
Recursive Data Structures

• Review of recursion: mathematical functions

• Recursive data structures: Stacks and Lists

• Implementing linked stacks in Java

• Java and pointers

• Trees

Reading: Weiss, Chapter 6 and 7

1

Recursion

Powerful technique for solving problems which can be expressed in terms of
smaller problems of the same kind.

In the previous lecture we saw recursion in the QuickSort Algorithm:

procedure QUICKSORT(A, p, r)
if p < r

then q ← PARTITION(A, p, r)
QUICKSORT(A, p, q − 1); QUICKSORT(A, q + 1, r)

2

Recursion is

• powerful — can solve arbitrarily large problems

• concise — code doesn’t increase in size with problem

• closely linked to the very important proof technique called mathemat-
ical induction.

• not necessarily efficient

– we’ll see later that the time taken by this implementation of mul-
tiplication increases with approximately the square of the second
argument

– long multiplication taught in school is approximately linear in the
number of digits in the second argument

Recursive Data Structures

Recursive programs usually operate on recursive data structures

data structure defined in terms of itself

Lists

A list may be defined recursively as follows:

• an empty list (or null list) is a list

• an item followed by (or linked to) a list is a list

Notice that the definition is like a recursive program — it has a base case
and a recursive case!

3

Building a list

List ADT

As an abstract data type, a list should allow us to:

1. Construct an empty list

2. Insert an element into the list

3. Look at an element in the list

4. Delete an element from the list

5. Move up and down the list

We will specify the List ADT more formally later . . .

For now, we will just look at a simpler data structure called a stack that
allows us to insert, delete, and examine only the first element in the list.

4

A Stack Class in Java

The Links

Defined recursively. . .

// link class for chars

class Link {

Object item; // the item stored in this link

Link successor; // the link stored in this link

Link (Object c, LinkChar s) \{item = c; successor = s;\}

}

Notice that the constructor makes a new link from an item and an existing
link.

The Linked List

Next we need an object to “hold” the links. We will call this LinkedStack.

Contains a variable which is either equal to null or to the first link (which
in turn contains any other links), so it must be of type Link. . .

class LinkedStack {

Link first;

}

Now the methods. . .

5

Constructing an empty stack

class LinkedStack {

Link first;

LinkedStack () {first = null;} // constructor

}

Conceptually, think of this as assigning a “null object” (an empty stack) to
first.

(Technically it makes first a null-reference, but don’t worry about this
subtlety for now.)

Adding to the stack

class LinkedStack {

Link first;

LinkedStack () {first = null;}

// insert a char at the front of the list

void insert (Object o) {first = new Link(o, first);}

}

6

To create the stack shown above, the class that uses LinkedStack,
say LinkedStackTest, would include something like. . .

LinkedStack myStack; // myStack is an object

// of type LinkedStack

myStack = new LinkedStack(); // call constructor to

// create empty stack

myStack.insert(’a’);

myStack.insert(’b’);

myStack.insert(’c’);

7

Examining the first item in the Stack

// define a test for the empty stack

boolean isEmpty () {return first == null;}

// if not empty return the first item

Object examine () {if (!isEmpty()) return first.item;}

Deleting the first item in the stack

void delete () {if (!isEmpty()) first = first.successor;}

first then refers to the tail of the list.

Note that we no longer have a reference to the previous first link in the
stack (and can never get it back). We haven’t really “deleted” it so much as
“abandoned” it. Java’s automatic garbage collection reclaims the space that
the first link used.

This is one of the advantages of Java — in C/C++ we have to reclaim that
space with additional code.

8

The Complete Program

import CITS2200.*; // Use a package of

// exceptions defined elsewhere.

/**

* A basic recursive stack.

*/

public class LinkedStack {

/**

* Reference to the first link in the stack, or null if

* the stack is empty.

*/

private Link first; // Private - users cannot access

// this directly.

/**

* Create an empty stack.

*/

public LinkedStack() {first = null;} // The constructor.

/**

* Test whether the stack is empty.

* @return true if the stack is empty, false otherwise

*/

public boolean isEmpty () {return first == null;}

/**

* Insert an item at the front of the stack.

* @param o the Object to insert

*/

public void insert (Object o) {first = new Link(o, first);}

9

/**

* Examine the first item in the stack.

* @return the first item in the stack

* @exception Underflow if the stack is empty

*/

public Object examine () throws Underflow {

if (!isEmpty()) return first.item;

else throw new Underflow("examining empty list");

}

// Underflow is an example of an exception that

// occurs (or is ‘‘thrown’’) if the list is empty.

/**

* Delete the first item in the stack.

* @exception Underflow if the stack is empty

*/

public void delete () throws Underflow {

if (!isEmpty()) first = first.successor;

else throw new Underflow("deleting from empty list");

}

10

// Many classes provide a string representation

// of the data, for example for printing,

// defined by a method called ‘‘toString()’’.

/**

* construct a string representation of the stack

* @return the string representation

*/

public String toString () {

Link cursor = first;

String s = "";

while (cursor != null) {

s = s + cursor.item;

cursor = cursor.successor;

}

return s;

}

}

11

Java and Pointers

Conceptually, the successor of a stack is a stack.

One of the great things about Java (and other suitable object oriented lan-
guages) is that the program closely reflects this “theoretical” concept — from
a programmer’s point-of-view the successor of a Link is a Link.

Internally, however, all instance variables act as references, or pointers, to
the actual data.

12

Therefore, a list that looks conceptually like

internally looks more like

For simplicity of drawing, we will often use the latter type of diagram for
representing recursive data structures.

13

Data Abstraction

The above class provides:

• data, and instructions to access it

• “higher-level” role of the program

We specified our stack so that we always added, examined and deleted at
the front of a sequence.

Operations on a stack:

1. Create an empty stack

2. Test whether the stack is empty

3. Add (push) a new element on the top

4. Examine (peek at) the top element

5. Delete (pop) the top element

14

We could change these operations slightly so that we always examined and
deleted from the front of the sequence, but added at the back of the sequence.

This is just what a queue, or FIFO (first-in, first-out buffer), does!

In general, the operations on a queue include:

1. Create an empty queue

2. Test whether the queue is empty

3. Add (enqueue) a new latest element

4. Examine the earliest element

5. Delete (dequeue) the earliest element

15

Specifying ADTs

We saw that ADTs consist of a set of operations on a set of data values. We
can specify ADTs by listing the operations (or methods).

The lists of operations on the previous pages are very informal and not suffi-
cient for writing code. For example, Test whether the queue is empty doesn’t
tell us the name of the method, what arguments it is called with, what is
returned, and whether it can throw an exception.

In these notes, we will specify ADTs by providing at least:

• the name of each operation

• example parameters (the implementation may use different parameter
names, but will have the same number, type and order)

• an explanation of what the operation does — in particular, any con-
straints on or changes to the parameters, changes to the ADT instance
on which the method operates, what is returned, and any exceptions
thrown

16

Thus, a Queue ADT might be specified by the following operations:

1. Queue(): create an empty queue

2. isEmpty(): return true if the queue is empty, false otherwise

3. enqueue(e): e is added as the last item in the queue

4. examine(): return the first item in the queue, or throw an exception if
the queue is empty

5. dequeue(): remove and return the first item in the queue, or throw an
exception if the queue is empty

Similarly, the specification of a Stack ADT:

1. Stack(): create an empty stack

2. isEmpty(): return true if the stack is empty, false otherwise

3. push(e): item e is pushed onto the top of the stack

4. peek(): return the item on the top of the stack, or throw an exception
if the stack is empty

5. pop(): remove and return the item on the top of the stack, or throw an
exception if the stack is empty

Note: The use of upper and lowercase in method names should follow
the rules described in the document Java Programming Conventions.

17

Summary

Recursive data structures:

• can be arbitrarily large

• support recursive programs

• are a fundamental part of computer science — they will appear again
and again in this and other units

You need to understand them. If not, seek help!

We will see many in this unit, including more on lists and trees.

18

