
CITS2200 Data Structures and Algorithms

Topic 7

Performance Analysis 2: Asymptotic Analysis

• Choosing abstract performance measures

– worst case, expected case, amortized case

• Asymptotic growth rates

– Why use them? Comparison in the limit. “Big O”

• Analysis of recursive programs

Reading: Lambert and Osborne, Sections 4.2–4.3.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 1



1. Educational Aims

The aims of this topic are:

1. to develop a mathematical competency in describing and understanding algo-
rithm performance, and

2. to begin to develop an intuitive feel for these mathematical properties.

It is essential for a programmer to be able to understand the capabilities and lim-
itations of different data structures. Asymptotic analysis provides the foundation
for this understanding (even though you would not expect to do such analysis on a
regular basis).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 2



2. Worst Case, Expected Case, Amortized Case

Abstract measures of time and space will still depend on actual input data.

eg Exhaustive sequential search

public int eSearch(...) {
...

i = 0;

while (a[i] != goal && i < n) i++;

if (i == n) return -1; // goal not found

else return i;

}

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 3



Abstract time

• goal is first element in array — a units

• goal is last element in array — a + bn units

for some constants a and b.

Different growth rates — second measure increases with n.

What measure do we use? A number of alternatives. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 4



2.1 Worst Case Analysis

Choose data which have the largest time/space requirements.

In the case of esearch, the worst case complexity is a + bn

Advantages

• relatively simple

• gives an upper bound, or guarantee, of behaviour — when your client runs it it
might perform better, but you can be sure it won’t perform any worse

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 5



Disadvantages

• worst case could be unrepresentative — might be unduly pessimistic

– knock on effect — client processes may perform below their capabilities

– you might not get anyone to buy it!

Since we want behaviour guarantees, we will usually consider worst case analysis in
this unit.

(Note there is also ‘best case’ analysis, as used by second-hand car sales persons
and stock brokers.)

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 6



2.2 Expected Case Analysis

Ask what happens in the average, or “expected” case.

For eSearch, a +
b

2
n, assuming a uniform distribution over the input.

Advantages

• more ‘realistic’ indicator of what will happen in any given execution

• reduces effects of spurious/non-typical/outlier examples

For example, Tony Hoare’s Quicksort algorithm is generally the fastest sorting
algorithm in practice, despite it’s worst case complexity being significantly higher
than other algorithms.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 7



Disadvantages

• only possible if we know (or can accurately guess) probability distribution over
examples (with respect to size)

• more difficult to calculate

• often does not provide significantly more information than worst case when we
look at growth rates

• may also be misleading. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 8



2.3 Amortized Case Analysis

Amortized analysis is a variety of worst case analysis, but rather than looking at the
cost of doing the operation once, it examines the cost of repeating the operation
in a sequence.

That is, we determine the worst case complexity T (n) of performing a sequence of
n operations, and report the amortized complexity as T (n)/n.

An alternative view is the accounting method: determine the individual cost of each
operation, including both its execution time and its influence on the running time
of future operations. The analogy: imagine that when you perform fast operations
you deposit some “time” into a savings account that you can use when you run a
slower operation.

Reading: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, Chapter 17.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 9



2.4 Amortized Analysis for a Multi-delete Stack

A multi-delete stack is the stack ADT with an additional operation:

1. mPop(i): delete the top i elements from the stack

Assuming a linked representation, the obvious way to execute mPop(i) is to perform
pop i times.

If each pop takes b time units, mPop(i) will take approximately ib time units —
linear in i!

Worst case is nb time units for stack of size n.

But. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 10



Before you can delete i elements, need to (somewhere along the way. . . ) individually
insert i elements, which takes i operations and hence ic time for some constant c.

Total for those i+1 operations is i(c+b). The time for i operations is approximately
linear in i. The average time for each operation

i

i + 1
(c + b)

is approximately constant — independent of i.

More accurate for larger i, which is also where its more important!





 lim
i→∞

i

i + 1
(c + b) = c + b







This is called an amortized analysis. The cost of an expensive operation is amortized
over the cheaper ones which must accompany it.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 11



The Accounting Method for the Multi-delete Stack

Every time push is called we take a constant time (say a) to perform the operation,
but we also put a constant amount of time (say b) in our “time-bank”. When it
comes time to perform multi-pop mPop(i), if there are i items to delete, we must
have at least ib time units in the bank.

Stack
of

Height

Number of operations

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 12



Where Amortized Analysis Makes a Difference

In the block implementations of the data structures we have seen so far, we simply
throw an exception when we try to add to a full structure.

Several implementations (e.g. Java.util.ArrayList) do not throw an exception
in this case, but rather create an array twice the size, copy all the elements in the
old array across to the new array, and then add the new element to the new array.

This is an expensive operation, but it can be shown that the amortized cost of the
add operation is constant.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 13



3. Asymptotic Growth Rates

We have talked about comparing data structure implementations — using either an
empirical or analytical approach.

Focus on analytical:

• independent of run-time environment

• improves understanding of the data structures

We said we would be interested in comparisons in terms of rates of growth.

Theoretical analysis also permits a deeper comparison which the other methods
don’t — comparison with the performance barrier inherent in problems. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 14



Wish to be able to make statements like:

Searching for a given element in a block of n distinct elements using only
equality testing takes n comparisons in the worst case.

Searching for a given element in an ordered list takes at least log n compar-
isons in the worst case.

These are lower bounds (on the worst case) — they tell us that we are never going
to do any better no matter what algorithm we choose.

Again they reflect growth rates (linear, logarithmic)

In this section, we formalise the ideas of analytical comparison and growth rates.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 15



3.1 Why Asymptopia

We would like to have a simple description of behaviour for use in comparison.

• Evaluation may be misleading.

Consider the functions t1 = 0.002m2, t2 = 0.2m, t3 = 2 log m.

Evaluating at m = 5 gives t1 < t2 < t3. This could be misleading — for
“serious” values of m the picture is the opposite way around.

Want a description of behaviour over the full range.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 16



• Want a closed form.

eg.
n(n + 1)

2
not n + (n − 1) + · · · + 2 + 1

Some functions don’t have closed forms, or they are difficult to find — want a
closed form approximation

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 17



• Want simplicity.

Difficult to see what 2n− 1

n log n2 +
3

2
n2−n does. We want to abstract away from

the smaller perturbations. . .

What simple function does it behave like?

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 18



Solution

Investigate what simple function the more complex one tends to or asymptotically
approaches as the argument approaches infinity, ie in the limit.

Choosing large arguments has the effect of making less important terms fade away
compared with important ones.

eg. What if we want to approximate n4 + n2 by n4 ?

How much error?

n n4 n2
n2

n4 + n2

1 1 1 50%

2 16 4 20%

5 625 25 3.8%

10 10 000 100 1%

20 160 000 400 0.25%

50 6 250 000 2 500 0.04%

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 19



3.2 Comparison “in the Limit”

How well does one function approximate another?

Compare growth rates. Two basic comparisons. . .

1.
f(n)

g(n)
→ 0 as n → ∞

⇒ f(n) grows more slowly than g(n).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 20



2.
f(n)

g(n)
→ 1 as n → ∞

⇒ f(n) is asymptotic to g(n).

In fact we won’t even be this picky — we’ll just be concerned whether the ratio
approaches a constant c > 0.

f(n)

g(n)
→ c as n → ∞

This really highlights the distinction between different orders of growth — we
don’t care if the constant is 0.00000000001 !

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 21



3.3 ‘Big O’ Notation

In order to talk about comparative growth rates more succinctly we use the ‘big O’
notation. . .

Definition

f(n) is O(g(n)) if there is a constant c > 0 and an integer n0 ≥ 1 such that, for
all n ≥ n0,

f(n) ≤ cg(n).

— f “grows” no faster than g, for sufficiently large n

— growth rate of f is bounded from above by g

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 22



Example:

Show (prove) that n2 is O(n3).

Proof

We need to show that for some c > 0 and n0 ≥ 1,

n2 ≤ cn3

for all n ≥ n0. This is equivalent to

1 ≤ cn

for all n ≥ n0.

Choosing c = n0 = 1 satisfies this inequality. 2

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 23



Exercise:

Show that 5n is O(3n).

Exercise:

Show that 143 is O(1).

Exercise:

Show that for any constants a and b, an3 is O(bn3).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 24



Example:

Prove that n3 is not O(n2).

Proof (by contradiction)

Assume that n3 is O(n2). Then there exists some c > 0 and n0 ≥ 1 such that

n3 ≤ cn2

for all n ≥ n0.

Now for any integer m > 1 we have mn0 > n0, and hence

(mn0)
3 ≤ c(mn0)

2.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 25



Re-arranging gives

m3n3

0
≤ cm2n2

0

mn0 ≤ c

m ≤
c

n0

This is contradicted by any choice of m such that m >
c

n0

. Thus the initial

assumption is incorrect, and n3 is not O(n2). 2

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 26



From these examples we can start to see that big O analysis focuses on dominating
terms.

For example a polynomial

adn
d + ad−1n

d−1 + · · · + a2n
2 + a1n + a0

— O(nd)

— is O(nm) for any m > d

— is not O(nl) for any l < d.

Here adn
d is the dominating term, with degree d.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 27



For non-polynomials identifying dominating terms may be more difficult.

Most common in CS

• polynomials — 1, n, n2, n3, . . .

• exponentials — 2n, . . .

• logarithmic — log n, . . .

and combinations of these.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 28



3.4 ‘Big Ω’ Notation

Big O bounds from above. For example, if our algorithm operates in time O(n2)
we know it grows no worse than n2. But it might be a lot better!

We also want to talk about lower bounds — eg

No search algorithm (among n distinct objects) using only equality testing
can have (worst case time) growth rate better than linear in n.

We use big Ω.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 29



Definition

f(n) is Ω(g(n)) if there are a constant c > 0 and an integer n0 ≥ 1 such that, for
all n ≥ n0,

f(n) ≥ cg(n).

— f grows no slower than g, for sufficiently large n

— growth rate of f is bounded from below by g

Note f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 30



4. Analysis of Recursive Programs

Previously we’ve talked about:

• The power of recursive programs.

• The unavoidability of recursive programs (they go hand in hand with recursive
data structures).

• The potentially high computational costs of recursive programs.

They are also the most difficult programs we will need to analyse.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 31



It may not be too difficult to express the time or space behaviour recursively, in
what we call a recurrence relation or recurrence equation, but general methods for
solving these are beyond the scope of this unit.

However some can be solved by common sense!

Example:

What is the time complexity of the recursive addition program from Topic ???

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 32



public static int increment(int i) {return i + 1;}

public static int decrement(int i) {return i - 1;}

public static int add(int x, int y) {
if (y == 0) return x;

else return add(increment(x), decrement(y));

}

• if, else, ==, return, etc — constant time

• increment(x), decrement(y) — constant time

• add(increment(x), decrement(y))? — depends on size of y

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 33



Recursive call is same again, except y is decremented. Therefore, we know the time
for add(...,y) in terms of the time for

add(...,decrement(y)).

More generally, we know the time for size n input in terms of the time for size
n − 1. . .

T (0) = a

T (n) = b + T (n − 1), n > 1

This is called a recurrence relation.

We would like to obtain a closed form — T (n) in terms of n.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 34



If we list the terms, its easy to pick up a pattern. . .

T (0) = a

T (1) = a + b

T (2) = a + 2b

T (3) = a + 3b

T (4) = a + 4b

T (5) = a + 5b
...

From observing the list we can see that

T (n) = bn + a

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 35



Example:

public static int multiply(int x, int y) {
if (y == 0) return 0;

else return add(x, multiply(x, decrement(y)));

}

• if, else, ==, return, etc — constant time

• decrement(y) — constant time

• add — linear in size of 2nd argument

• multiply — ?

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 36



We use:

a const for add terminating case
b const for add recursive case
a′ const for multiply terminating case
b′ const for multiply recursive case
x for the size of x
y for the size of y
Tadd(y) time for add with 2nd argument y
T (x, y) time for multiply with arguments x and y

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 37



Tabulate times for increasing y. . .

T (x, 0) = a′

T (x, 1) = b′ + T (x, 0) + Tadd(0) = b′ + a′ + a

T (x, 2) = b′ + T (x, 1) + Tadd(x) = 2b′ + a′ + xb + 2a

T (x, 3) = b′ + T (x, 2) + Tadd(2x) = 3b′ + a′ + (xb + 2xb) + 3a

T (x, 4) = b′ + T (x, 3) + Tadd(3x) = 4b′ + a′ + (xb + 2xb + 3xb) + 4a
...

Can see a pattern of the form

T (x, y) = yb′ + a′ + [1 + 2 + 3 + · · · + (y − 1)]xb + ya

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 38



We would like a closed form for the term [1 + 2 + 3 + · · · + (y − 1)]xb.

Notice that, for example

1 + 2 + 3 + 4 = (1 + 4) + (2 + 3) =
4

2
.5

1 + 2 + 3 + 4 + 5 = (1 + 5) + (2 + 4) + 3 =
5

2
.6

In general,

1 + 2 + · · · + (y − 1) = (
y − 1

2
).y =

1

2
y2 −

1

2
y

(Prove inductively!)

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 39



Overall we get an equation of the form

a′′ + b′′y + c′′xy + d′′xy2

for some constants a′′, b′′, c′′, d′′.

Dominant term is xy2:
— linear in x (hold y constant)
— quadratic in y (hold x constant)

There are a number of well established results for different types of problems. We
will draw upon these as necessary.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 40



5. Summary

Choosing performance measures

• worst case — simple, guarantees upper bounds

• expected case — averages behaviour, need to know probability distribution

• amortized case — may ‘distribute’ time for expensive operation over those which
must accompany it

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 41



Asymptotic growth rates

• compare algorithms

• compare with inherent performance barriers

• provide simple closed form approximations

• big O — upper bounds on growth

• big Ω — lower bounds on growth

Analysis of recursive programs

• express as recurrence relation

• look for pattern to find closed form

• can then do asymptotic analysis

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 42



c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 43



c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 44


