
Sets, Tables, and Dictionaries

• Set specification

• Set representations — characteristic function, lists, ordered lists

• Table specification

• Table representations

Reading: Lambert and Osborne, Sections 12.2 and 13.1
Goodrich and Tamassia, Chapter 10

1



Introduction

In this section, we examine three ADTs: sets, tables, and dictionaries,
used to store collections of elements with no repetitions.

Note that these names are used (eg in different texts) for a range of similar
ADTs — we define them as follows:

2



Set

• used when set-theoretic operations are required

• elements may or may not be ordered

• includes “membership” operations: isEmpty , insert , delete, is-
Member

• includes “set-theoretic” operations: union, intersection, differ-
ence, size, complement

Table

• simpler version of Set without the set-theoretic operations

• elements assumed to be unordered

Dictionary

• like Table but assumes elements are totally ordered

• includes “order related” operations: isPredecessor , isSuccessor ,
predecessor , successor , range

3



Elements, Records, and Keys

Elements may be a single items, or “records” with unique keys (such as
those typically found in databases).

We will usually talk about elements as if they are single items.

eg. “if e1 < e2 then. . . ”

In the case of record elements, this can be considered shorthand for

“if k1 < k2, where k1 is the key of record e1 and k2 is the key of record
e2, then. . . ”

4



Examples

The following are examples of situations where the ADTs might be used:
Set:

“I have one set of students who do CITS2200 and one set of students who
do CITS2210. What is the set of students who do both?”

Table:

“I begin with the set of students originally enrolled in CITS2200. These
two students joined. This one withdrew. Is a particular student currently
enrolled?”

Dictionary:

“Here is the set of students enrolled in CITS2200 ordered by (exact) age.
Which are the students between the ages of 18 and 20?”

5



Set Specification

1. Constructors

2. Set(): create an empty set.

3. Checkers

4. isEmpty(): returns true if the set is empty, false otherwise.

5. isMember(e): returns true if e is a member of the set, false otherwise.

6



6. Manipulators

7. size(): returns the cardinality of (number of elements in) the set.

8. complement(): returns the complement of the set (only defined for finite
universes).

9. insert(e): forms the union of the set with the singleton {e}

10. delete(e): removes e from the set

11. union(t): returns the union of the set with t.

12. intersection(t): returns the intersection of the set with t.

13. difference(t): returns the set obtained by removing any items that
appear in t.

14. enumerate(): returns the “next” element of the set. Successive calls to
enumerate should return successive elements until the set is exhausted.

7



Set Representations

Characteristic Function Representation

Assume A is a set from some universe U .
The characteristic function of A is defined by:

f(e) =

{
true (or 1) e ∈ A
false (or 0) otherwise

→ thus a set can be viewed as a boolean function.

8



If U is finite and ‘≤’ is a total order on U , the elements of U can be
enumerated as the sequence

e1, . . . , em

where ei ≤ ej if i < j, and m is the cardinality of U .

The characteristic function maps this sequence to a sequence of 1s and
0s. Thus the set can be represented as a block of 1s and 0s, or a bit vector . . .

Sometimes called a bitset — eg. java.util.BitSet

9



Advantage

Translates set operations into efficient bit operations:

• insert — or the appropriate bit with 1

• delete — and the appropriate bit with 0

• isMember — is the (boolean) value of the appropriate bit

• complement — complement of a bit vector

• union — or two bit vectors

• intersection — and two bit vectors

• difference — complement and intersection

Also enumerate — can cycle through the m positions reporting 1s.

10



Performance

• insert , delete, isMember — constant providing index can be calculated
in constant time

• complement, union, intersection, difference — O(m); linear in size of
universe

• enumerate — O(m) for n calls, where n is size of set

→ O(
m

n
) amortized over n calls

Disadvantages

• If the universe is large compared to the size of sets then:

– the latter operations are expensive

– large amount of space wasted

• Requires the universe to be bounded, totally ordered, and known in
advance. If not, eg Insert, will need to move things.

11



List Representation

An alternative is to represent the set as a list using one of the List repre-
sentations. Here, we assume there is no total ordering on the elements.

Performance

Assume we have a set of size p.

insert , delete, isMember — take O(p) time; the best that can be achieved
in an unordered list (recall eSearch)

union — for each item in the first set, check if it is a member of the
second, and if not, add it (to the result)

→ O(pq) where p and q are the sizes of the two sets

12



Other set operations (intersection, difference) behave similarly.

Note that if both sets grow at the same rate (the worst case), the time
performance is O(p2).

Inefficient because one list must be traversed for each element in the other.
Can we traverse both at the same time. . . ?

13



Ordered List Representation

If the universe is totally ordered, we can obtain more efficient implemen-
tations by merging the two in sorted order.

Assume A can be enumerated as a1, a2, . . . , ap and B can be enumerated
as b1, b2, . . . , bq.

Eg. union

i = 1; j = 1;
do {

if (ai == bj) add ai to C and increment i and j;
else add smaller of ai and bj to C and increment its index;

}
while (i <= p && j <= q);
add any remaining ai’s or b′js to C

14



Give pseudo-code for the intersection and difference operations.

if ai = bj
then add ai to C and increment i and j
else increment the index of the smaller of ai and bj

if ai < bj then add ai to C and increment i
else if bj < ai then increment j
else increment i and j

Performance

Each list is traversed once → O(p + q) time.

This is much better than O(pq).

If p and q grow at the same rate (worst case), the time performance is
now O(p).

Note also that isMember is now O(log p) (recall bSearch)

15



Table Specification

The Table operations are a subset of the Set operations:

1. Constructors

2. Table(): create an empty table.

3. Checkers

4. isEmpty(): returns true if the table is empty, false otherwise.

5. isMember(e): returns true if e is in the table, false otherwise.

6. Manipulators

7. insert(e): forms the union of the table with the singleton {e}

8. delete(e): removes e from the table

16



Table Representations

Since the Table operations are a subset of those of Set, the (unordered)
List representations can be used.

insert , delete, isMember therefore take O(p) time.

The more efficient List representations and the characteristic function
representation are not available since the elements are assumed to be un-
ordered.

The operations can be made more efficient by considering the probability
distribution for accesses over the list and moving more probable (or more
frequently accessed) items to the front — see Wood, Section 8.3.

Later, we’ll look in detail at a more efficient representation of tables using
hashing , where such operations are close to constant time.

17



Summary

We have outlined several ADTs for use with collections of unique elements
or records, and considered representations:

• Set — includes set-theoretic operations, elements may or may not be
ordered

• Table — restriction of Set with fewer operations, elements assumed not
ordered

• List — can be used for unordered sets and tables

• ordered list (block) — can improve efficiency for ordered sets.

• characteristic function — can be very efficient for ordered sets over a
fixed domain.

• Next — Dictionaries. . .

18


