CITS2200 Data Structures and Algorithms

Topic 11

Trees

- Why trees?
- Binary trees
 - definitions: size, height, levels, skinny, complete
- Trees, forests and orchards
- Tree traversal
 - depth-first, level-order
 - traversal analysis

Reading: Lambert and Osborne, Chapter 11

1. Why Study Trees?

Wood...

"Trees are ubiquitous."

Examples...

genealogical trees	organisational trees
biological hierarchy trees	evolutionary trees
population trees	book classification trees
probability trees	decision trees
induction trees	design trees
graph spanning trees	search trees
planning trees	encoding trees
compression trees	program dependency trees
expression/syntax trees	gum trees
:	:

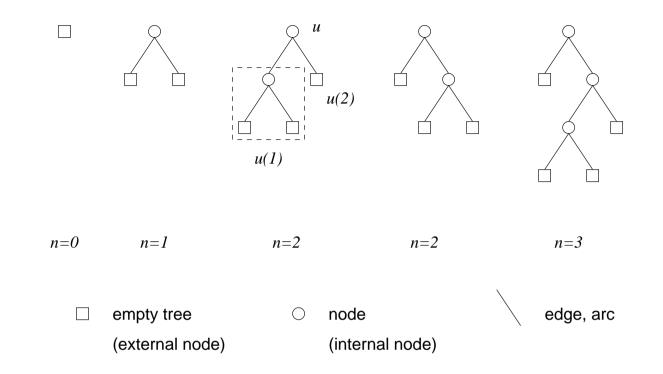
Also, many other data structures are based on trees!

Definition

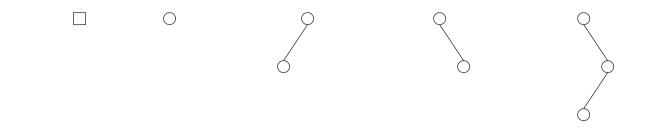
A binary (indexed) tree T of n nodes, $n \ge 0$, either:

- is empty, if n = 0, or
- consists of a root node u and two binary trees u(1) and u(2) of n_1 and n_2 nodes respectively such that $n = 1 + n_1 + n_2$.
 - -u(1): first or left subtree
 - -u(2): second or right subtree

The function u is called the *index*.



We will often omit external nodes...



More terminology...

Definition

Let w_1 , w_2 be the roots of the subtrees u_1 , u_2 of u. Then:

- u is the *parent* of w_1 and w_2 .
- w_1 , w_2 are the (*left* and *right*) *children* of u. u(i) is also called the i^{th} child.
- w_1 and w_2 are *siblings*.

Grandparent, grandchild, etc are defined as you would expect.

A *leaf* is an (internal) node whose left and right subtrees are both empty (external nodes).

The external nodes of a tree define its *frontier*.

In the following assume T is a tree with $n \ge 1$ nodes.

Definition

Node v is a *descendant* of node u in T if:

v is u, or
 v is a child of some node w, where w is a descendant of u.

Proper descendant: $v \neq u$

Left descendant: u itself, or descendant of left child of u

Right descendant: u itself, or descendant of right child of u

Q: How would you define "v is to the left of u"?

Q: How would you define descendant without using recursion?

The *size* of a binary tree is the number of (internal) nodes.

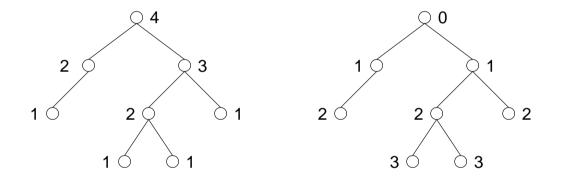
The *height* of a binary tree T is the length of the longest chain of descendants. That is:

- 0 if T is empty,
- $1 + \max(height(T_1), height(T_2))$ otherwise, where T_1 and T_2 are subtrees of the root.

The height of a node u is the height of the subtree rooted at u.

The *level* of a node is the "distance" from the root. That is:

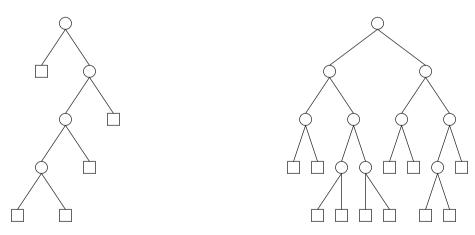
- $\bullet \ 0$ for the root node,
- $\bullet\ 1$ plus the level of the node's parent, otherwise.



Since we will be doing performance analyses of tree representations, we will be interested in worst cases for height vs size.

skinny — every node has at most one child (internal) node

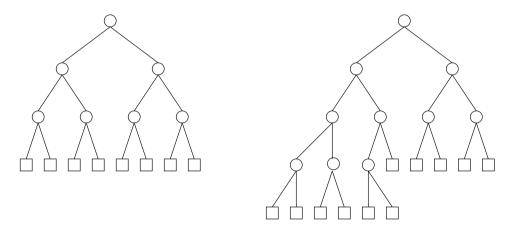
complete (fat) — external nodes (and hence leaves) appear on at most two adjacent levels



For a given size, skinny trees are the highest possible, and complete trees the lowest possible.

We also identify the following subclasses of complete:

perfect — all external nodes (and leaves) on one level *left-complete* — leaves at lowest level are in leftmost position



The above relationships can be formalised/extended to the following:

1. A binary tree of height h has size at least h.

2. A binary tree of height h has size at most $2^{h} - 1$.

3. A binary tree of size n has height at most n.

4. A binary tree of size n has height at least $\lceil \log(n+1) \rceil$.

Exercise

For each of the above, what class of binary tree represents an upper or lower bound?

Exercise

Prove (2).

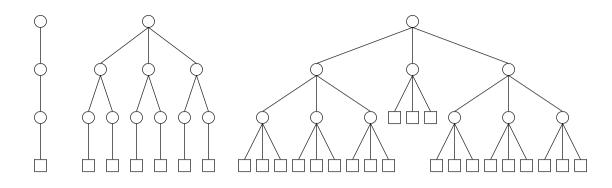
A general *tree* or *multiway (indexed) tree* is defined in a similar way to a binary tree except that a parent node does not need to have exactly two children.

Definition

A multiway (indexed) tree T of n nodes, $n \ge 0$, either:

- \bullet is empty, if $n=0,\mbox{ or }$
- consists of a root node u, an integer $d \ge 1$ called the *degree* of u, and d multiway trees $u(1), u(2), \ldots, u(d)$ with sizes n_1, n_2, \ldots, n_d respectively such that

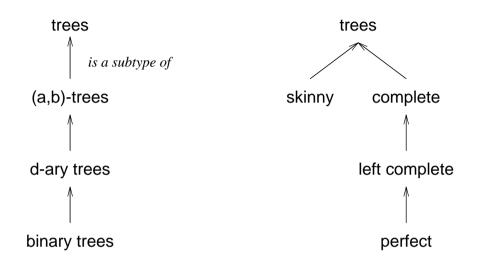
$$n=1+n_1+n_2+\cdots+n_d.$$



A tree is a *d*-ary tree if $d_u = d$ for all (internal) nodes u. We have already looked at binary (2-ary) trees. Above is a unary (1-ary) tree and a ternary (3-ary) tree.

A tree is an (a, b)-tree if $a \le d_u \le b$, $(a, b \ge 1)$, for all u. Thus the above are all (1,3)-trees, and a binary tree is a (2,2)-tree.

Some trees of tree types!



Removing the root of a tree leaves a collection of trees called a *forest*. An ordered forest is called an *orchard*. Thus:

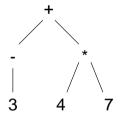
forest — (possibly empty) set of trees

orchard — (possibly empty) queue or list of trees

The trees defined so far have no values associated with nodes. In practice it is normally such values that make them useful.

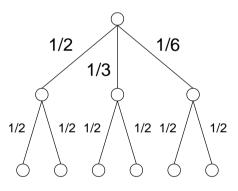
We call these values *annotations* or *labels*.

eg. a syntax or formation tree for the expression -3 + 4 * 7



eg. The following is a probability tree for a problem like:

"Of the students entering a language course, one half study French, one third Indonesian, and one sixth Warlpiri. In each stream, half the students choose project work and half choose work experience. What is the probability that Björk, a student on the course, is doing Warlpiri with work experience?"



In examples such as this one, it often seems more natural to associate labels with the "arcs" joining nodes. However, this is equivalent to moving the values down to the nodes.

As with the list ADT, we will associate elements with the nodes.

Why traverse?

- search for a particular item
- test equality (isomorphism)
- copy
- create
- display

We'll consider two of the simplest and most common techniques:

depth-first — follow branches from root to leaves *breadth-first (level-order)* — visit nodes level by level

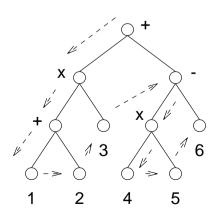
(More in Algorithms or Algorithms for Al...!)

Preorder Traversal

(Common garden "left to right", "backtracking", depth-first search!)

if(!t.isEmpty()) {

visit root of t; perform preorder traversal of left subtree; perform preorder traversal of right subtree; }



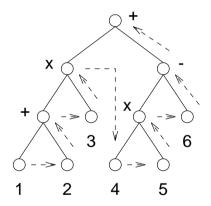
(Generates a prefix expression

$$+ \times + 123 - \times 456$$

Sometimes used because no brackets are needed — no ambiguity.)

Postorder Traversal

```
if(!t.isEmpty()) {
    perform postorder traversal of left subtree;
    perform postorder traversal of right subtree;
    visit root of t;
}
```



(Generates a postfix expression

 $12 + 3 \times 45 \times 6 - +$

Also non-ambiguous — as used by, eg. HP calculators.)

© Cara MacNish & Tim French

Inorder Traversal

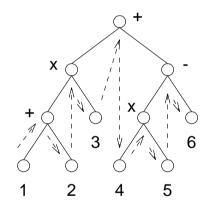
```
if(!t.isEmpty()) {
```

perform inorder traversal of left subtree;

```
visit root of t;
```

}

perform inorder traversal of right subtree;



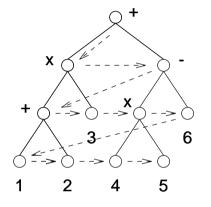
(Generates an infix expression

$$1 + 2 \times 3 + 4 \times 5 - 6$$

Common, easy to read, but ambiguous.)

CCara MacNish & Tim French

Starting at root, visit nodes level by level (left to right):



Doesn't suit recursive approach. Have to jump from subtree to subtree.

Solution:

- need to keep track of subtrees yet to be visited ie need a data structure to hold (windows to) subtrees (or Orchard)
- each internal node visited spawns two new subtrees
- new subtrees visited *only after* those already waiting

 \Rightarrow Queue of (windows to) subtrees!

Algorithm

```
place tree (root window) in empty queue q;
while (!q.isEmpty()) {
   dequeue first item;
   if (!external node) {
     visit its root node;
     enqueue left subtree (root window);
     enqueue right subtree (root window);
   }
}
```

Time

The traversals we have outlined all take O(n) time for a binary tree of size n.

Since all n nodes must be visited, we require $\Omega(n)$ time \Rightarrow asymptotic performance cannot be improved.

Space

Depth-first: Recursive implementation requires memory (from Java's local variable stack) for each method call \Rightarrow proportional to height of tree

- worst case: skinny, size n implies height n
- expected case: much better (depends on distribution considered see Wood Section 5.3.3)
- best case: *exercise*...

Iterative implementation is also possible.

Level-order: Require memory for queue.

Depends on tree *width* — maximum number of nodes on a single level.

Maximum length of queue is bounded by twice the width.

- best case: skinny, width 2
- worst case: *exercise*...

5. Summary

- Trees are not only common "in their own right", but form a basis for many other data structures.
- Definitions binary trees, trees, forests, orchards, annotated trees
- Properties size, height, level, skinny, complete, perfect, d-ary, (a, b)
- Covered important, common traversal strategies
 - depth-first: preorder, postorder, inorder
 - level-order (breadth-first)

Next — tree representations...