CITS2200 Data Structures and Algorithms

Topic 11

Trees

e Why trees?
e Binary trees
— definitions: size, height, levels, skinny, complete
e [rees, forests and orchards
e [ree traversal
— depth-first, level-order
— traversal analysis

Reading: Lambert and Osborne, Chapter 11

© Cara MacNish & Tim French

CITS2200 Trees Slide 1

1. Why Study Trees?

Wood. ..
“Trees are ubiquitous.”
Examples. . .
genealogical trees organisational trees
biological hierarchy trees evolutionary trees
population trees book classification trees
probability trees decision trees
induction trees design trees
graph spanning trees search trees
planning trees encoding trees
compression trees program dependency trees

expression /syntax trees gum trees

Also, many other data structures are based on trees!

© Cara MacNish & Tim French CITS2200 Trees Slide 2

2. Binary Trees

Definition
A binary (indexed) tree T of n nodes, n > 0, either:

e is empty, it n =0, or

e consists of a root node u and two binary trees u(1) and u(2) of n; and ny nodes
respectively such that n =1 4+ n; + no.

—u(1): first or left subtree

—u(2): second or right subtree

The function w is called the index.

(© Cara MacNish & Tim French CITS2200 Trees Slide 3

n=0 n=1 n=2 n=2 n=3
[] empty tree O node \ edge, arc
(external node) (internal node)

We will often omit external nodes. ..

N

(© Cara MacNish & Tim French CITS2200 Trees Slide 4

More terminology. ..

Definition

Let wq, wy be the roots of the subtrees uy, us of u. Then:

e u is the parent of wy and ws.

® wy, wo are the (left and right) children of u. u(i) is also called the " child.

e w; and wsy are siblings.

Grandparent, grandchild, etc are defined as you would expect.

A leaf is an (internal) node whose left and right subtrees are both empty (external

nodes).

The external nodes of a tree define its frontier.

(© Cara MacNish & Tim French CITS2200 Trees Slide 5

In the following assume T’ is a tree with n > 1 nodes.
Definition
Node v is a descendant of node u in T if:

1. vis u, or

2. v is a child of some node w, where w is a descendant of w.

Proper descendant: v # u
Left descendant: wu itself, or descendant of left child of

Right descendant: wu itself, or descendant of right child of u
Q: How would you define “v is to the left of u"?

Q: How would you define descendant without using recursion?

© Cara MacNish & Tim French

CITS2200 Trees Slide 6

2.1 Size and Height of Binary Trees

The size of a binary tree is the number of (internal) nodes.

The height of a binary tree T is the length of the longest chain of descendants.
That is:

o 0 if T"is empty,

e 1 +max(height(T}), height(T5)) otherwise, where T7 and T5 are subtrees of the
root.

The height of a node u is the height of the subtree rooted at w.

(© Cara MacNish & Tim French CITS2200 Trees Slide 7

The level of a node is the “distance” from the root. That is:

e () for the root node,

e 1 plus the level of the node’s parent, otherwise.

(© Cara MacNish & Tim French CITS2200 Trees Slide 8

2.2 Skinny and Complete Trees

Since we will be doing performance analyses of tree representations, we will be
interested in worst cases for height vs size.

skinny — every node has at most one child (internal) node

complete (fat) — external nodes (and hence leaves) appear on at most two adjacent
levels

For a given size, skinny trees are the highest possible, and complete trees the lowest
possible.

(© Cara MacNish & Tim French CITS2200 Trees Slide 9

We also identify the following subclasses of complete:

perfect — all external nodes (and leaves) on one level

left-complete — leaves at lowest level are in leftmost position

© Cara MacNish & Tim French

CITS2200 Trees Slide 10

2.3 Relationships between Height and Size

The above relationships can be formalised /extended to the following:

1. A binary tree of height h has size at least h.
2. A binary tree of height h has size at most 2" — 1.
3. A binary tree of size n has height at most n.

4. A binary tree of size n has height at least [log(n + 1)].

Exercise
For each of the above, what class of binary tree represents an upper or lower bound?

Exercise

Prove (2).

© Cara MacNish & Tim French CITS2200 Trees Slide 11

3. Trees, Forests, and Orchards

A general tree or multiway (indexed) tree is defined in a similar way to a binary tree
except that a parent node does not need to have exactly two children.

Definition
A multiway (indexed) tree T of n nodes, n > 0, either:

e is empty, if n =0, or

e consists of a root node u, an integer d > 1 called the degree of u, and d multiway
trees u(1),u(2), ..., u(d) with sizes nq,ns, ..., ny respectively such that

n=1+n+ng+---+ng.

© Cara MacNish & Tim French CITS2200 Trees Slide 12

)

)

o
>
>
0
A tree is a d-ary tree if d,, = d for all (internal) nodes u. We have already looked

at binary (2-ary) trees. Above is a unary (1-ary) tree and a ternary (3-ary) tree.

A tree is an (a,b)-tree if a < d,, < b, (a,b > 1), for all u. Thus the above are all
(1,3)-trees, and a binary tree is a (2,2)-tree.

© Cara MacNish & Tim French CITS2200 Trees Slide 13

Some trees of tree types!

trees
is a subtype of

(a,b)-trees

d-ary trees

|

binary trees

© Cara MacNish & Tim French

trees

N

skinny complete

|

left complete

|

perfect

CITS2200 Trees Slide 14

3.1 Forests and Orchards

Removing the root of a tree leaves a collection of trees called a forest. An ordered
forest is called an orchard. Thus:

forest — (possibly empty) set of trees

orchard — (possibly empty) queue or list of trees

© Cara MacNish & Tim French CITS2200 Trees Slide 15

3.2 Annotating Trees

The trees defined so far have no values associated with nodes.

normally such values that make them useful.

We call these values annotations or labels.

eg. a syntax or formation tree for the expression —3 4+ 4 % 7

N\
A

3

© Cara MacNish & Tim French

In practice it is

CITS2200 Trees Slide 16

eg. The following is a probability tree for a problem like:

“Of the students entering a language course, one half study French, one
third Indonesian, and one sixth Warlpiri. In each stream, half the students
choose project work and half choose work experience. What is the prob-
ability that Bjork, a student on the course, is doing Warlpiri with work

experience?”

1/3

1/2 1/2 1/2

1/2 1/2 1/2

In examples such as this one, it often seems more natural to associate labels with
the “arcs” joining nodes. However, this is equivalent to moving the values down to

the nodes.

As with the list ADT, we will associate elements with the nodes.

© Cara MacNish & Tim French CITS2200 Trees Slide 17

4. Tree Traversals

Why traverse?

e search for a particular item
e test equality (isomorphism)
® copy

e create

e display
We'll consider two of the simplest and most common techniques:

depth-first — follow branches from root to leaves

breadth-first (level-order) — visit nodes level by level

(More in Algorithms or Algorithms for Al...!)

© Cara MacNish & Tim French CITS2200 Trees Slide 18

4.1 Depth-first Traversal

Preorder Traversal
(Common garden “left to right”, “backtracking”, depth-first search!)

if (1t.isEmpty()) {
visit root of t:
perform preorder traversal of left subtree;
perform preorder traversal of right subtree;

}

© Cara MacNish & Tim French CITS2200 Trees Slide 19

(Generates a prefix expression

+X+123—=—X%x456

Sometimes used because no brackets are needed — no ambiguity.)

© Cara MacNish & Tim French CITS2200 Trees Slide 20

Postorder Traversal

if (1t.isEmpty()) {
perform postorder traversal of left subtree;
perform postorder traversal of right subtree;
visit root of t:

}

(Generates a postfix expression

1243 x4 5X6—+4+

Also non-ambiguous — as used by, eg. HP calculators.)

© Cara MacNish & Tim French

CITS2200 Trees Slide 21

Inorder Traversal

if (1t.isEmpty()) {
perform inorder traversal of left subtree;
visit root of t;
perform inorder traversal of right subtree;

}

(Generates an infix expression

14+42x34+4%x5—606

Common, easy to read, but ambiguous.)

© Cara MacNish & Tim French CITS2200 Trees Slide 22

4.2 Level-order (Breadth-first) Traversal

Starting at root, visit nodes level by level (left to right):

Doesn't suit recursive approach. Have to jump from subtree to subtree.

Solution:

e need to keep track of subtrees yet to be visited — ie need a data structure to
hold (windows to) subtrees (or Orchard)

e each internal node visited spawns two new subtrees

e new subtrees visited only after those already waiting

© Cara MacNish & Tim French CITS2200 Trees Slide 23

= Queue of (windows to) subtrees!

Algorithm

place tree (root window) in empty queue q;
while (!q.isEmpty()) {
dequeue first item:;
if (!external node) {
visit its root node;
enqueue left subtree (root window);
enqueue right subtree (root window);

}
}

© Cara MacNish & Tim French CITS2200 Trees Slide 24

4.3 Traversal Analysis

Time
The traversals we have outlined all take O(n) time for a binary tree of size n.

Since all n nodes must be visited, we require 2(n) time
= asymptotic performance cannot be improved.

© Cara MacNish & Tim French CITS2200 Trees Slide 25

Space

Depth-first: Recursive implementation requires memory (from Java's local variable
stack) for each method call = proportional to height of tree

e worst case: skinny, size n implies height n

e expected case: much better (depends on distribution considered — see Wood

Section 5.3.3)

e best case: exercise. . .

lterative implementation is also possible.

© Cara MacNish & Tim French CITS2200 Trees Slide 26

Level-order: Require memory for queue.
Depends on tree width — maximum number of nodes on a single level.

Maximum length of queue is bounded by twice the width.

e best case: skinny, width 2

® worst case: exercise. . .

© Cara MacNish & Tim French CITS2200 Trees Slide 27

5. Summary

e Trees are not only common “in their own right”, but form a basis for many other
data structures.

e Definitions — binary trees, trees, forests, orchards, annotated trees
e Properties — size, height, level, skinny, complete, perfect, d-ary, (a,b)
e Covered important, common traversal strategies

— depth-first: preorder, postorder, inorder
— level-order (breadth-first)

Next — tree representations. . .

© Cara MacNish & Tim French CITS2200 Trees Slide 28

