All pairs shortest path through dynamic programming

• The all pairs shortest path problem
• Dynamic programming method
• Matrix product algorithm
• Floyd-Warshall algorithm

Reading: Weiss, Sections 7.5-7.7, CLRS chapter 15
All-pairs shortest paths

Recall the Shortest Path Problem.

Now we turn our attention to constructing a complete table of shortest distances, which must contain the shortest distance between any pair of vertices.

If the graph has no negative edge weights then we could simply make V runs of Dijkstra’s algorithm, at a total cost of $O(VE \lg V)$, whereas if there are negative edge weights then we could make V runs of the Bellman-Ford algorithm at a total cost of $O(V^2E)$.

The two algorithms we shall examine both use the adjacency matrix representation of the graph, hence are most suitable for dense graphs. Recall that for a weighted graph the weighted adjacency matrix A has $weight(i, j)$ as its ij-entry, where $weight(i, j) = \infty$ if i and j are not adjacent.
A dynamic programming method

Dynamic programming is a general algorithmic technique for solving problems that can be characterised by two features:

- The problem is broken down into a collection of smaller subproblems
- The solution is built up from the stored values of the solutions to all of the subproblems

For the all-pairs shortest paths problem we define the simpler problem to be

“What is the length of the shortest path from vertex i to j that uses at most m edges?”

We shall solve this for $m = 1$, then use that solution to solve for $m = 2$, and so on . . .
The initial step

We shall let $d_{ij}^{(m)}$ denote the distance from vertex i to vertex j along a path that uses at most m edges, and define $D^{(m)}$ to be the matrix whose ij-entry is the value $d_{ij}^{(m)}$.

As a shortest path between any two vertices can contain at most $V - 1$ edges, the matrix $D^{(V-1)}$ contains the table of all-pairs shortest paths.

Our overall plan therefore is to use $D^{(1)}$ to compute $D^{(2)}$, then use $D^{(2)}$ to compute $D^{(3)}$ and so on.

The case $m = 1$

Now the matrix $D^{(1)}$ is easy to compute — the length of a shortest path using at most one edge from i to j is simply the weight of the edge from i to j. Therefore $D^{(1)}$ is just the adjacency matrix A.
The inductive step

What is the smallest weight of the path from vertex \(i \) to vertex \(j \) that uses at most \(m \) edges? Now a path using at most \(m \) edges can either be

1. A path using less than \(m \) edges

2. A path using exactly \(m \) edges, composed of a path using \(m - 1 \) edges from \(i \) to an auxiliary vertex \(k \) and the edge \((k, j)\).

We shall take the entry \(d_{ij}^{(m)} \) to be the lowest weight path from the above choices.

Therefore we get

\[
d_{ij}^{(m)} = \min \left(d_{ij}^{(m-1)}, \min_{1 \leq k \leq V} \{d_{ik}^{(m-1)} + w(k, j)\} \right)
\]

\[
= \min_{1 \leq k \leq V} \{d_{ik}^{(m-1)} + w(k, j)\}
\]
Example

Consider the weighted graph with the following weighted adjacency matrix:

\[
A = D^{(1)} = \begin{pmatrix}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{pmatrix}
\]

Let us see how to compute an entry in \(D^{(2)}\), suppose we are interested in the \((1, 3)\) entry:

- \(1 \rightarrow 1 \rightarrow 3\) has cost \(0 + 11 = 11\)
- \(1 \rightarrow 2 \rightarrow 3\) has cost \(\infty + 4 = \infty\)
- \(1 \rightarrow 3 \rightarrow 3\) has cost \(11 + 0 = 11\)
- \(1 \rightarrow 4 \rightarrow 3\) has cost \(2 + 6 = 8\)
- \(1 \rightarrow 5 \rightarrow 3\) has cost \(6 + 6 = 12\)

The minimum of all of these is 8, hence the \((1, 3)\) entry of \(D^{(2)}\) is set to 8.
Computing $D^{(2)}$

$$
\begin{pmatrix}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{pmatrix}
\begin{pmatrix}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{pmatrix}
= \begin{pmatrix}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 7 \\
10 & \infty & 0 & 12 & 16 \\
3 & 2 & 6 & 0 & 3 \\
16 & \infty & 6 & \infty & 0
\end{pmatrix}
$$

If we multiply two matrices $AB = C$, then we compute

$$c_{ij} = \sum_{k=1}^{V} a_{ik} b_{kj}$$

If we replace the multiplication $a_{ik} b_{kj}$ by addition $a_{ik} + b_{kj}$ and replace summation Σ by the minimum \min then we get

$$c_{ij} = \min_{k=1}^{V} a_{ik} + b_{kj}$$

which is precisely the operation we are performing to calculate our matrices.
The remaining matrices

Proceeding to compute $D^{(3)}$ from $D^{(2)}$ and A, and then $D^{(4)}$ from $D^{(3)}$ and A we get:

$$D^{(3)} = \begin{pmatrix}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 6 \\
10 & 14 & 0 & 12 & 15 \\
3 & 2 & 6 & 0 & 3 \\
16 & \infty & 6 & 18 & 0
\end{pmatrix} \quad D^{(4)} = \begin{pmatrix}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 6 \\
10 & 14 & 0 & 12 & 15 \\
3 & 2 & 6 & 0 & 3 \\
16 & 20 & 6 & 18 & 0
\end{pmatrix}$$
A new matrix “product”

Recall the method for computing \(d_{ij}^{(m)}\), the \((i, j)\) entry of the matrix \(D^{(m)}\) using the method similar to matrix multiplication.

\[
d_{ij}^{(m)} \leftarrow \infty
\]

for \(k = 1\) to \(V\) do

\[
d_{ij}^{(m)} = \min(d_{ij}^{(m)}, d_{ik}^{(m-1)} + w(k, j))
\]

end for

Let us use \(\ast\) to denote this new matrix product.

Then we have

\[
D^{(m)} = D^{(m-1)} \ast A
\]

Hence it is an easy matter to see that we can compute as follows:

\[
D^{(2)} = A \ast A \quad D^{(3)} = D^{(2)} \ast A \ldots
\]
Complexity of this method

The time taken for this method is easily seen to be $O(V^4)$ as it performs V matrix “multiplications” each of which involves a triply nested for loop with each variable running from 1 to V.

However we can reduce the complexity of the algorithm by remembering that we do not need to compute all the intermediate products $D^{(1)}$, $D^{(2)}$ and so on, but we are only interested in $D^{(V-1)}$. Therefore we can simply compute:

\[
D^{(2)} = A \ast A \\
D^{(4)} = D^{(2)} \ast D^{(2)} \\
D^{(8)} = D^{(4)} \ast D^{(4)}
\]

Therefore we only need to do this operation at most $\lg V$ times before we reach the matrix we want. The time required is therefore actually $O(V^3 \lfloor \lg V \rfloor)$.

10
The Floyd-Warshall algorithm uses a different dynamic programming formalism.

For this algorithm we shall define $d_{ij}^{(k)}$ to be the length of the shortest path from i to j whose intermediate vertices all lie in the set $\{1, \ldots, k\}$.

As before, we shall define $D^{(k)}$ to be the matrix whose (i, j) entry is $d_{ij}^{(k)}$.

The initial case

What is the matrix $D^{(0)}$ — the entry $d_{ij}^{(0)}$ is the length of the shortest path from i to j with no intermediate vertices. Therefore $D^{(0)}$ is simply the adjacency matrix A.
The inductive step

For the inductive step we assume that we have constructed already the matrix $D^{(k-1)}$ and wish to use it to construct the matrix $D^{(k)}$.

Let us consider all the paths from i to j whose intermediate vertices lie in $\{1, 2, \ldots, k\}$. There are two possibilities for such paths

(1) The path does not use vertex k

(2) The path does use vertex k

The shortest possible length of all the paths in category (1) is given by $d^{(k-1)}_{ij}$ which we already know.

If the path does use vertex k then it must go from vertex i to k and then proceed on to j, and the length of the shortest path in this category is $d^{(k-1)}_{ik} + d^{(k-1)}_{kj}$.

12
The overall algorithm

The overall algorithm is then simply a matter of running V times through a loop, with each entry being assigned as the minimum of two possibilities. Therefore the overall complexity of the algorithm is just $O(V^3)$.

\[
D^{(0)} \leftarrow A \\
\text{for } k = 1 \text{ to } V \text{ do} \\
\quad \text{for } i = 1 \text{ to } V \text{ do} \\
\quad\quad \text{for } j = 1 \text{ to } V \text{ do} \\
\quad\quad\quad d^{(k)}_{ij} = \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}) \\
\quad\quad \text{end for } j \\
\quad \text{end for } i \\
\text{end for } k
\]

At the end of the procedure we have the matrix $D^{(V)}$ whose (i, j) entry contains the length of the shortest path from i to j, all of whose vertices lie in $\{1, 2, \ldots, V\}$ — in other words, the shortest path in total.
Example

Consider the weighted directed graph with the following adjacency matrix:

\[
D^{(0)} = \begin{pmatrix}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0 \\
\end{pmatrix}
\]

\[
D^{(1)} = \begin{pmatrix}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0 \\
\end{pmatrix}
\]

To find the (2,4) entry of this matrix we have to consider the paths through the vertex 1 — is there a path from 2 \(-\) 1 \(-\) 4 that has a better value than the current path? If so, then that entry is updated.
The entire sequence of matrices

\[D^{(2)} = \begin{pmatrix}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & 3 & 7 \\
10 & \infty & 0 & 12 & 16 \\
3 & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{pmatrix} \quad D^{(3)} = \begin{pmatrix}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & 3 & 7 \\
10 & \infty & 0 & 12 & 16 \\
3 & 2 & 6 & 0 & 3 \\
16 & \infty & 6 & 18 & 0
\end{pmatrix} \]

\[D^{(4)} = \begin{pmatrix}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 6 \\
10 & 14 & 0 & 12 & 15 \\
3 & 2 & 6 & 0 & 3 \\
16 & 20 & 6 & 18 & 0
\end{pmatrix} \quad D^{(5)} = \begin{pmatrix}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 6 \\
10 & 14 & 0 & 12 & 15 \\
3 & 2 & 6 & 0 & 3 \\
16 & 20 & 6 & 18 & 0
\end{pmatrix} \]
Finding the actual shortest paths

In both of these algorithms we have not addressed the question of actually finding the paths themselves.

For the Floyd-Warshall algorithm this is achieved by constructing a further sequence of arrays $P^{(k)}$ whose (i, j) entry contains a predecessor of j on the path from i to j. As the entries are updated the predecessors will change — if the matrix entry is not changed then the predecessor does not change, but if the entry does change, because the path originally from i to j becomes re-routed through the vertex k, then the predecessor of j becomes the predecessor of j on the path from k to j.