saw earlier 

fib(k)= fib(k–1) + fib(k–2), if k > 1 
= 1, if k <= 1 

Consider the runtime of this algorithm:  ->

What do you notice about these times?
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Fibonacci Numbers cont.

We can improve this algorithm easily, just by calculating “from the 
bottom up”

fib(k)        = fib’(k, 1, 1) 
fib’(k, x, y) = x, if k == 0

= fib’(k–1, y, x+y), if k > 0

This is a linear algorithm: the times are better

This is a (very) basic instance of dynamic programming (or 
memoisation), which we will meet later 

We can also derive a closed form for the Fibonacci sequence, by 
solving the recurrence relation 
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Comparing sorting algorithms

Sorting a sequence of items means generating 
a permutation of the sequence where each 
adjacent pair 
of items obeys some comparison relation 

Sorting is one of the most studied problems in 
CS 
In pre-Internet days, it was often said that at any 
given moment, 90% of the computers in the 
world would be sorting 

One common sorting algorithm is insertSort
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procedure insertSort(L):
for j = 2 to length(L)

key = L[j]
i = j – 1
while i > 0 and L[i] > key 

L[i + 1] = L[i]
i = i – 1 

L[i + 1] = key 

This is an example of pseudo-code 



Correctness of insertSort

• We can establish the correctness of insertSort by considering an invariant INV
• The invariant in this case is that “after n iterations of the main loop, the first n+1 

items on L are sorted”
• There are three parts to verification using invariants

• Initialisation: INV must be true at the start: 
– After zero iterations, the first item is sorted

• Termination: if INV is true at the end of the procedure, 
that must imply that the procedure has sorted L 

– The procedure performs length(L) – 1 iterations, after which length(L) items are sorted 

• Maintenance: we must prove that if INV is true after n iterations, then it is also true 
after n+1 iterations 

– Usually done using mathematical induction 
– Informally, the inner loop doesn’t change the order of the already-sorted items, and it 

places the new item into the list in front of all bigger items, and behind all smaller items 
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Aside 1: proof by contradiction

• Another proof technique you need to 
be familiar with is proof by 
contradiction

• The idea is that to prove that a 
proposition P is true, 
we assume that P is false, and show 
that that assumption leads to a 
contradiction

– If ~P leads to a falsehood, P must 
be true 

• e.g. prove that it is impossible to 
construct a set S
that contains all of the real numbers 
between 0 and 1
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Proof:

We assume that we can construct such a 
set: call the set S
List the elements of S as shown 

0.x11x12x13x14x15x16…
0.x21x22x23x24x25x26…
0.x31x32x33x34x35x36…
…
(we can pad any number with 0s)

Now construct a number 0.y1y2y3y4y5y6… 
where
yk = 5, if xkk ≠ 5
yk = 6, if xkk = 5
Clearly 0 < y < 1, and clearly y ≠ xk, for all k 
So y Ï S: contradiction!



Aside 2: Numerical Stability

• Another aspect of the correctness of 
an algorithm is its numerical stability, 
if it performs real arithmetic 

– This is an implementation issue 
really 

• Computers represent real numbers 
to a certain precision

– Thus most real numbers must be 
approximated, implying small 
errors 

• Computers use a lot of digits in their 
precision, so usually these errors 
don’t matter  

• But for algorithms with many 
arithmetic operations, the errors can 
accumulate and get big enough to 
matter 
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• Two common operations to watch 
out for are 

– subtracting nearly-equal 
numbers 

• if x – y = z, then (x+e) – (y–
e) = z+2e, 
which might be 
substantially different if z ≈ 
e 

– dividing by very small numbers 

• x / y  and  x / (y±e) 
might be substantially 
different if y ≈ e 

• We won’t explore this issue 
explicitly any further 



Numerical Stability and the ACM
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• Find out about the ACM ICPC and other programming competitions at: 
https://pcs.org.au/



Complexity of InsertSort

For simple procedures, it is easy to figure out the 

complexity from the pseudo-code (or from the 

code) 

Given n = length(L), the main loop does n–1 

iterations, 

each of which does 3 assignments 

In the worst case, the inner loop does j–1 

iterations, 

each of which does 2 assignments

Thus insertSort does 3(n–1)+2(1 + 2 + .. n–1) 

assignments, i.e. n2+2n–3 

How many assignments does it perform in the best 

case? 

How many assignments does it perform if we use 

binary search to find the appropriate place for L[j]? 
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procedure insertSort(L):
for j = 2 to length(L)
key = L[j]
i = j – 1
while i > 0 and L[i] > key 

L[i + 1] = L[i]
i = i – 1 
L[i + 1] = key 



Big-O notation

• The complexity of an algorithm gives us a device-independent measure of 
how much time it consumes 
– Does not depend on the details of any particular machine, or language, 

or programmer, etc. 

• What we normally care about is the growth-rate of this measure, i.e. how it 
changes with the size of a problem instance 
– For insertSort, the size of an instance is the 

length of its argument 

• Big-O notation abstracts away from the details of the calculation, focusing 
on the largest term
– Thus insertSort is O(n2)
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Asymptotic Analysis

• Growth-wise, this is more important than the coefficients of the terms in 
the expression 
– Over time, we need to solve bigger instances 
– Over time, our capability tends to grow – leading us to look at bigger 

instances! 

• Big-O notation specifies an upper-bound on growth
– Technically an algorithm that is O(n2) is also O(n3)

• Big-Θ notation specifies both lower- and upper-bounds
– So an algorithm that is Θ(n2) is not also Θ(n3)

• You may also come across Ω-notation, little-o notation, ω-notation, … 
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Some Graphs
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More Graphs
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…and More Graphs
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…and More Graphs
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…and More Graphs
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Complexity

Notice that each new line (complexity) completely dominates all previous 
ones 

Mathematicians and theoretical computer scientists distinguish only between 
Polynomial/tractable algorithms 
Exponential/intractable algorithms 

Engineers (and users!) also distinguish between other categories of 
algorithms 

But people even care about intractable problems too… 
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Back to sorting

mergeSort works by separately sorting the front and back halves of a list, then 
merging them together whilst maintaining the ordering 

procedure mergeSort(L, p, r): // sorting indices p ─ r of L 
if p < r

q = floor ((p + r) / 2)
mergeSort(L, p, q)
mergeSort(L, q+1, r)
merge(L, p, q, r)

procedure merge(L, p, q, r)
// pre: items p ─ q are sorted, items q+1 ─ r are sorted 
// post: items p ─ r are sorted 
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Complexity of mergeSort

• In each call to mergeSort: 

– The call to merge takes O(r – p) time 

– The argument-length is halved for the recursion 

• Letting n be the length of the original list:

– Because of the halving, there are log(n) “levels”

– At the first level, there is 1 call to merge with size n

– At the second level, 2 calls each with size n/2

– At the third level, 4 calls each with size n/4

• At each level, the total time to run merge is O(n), 
so the total time taken is nlog(n)

– Far better than insertSort!
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Worst-case, best-case and average 
case analysis

• Different problem instances of the same size may take different amounts of time to 
process 

• The analyses so far have been worst-case
– Assumes the data is in its least favourable form
– This is important because it gives a guaranteed upper bound on the algorithm’s performance

• Best-case analysis assumes the data is in its most favourable form 
– Usually leads to less runtime 

(e.g. for insertSort, best-case is O(n)) 
– But not always 

(e.g. makes no difference for mergeSort) 

• Average-case analysis attempts to analyse how much time the algorithm needs on 
“typical” data 

– Much harder to do! 

• Note though that worst-case analysis can be difficult too
– Sometimes we have to imagine data that is worse than any possible real data 26


