CITS2200 Data Structures and Algorithms

Topic 0

Java Primer

e Review of Java basics

e Primitive vs Reference Types

e Classes and Objects

e Class Hierarchies and Interfaces
e Exceptions

e Generics

Reading: Lambert and Osborne, Appendix A & Sections 1.2 and 2.1-2.7

© Tim French CITS2200 Java Primer Slide 1

1. Review of Java Basics

1.1 Primitive Data Types

© Tim French

Type |default value| size range
byte 0 8 bits | —128 to 127
short 0 16 bits | —2 to 21° — 1
int 0 32 bits | —2%! to 23! — 1
long OL 64 bits | —2% to 203 — 1
float 0.0f 32 bits
double 0.0d 64 bits .
char "\u0000" |16 bits 0 — 210
boolean false ? {true, false}

CITS2200 Java Primer Slide 2

1.2 Local Variables

Scope: block in which defined

for (int i=0; i<4; i++) {
// do something with i

}

System.out.println(i);

Result?

© Tim French CITS2200 Java Primer Slide 3

1.3 Expressions

Built from variables, values, and operators.

arithmetic: +, -, *, /, %,...

logical: &, |, !',...

relational: =, =<, >, <=, >=
==, I=, equals
instance(0f

ternary: ?7(egx>07 x: -x)

© Tim French CITS2200 Java Primer Slide 4

1.4 Control Statements

if and if-else

if (<boolean expression>)
<statement>

if (<boolean expression>)
<statement>

else
<statement>

where <statement> is a single or compound statement.

© Tim French CITS2200 Java Primer Slide 5

while, do-while, and for

while (<boolean expression>)
<statement>

do
<statement>
while (<boolean expression>)

for (<initialiser list>; <termination list>; <update list>)
<statement>

© Tim French CITS2200 Java Primer Slide 6

Example

for (int i=0; i<4; i++) System.out.println(i);

W NN - O

for (String s=""; !s.equals("aaaa"); s=s+"a")
System.out.println(s.length());

In Java 5 we also have an enhanced for loop:
int[] array = {0,2,4};

for (int i : array)
System.out.println("i is: " + i);

© Tim French CITS2200 Java Primer Slide 7

Arrays

Declaration

<type>[] <name>;
<type>[]...[] <name>;

Instantiation

<name> = new <type>[<int-exp>];
<name> = new <type>[<int-exp>]...[<int-exp>];

Example

int[] [] matrixArray;
matrixArray = new int[rows] [columns];

int[] array = {0,2,4};

© Tim French CITS2200 Java Primer Slide 8

1.5 Methods

Methods have the form (ignoring access modifiers for the moment)

<return type> <name> (<parameter list>) {
<local data declarations and statements>

}

Example

void set (int i, int j, int value) {
matrixArrayl[i] [j]l=value;

}

int get (int i, int j) {return matrixArray[i][j];}

© Tim French CITS2200 Java Primer Slide 9

Parameters are passed by value:

// a method. ..
void increment (int i) {i++;}

// some code that calls it...
1=7;

increment (i) ;
System.out.println(i);

Result?

© Tim French CITS2200 Java Primer Slide 10

2. Primitive Types vs Reference Types

Primitive types

o fixed size
e size doesn't change with reassignment

= store value alongside variable name

Reference types (eg. Arrays, Strings, Objects)

@ size may not be known in advance
® size may change with reassignment

= store address alongside variable name

© Tim French CITS2200 Java Primer Slide 11

integer i = 15;
15

Object
Object b = new Object(); b Fields

The variable holds a pointer or reference to the object’s data

= reference types

© Tim French CITS2200 Java Primer Slide 12

lnt[] a = {031:233}:
int[] b = a;
b[0]++;

System.out.println(al0]);
Result?

// a method. ..
void incrementAll (int[] a) {

for (int i=0; i<a.length; i++) al[i]++;
}

// some code that calls it...
int[] b = {0,1,2,3};
incrementAll(b);
System.out.println(b[0]);

Result?

© Tim French CITS2200 Java Primer Slide 13

3. Classes and Objects

3.1 What are they?

Aside from a few built-in types (arrays, strings, etc) all reference types are defined
by a class.

A class is a chunk of software that defines a type, its attributes or instance variables
(also known as member variables), and its methods. . .

© Tim French CITS2200 Java Primer Slide 14

class Box {

// instance variables
double width, length, height;

// constructor method
Box (double w, double 1, double h) {

width = w;
length = 1;
height = h;

}

// additional method
double volume () {return width * length * height;}

© Tim French CITS2200 Java Primer Slide 15

3.2 Constructors

The runtime engine creates an object or instance of the class each time the new
keyword is executed:

Box squareBox, rectangularBox;

squareBox = new Box(20,20,20);
rectangularBox = new Box(20,30,10);

© Tim French CITS2200 Java Primer Slide 16

3.3 Different Kinds of Methods

constructor — tells the runtime engine how to initialise the object

accessor — returns information about an object’'s state without modifying the
object

mutator — changes the object’s state

© Tim French CITS2200 Java Primer Slide 17

3.4 Packages

A collection of related classes. E.g. java.io

In Java:

e must be in same directory

e directory name matches package name
Specifying your own package
package myMaths;

class Matrix {

If you don't specify a package Java will make a default package from all classes in

the directory.

© Tim French

CITS2200 Java Primer Slide 18

Using someone else’s package

package myMaths;
import java.io.*;

class Matrix {

Note that java.lang.* is automatically imported.

© Tim French CITS2200 Java Primer Slide 19

3.5 Access Maodifiers

Specify access to classes, variables, and methods.

public — accessible by all
private — access restricted to within class
(none) — access restricted to within package

protected — access to package and subclasses

© Tim French CITS2200 Java Primer Slide 20

3.6 The static Keyword

Used for methods and variables in classes that don't create objects, or for variables
shared by all instances of a class.

Example:

public class MatrixTest {
static Matrix m;
public static void main (String[] args) {

m = new Matrix(2,2);
m.set(0,0,1);

Called class variables and class methods.

© Tim French CITS2200 Java Primer Slide 21

Also used for “constants’.

Example:

public class Matrix {
static final int MAX_SIZE=100;

private int[][] matrixArray;

Keyword final means the value cannot be changed at runtime.

© Tim French CITS2200 Java Primer Slide 22

4. Class Hierarchies

Classes can be built from, or extend other classes.

Example:

© Tim French

A
(superclass)

£

B
(subclass)

Shape

Circle

Rectangle

CITS2200 Java Primer Slide 23

public class Shape {
private double xPos, yPos;
public void moveTo (double xLoc, double yLoc) {

xPos = xLoc;
yPos = yLoc;

}

(More detail: see Lambert and Osborne, Section 2.5)

© Tim French CITS2200 Java Primer Slide 24

public class Circle extends Shape {
private double radius;

public double area () {
return Math.PI * radius * radius;
t

}

While we will not be using hierarchies extensively in this unit, we will be using some
very important features of them...

© Tim French CITS2200 Java Primer Slide 25

1. Any superclass reference (variable) can hold and access a subclass object.

Example:

public class ShapeTest {

public static void main (String[] args) {

Shape sh; // declare reference of type Shape

sh = new Circle(); // hold a Circle object in sh
sh.moveTo(2.0,3.0); // access a Shape method
double a=sh.area(); // access a Circle method

© Tim French CITS2200 Java Primer Slide 26

2. All Java classes are (automatically) subclasses of Object

Example:

Object holdsAnything;
holdsAnything = new Circle();
holdsAnything = new Rectangle();
holdsAnything = new Shape();

Example:

Object[] arrayOfAnythings = new Object[10];
array0fAnythings[0] = new Circle();
array0fAnythings[1] = new Rectangle();
arrayOfAnythings[2] = new Shape();

© Tim French CITS2200 Java Primer Slide 27

Java provides wrappers for all primitives to allow them to be treated as Objects:

— Character, Boolean, Integer, Float,

See the Java API for details.

Note: A new feature in Java 1.5 is autoboxing — automatic wrapping and unwrap-
ping of primitives.

= Compile time feature — doesn’t change what is “really” happening.

© Tim French CITS2200 Java Primer Slide 28

4.1 Casting

While a superclass variable can be assigned a subclass object, a subclass variable
cannot be assigned an object held in a superclass, even if that object is a subclass

object.

Example:
Object ol = new Object(); //
Object 02 = new Character(’a’); //
Character cl = new Character(’a’); //
Character c2 = new Object(); //
ol = ci; //
cl = ol; //

© Tim French

OK
0K
OK
Error

OK
Error

CITS2200 Java Primer Slide 29

In the last statement, even though o1 is now “holding” something that was created
as a Character, its reference (ie Its class) is Object.

To get the “Character” back, we have to cast it back down the hierarchy:

ol
cl

cl; // OK
(Character) ol; // OK - casted back to Character

© Tim French CITS2200 Java Primer Slide 30

4.2 Object Oriented Programming in Java

Some object oriented features worth remembering are:

e Abstraction: the ability to treat different types of object as a common type.
e Polymorphism: how one method can change its behavior in different classes.
e Inheritance: reusing methods and variables from super classes.

e Encapsulation: information hiding, and containing other classes.

© Tim French CITS2200 Java Primer Slide 31

To demonstrate these properties, let's reconsider the Shape example. This time,
we first define a class Point...

public class Point {
private double xPos, yPos;

public Point(double x, double y){
xPos = x;
yPos = y;

}

public void moveTo (double xLoc, double yLoc) {
xPos = xLoc;
yPos = yLoc;
}
}

© Tim French CITS2200 Java Primer Slide 32

...and use Point to define Shape. This is encapsulation.

public abstract class Shape {
private Point p;

public Shape(double x, double y) {
p = new Point(x,y);

}

public void moveTo (double xLoc, double yLoc) {
p.moveTo(xLoc, yLoc)

}

public double area(); //an abstract method - more later

© Tim French CITS2200 Java Primer Slide 33

Circle inherits from Shape...

public class Circle extends Shape {
private double radius;

public Circle(double x, double y, double radius) {
super (x,V) ;
this.radius = radius;

}

public double area() {
return Math.PI * radius * radius;

}
}

© Tim French CITS2200 Java Primer Slide 34

as does Rectangle. This demonstrates inheritance.

public class Rectangle extends Shape {

private double height;
private double width;

public Rectangle(double x, double y, double height, double width)
super (x,y) ;
this.height = height;
this.width = width;

}

public double area() {
return width * height;

}
}

© Tim French CITS2200 Java Primer Slide 35

We can now treat Rectangles and Circles as the more general type Shape:

Example:

public class ShapeTest {

public static void main (String[] args) {

© Tim French

Shape[] sA = new Shape[2];

sA[0] = new Circle(1,1,1);

sA[1] = new Rectangle(1,1,1,1);

for(int i = 0; i < 2; i++)
sA[i] .moveTo(0,0);

int totArea = O;

for(int i = 0; i < 2; i++)

totArea += sA[i].area();

// This is abstraction

// This is polymorphism

CITS2200 Java Primer Slide 36

Note:

e We did not need to specify how a Shape's area is calculated. This means that
we are never able to construct just a Shape.

e We chose to encapsulate a Point, rather than inherit from it (a shape is not a
point). Inheritance should be used sparingly. Always consider composition first.

e Once Circles and Rectangles can be treated as shapes we can have an array
that contains both.

e The method area () was different for both shapes, but we did not need to cast.
The Java virtual machine will determine which method is called.

e A good example of inheritance in the APl is java.awt (e.g., a Window is a
Container which is a Component which is an Object). However, in general
inheritance hierarchies should be fairly shallow.

© Tim French CITS2200 Java Primer Slide 37

5. Interfaces and Abstract Classes

An interface:

e looks much like a class, but uses the keyword interface

e contains a list of method headers — name, list of parameters, return type (and
exceptions)

e no method contents (they are called abstract, but abstract classes may have
some methods specified)

e can only have constant variables declared
e no public/private necessary — they are implicitly public

e can implement multiple interfaces

Effectively, interfaces present all the OO advantages above, except inheritance.

© Tim French CITS2200 Java Primer Slide 38

Example:

public Znterface Matrix {
public void set (int i, int j, int value);
public int get (int i, int j);

public void transpose ();

}

© Tim French CITS2200 Java Primer Slide 39

Classes can implement an interface:

Implementation 1:

public class MatrixReloaded implements Matriz {
private int[][] matrixArray;
public void transpose () {
// do it one way

}

Implementation 2:

public class MatrixRevolutions <mplements Matriz {
private int[][] somethingDifferent;
public void transpose () {
// do it yet another way

}

© Tim French CITS2200 Java Primer Slide 40

Why use interfaces?

1. Can be used like a superclass:

Example:

Matrix[] myMatrixHolder = new Matrix[10];
myMatrixHolder [0] = new MatrixReloaded(2,2);
myMatrixHolder[1] = new MatrixRevolutions(20,20);

myMatrixHolder [0] = myMatrixHolder[1];

© Tim French CITS2200 Java Primer Slide 41

2. Specifies the methods that any implementation must implement.

Example:

Matrix[] myMatrixHolder = new Matrix[10];
myMatrixHolder [0] = new MatrixReloaded(2,2);
myMatrixHolder[1] = new MatrixRevolutions(20,20);

for (int i=0; i<10; i++)
myMatrixHolder[i] .transpose();

Note: this doesn’'t mean the methods are implemented correctly.

© Tim French CITS2200 Java Primer

Slide 42

This is an important software engineering facility

e follows on from Information Hiding in Topic 1

— allows independent development and maintenance of libraries and programs
that use them

e will be used extensively in this unit to specify ADTs

e also used to add common functionality to all objects, eg Serializable, Cloneable

More examples — see the Java API

eg. the Collection interface, also Runnable, Throwable, Iterable, and List.

© Tim French CITS2200 Java Primer Slide 43

6. Exceptions

e special built-in classes
e used by Java to determine what to do when something goes wrong

e thrown by the Java virtual machine (JVM)

© Tim French CITS2200 Java Primer Slide 44

Example program

int[] myArray = {0,1,2,3};
System.out.println("The last number is:");
System.out.println(myArray[4]) ;

Output

The last number 1is:
Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 4
at Test.main(Test.java:31)

Process Test exited abnormally with code 1

See the Java API for ArraylndexOutOfBoundsException.

© Tim French CITS2200 Java Primer Slide 45

We can throw exceptions ourselves.

if (<condition>)
throw new <exception type> (<message string>);

Example:

double squareRoot (double x) {
if (z < 0)
throw new ArithmeticException("Can’t find square root
of -ve number.");
else {
// calculate and return result
}

}

Have a look for ArithmeticException in the Java API.

© Tim French CITS2200 Java Primer Slide 46

Two types of exceptions:

checked — most Java exceptions
— must be caught by the method, or passed (thrown) to the calling method

unchecked — RuntimeException and its subclasses
— don't need to be handled by programmer (JVM will halt)

To catch an exception, we use the code:

try {
codeThatThrowsException();
}

catch(Exception e) {
codeThatDealsWithException(e);
}

For simplicity, we will primarily use unchecked exceptions in this unit.

© Tim French CITS2200 Java Primer Slide 47

Compiling and running Java

There are various ways to compile and run Java, but the command line is the most
ubiquitous. The command:

> javac myClass. java
will create the file myClass.class in the current directory. The command:
> java myClass

will execute the main method of the class myClass.

© Tim French CITS2200 Java Primer Slide 48

Objects and Generic Data Structures

/ **
* Block representation of a queue (of objects).
*/

public class QueueBlock {

private Object[] items; // array of Objects
private int first,
private int last;

public Object dequeue() throws Underflow { // returns an Object
if (lisEmpty()) {
Object a = items[first];
first++;
return a;

}

else throw new Underflow("dequeuing from empty queue");

}

© Tim French CITS2200 Java Primer Slide 49

6.1 Wrappers

The above queue is able to hold any type of object — that is, an instance of any
subclass of the class Object. (More accurately, it can hold any reference type.)

But there are some commonly used things that are not objects — the primitive
types.

In order to use the queue with primitive types, they must be “wrapped” in an object.

Recall from Topic 4 that Java provides wrapper classes for all primitive types.

© Tim French CITS2200 Java Primer Slide 50

Autoboxing — Note for Java 1.5

Java 1.5 provides autoboxing and auto-unboxing — effectively, automatic wrapping
and unwrapping done by the compiler.

Integer 1 = 5;
int j = 1,

However:

e Not a change to the underlying language — the compiler recognises the mis-
match and substitutes code for you:

Integer i = Integer.valueOf (5)
int j = i.intValueQ);

© Tim French CITS2200 Java Primer Slide 51

e Can lead to unintuitive behaviour. Eg:

Long wl = 1000L;

Long w2 = 1000L;

if (wl == w2) {
// do something

}

may not work. Why?
e Can be slow. Eg. if a, b, ¢, d are Integers, then

d=a*xDb+ c
becomes

d.valueOf (a.intValue() * b.intValue() + c.intValue())
For more discussion see:

http://chaoticjava.com/posts/autoboxing-tips/

© Tim French CITS2200 Java Primer Slide 52

6.2 Casting

Recall that in Java we can assign “up” the hierarchy — a variable of some class
(which we call its reference) can be assigned an object whose reference is a subclass.

However the converse is not true — a subclass variable cannot be assigned an object
whose reference is a superclass, even if that object is a subclass object.

In order to assign back down the hierarchy, we must use casting.

This issue occurs more subtly when using ADTs. Recall our implementation of a
queue. . .

© Tim French CITS2200 Java Primer Slide 53

public class QueueBlock {
private Object[] items; // array of Objects

public Object dequeue() throws Underflow { // returns an Object
if (lisEmpty()) {
Object a = items[first];
first++;
return a;

}

else. ..

Consider the calling program:
QueueBlock q = new QueueBlock();
String s = "OK, I’m going in!";
q.enqueue(s) ; // put it in the queue
s = q.dequeue(); // get it back off 777

The last statement fails. Why?

© Tim French CITS2200 Java Primer Slide 54

The queue holds Objects. Since String is a subclass of Object, the queue can
hold a String, but its reference in the queue is Object. (Specifically, it is an
element of an array of Objects.)

dequeue () then returns the “String” with reference Object.

The last statement therefore asks for something with reference Object (the super-
class) to be assigned to a variable with reference String (the subclass), which is
illegal.

We have to cast the Object back “down” the hierarchy:

s = (String) q.dequeue(); // correct way to dequeue

© Tim French CITS2200 Java Primer Slide 55

6.3 Generics

Java 1.5 provides an alternative approach. Generics allow you to specify the type
of a collection class:

Stack<String> ss = new Stack<String>();
String s = "OK, I’m going in!";
ss.push(s);

s = ss.pop()

Like autoboxing, generics are handled by compiler rewrites — the compiler checks
that the type is correct, and substitutes code to do the cast for you.

© Tim French CITS2200 Java Primer Slide 56

Writing Generic Classes

/ *%

* A simple generic block stack for
* holding object of type E

*% /

class Stack<E> {

private Object[] block;
private int size;

public Stack(int size) {block = new Object[size];}
public E pop() {return (E) block[--size];}

public void push(E el) {block[size++] = el;}

© Tim French CITS2200 Java Primer Slide 57

Using Generic Classes

public static void main(String[] args){
//create a Stack of Strings
Stack<String> s = new Stack<String>(10);
s.push("abc");
System.out.println(s.pop());

//create a stack of Integers
Stack<Integer> t = new Stack<Integer>(1);
t.push(7);

System.out.println(t.pop());

© Tim French CITS2200 Java Primer Slide 58

How Generics Work

The program:

Stack<String> ss = new Stack<String>(10);
String s = "OK, I’m going in!";
ss.push(s);

s = ss.pop(Q);

is converted to:
Stack<Object> ss = new Stack<Object>(10);
String s = "OK, I’m going in!";

ss.push(s);
s = (String) ss.pop(Q);

at compile time. Generics allow the compiler to ensure that the casting is correct,
rather than the runtime environment.

© Tim French CITS2200 Java Primer Slide 59

Some Tricks with Generics...

Note that Stack<String> is not a subclass of Stack<Object> (because you can't
put an Integer on a stack of Strings).

Therefore, polymorphism won't allow you to define methods for all stacks of sub-
classes of String. e.g.

public int printAll(Stack<Object>);

Java 5 allows wildcards to overcome this problem:

public int printAll(Stack<?>);

or even

public int printAll(Stack<? extends Object>);

© Tim French CITS2200 Java Primer Slide 60

Generics in Java are complex and are the subject of considerable debate. While you
may not need to write them often, it is important you understand them as the Java
Collection classes all use generics.

Some interesting articles:

http://www-128.1ibm.com/developerworks/java/library/
j—jtp01255.html

http://weblogs. java.net/blog/arnold/archive/2005/06/
generics_consid_1.html

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

© Tim French CITS2200 Java Primer Slide 61

