
CITS2200 Data Structures and Algorithms

Topic 22

Data Compression

• Huffman Coding

• Lempel Ziv algorithms

c© Tim French CITS2200 Data Compression Slide 1

Data Compression Algorithms

Data compression algorithms exploit patterns in data files to compress the files.
Every compression algorithm should have a corresponding decompression algorithm
that can recover (most of) the original data.

Data compression algorihtms are used by programs such as WinZip, pkzip and zip.
They are also used in the definition of many data formats such as pdf, jpeg, mpeg
and .doc.

Data compression algorithms can either be lossless (e.g. for archiving purposes) or
lossy (e.g. for media files).

We will consider some lossless algorithms below.

c© Tim French CITS2200 Data Compression Slide 2

Huffman coding

A nice application of a greedy algorithm is found in an approach to data compression
called Huffman coding.

Suppose that we have a large amount of text that we wish to store on a computer
disk in an efficient way. The simplest way to do this is simply to assign a binary code
to each character, and then store the binary codes consecutively in the computer
memory.

The ASCII system for example, uses a fixed 8-bit code to represent each character.
Storing n characters as ASCII text requires 8n bits of memory.

c© Tim French CITS2200 Data Compression Slide 3

Simplification

Let C be the set of characters we are working with. To simplify things, let us
suppose that we are storing only the 10 numeric characters 0, 1, . . ., 9. That is,
set C = {0, 1, · · · , 9}.

Char Code
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

c© Tim French CITS2200 Data Compression Slide 4

Non-random data

Consider the following data, which is taken from a Postscript file.

Char Freq
5 1294
9 1525
6 2260
4 2561
2 4442
3 5960
7 6878
8 8865
1 11610
0 70784

Notice that there are many more occurrences of 0 and 1 than the other characters.

c© Tim French CITS2200 Data Compression Slide 5

A good code

What would happen if we used the following code rather than the fixed length code?

Char Code
0 1
1 010
2 01111
3 0011
4 00101
5 011100
6 00100
7 0110
8 000
9 011101

To store the string 0748901 we would get 0000011101001000100100000001 using
the fixed length code and 10110001010000111011010 using the variable length code.

c© Tim French CITS2200 Data Compression Slide 6

Prefix codes

In order to be able to decode the variable length code properly it is necessary that
it be a prefix code — that is, a code in which no codeword is a prefix of any other
codeword.

5 9

6 4 2

3 7

8 1

0

!
!

!
!

!
!

!
!

!
!

!
!

!
!

""""""

""""""

#
#

#
#

#
#

#
#

#
#

#
#

#
#

$$$$$$

$$$$$$

0

0

0

0 0

0 0

0

0

1

1 1

1 1

1 1

1

1

c© Tim French CITS2200 Data Compression Slide 7

Cost of a tree

Now assign to each leaf of the tree a value, f(c), which is the frequency of occur-
rence of the character c represented by the leaf.

Let dT (c) be the depth of character c’s leaf in the tree T .

Then the number of bits required to encode a file is

B(T) =
∑

c∈C
f(c)dT (c)

which we define as the cost of the tree T .

c© Tim French CITS2200 Data Compression Slide 8

For example, the number of bits required to store the string 0748901 can be
computed from the tree T :

5:0 9:1

6:0 4:1 2:0

3:0 7:1

8:1 1:1

0:2

!
!

!
!

!
!

!
!

!
!

!
!

!
!

""""""

""""""

#
#

#
#

#
#

#
#

#
#

#
#

#
#

$$$$$$

$$$$$$

d=6

d=5

d=4

d=3

d=2

d=1

d=0

giving

B(T) = 2× 1 + 1× 3 + 1× 3 + 1× 4 + 1× 5 + 1× 6 = 23.

c© Tim French CITS2200 Data Compression Slide 9

Optimal trees

A tree representing an optimal code for a file is always a full binary tree — namely,
one where every node is either a leaf or has precisely two children.

Therefore if we are dealing with an alphabet of s symbols we can be sure that our
tree has precisely s leaves and s− 1 internal nodes, each with two children.

Huffman invented a greedy algorithm to construct such an optimal tree.

The resulting code is called a Huffman code for that file.

c© Tim French CITS2200 Data Compression Slide 10

Huffman’s algorithm

The algorithm starts by creating a forest of s single nodes, each representing one
character, and each with an associated value, being the frequency of occurrence of
that character. These values are placed into a priority queue (implemented as a
linear array).

5:1294 9:1525 6:2260 4:2561 2:4442

3:5960 7:6878 8:8865 1:11610 0:70784

Then repeat the following procedure s− 1 times:

Remove from the priority queue the two nodes L and R with the lowest values, and
create a internal node of the binary tree whose left child is L and right child R.

Compute the value of the new node as the sum of the values of L and R and insert
this into the priority queue.

c© Tim French CITS2200 Data Compression Slide 11

The first few steps

Given the data above, the first two entries off the priority queue are 5 and 9 so we
create a new node

5:1294 9:1525

2819
!
!

#
#

The priority queue is now one element shorter, as shown below:

6:2260 4:2561 2819

5:1294 9:1525
!
!!

#
##

2:4442 ...

The next two are 6 and 4 yielding

5:1294 9:1525

2819
!
!

#
#

6:2260 4:2561

4821 · · ·
!
!

#
#

2:4442

c© Tim French CITS2200 Data Compression Slide 12

Now the smallest two nodes are 2 and the internal node with value 2819, hence we
now get:

6:2260 4:2561

4821
!
!

#
#

3:5960 7:6878

5:1294 9:1525

2819 2:4442

7261 · · ·
!
!

#
#

!
!

#
#

Notice how we are growing sections of the tree from the bottom-up (compare with
the tree on slide 16).

See CLRS (page 388) for the pseudo-code corresponding to this algorithm.

c© Tim French CITS2200 Data Compression Slide 13

Why does it work?

In order to show that Huffman’s algorithm works, we must show that there can be
no prefix codes that are better than the one produced by Huffman’s algorithm.

The proof is divided into two steps:

First it is necessary to demonstrate that the first step (merging the two lowest
frequency characters) cannot cause the tree to be non-optimal. This is done by
showing that any optimal tree can be reorganised so that these two characters have
the same parent node. (see CLRS, Lemma 16.2, page 388)

Secondly we note that after making an optimal first choice, the problem can be
reduced to finding a Huffman code for a smaller alphabet. (see CLRS, Lemma
16.3, page 391)

c© Tim French CITS2200 Data Compression Slide 14

Ziv-Lempel compression algorithms

The Ziv-Lempel compression algorithms are a family of compression algorithms that
can be applied to arbitrary file types.

The Ziv-Lempel algorithms represent recurring strings with abbreviated codes. There
are two main types:

• LZ77 variants use a buffer to look for recurring strings in a small section of the
file.

• LZW variants dynamically create a dictionary of recurring strings, and assigns a
simple code to each such string.

c© Tim French CITS2200 Data Compression Slide 15

Algorithms: LZ77

The LZ77 algorithms use a sliding window. The sliding window is a buffer consisting
of the last m letters encoded (a0...am−1) and the next n letters to be encoded
(b0...bn−1).

Initially we let a0 = a1 = ... = an−1 = w0 and output 〈0, 0, w〉 where w0 is the
first letter of the word to be compressed

The algorithm looks for the longest prefix of b0...bn−1 appearing in a0...am−1. If the
longest prefix found is b0...bk−1 = ai...ai+k−1, then the entire prefix is encoded as
the tuple

〈i, k, bk〉

where i is the offset, k is the length and bk is the next character.

c© Tim French CITS2200 Data Compression Slide 16

LZ77 Example

Suppose that m = n = 4 and we would like to compress the word w = aababacbaa

Word Window Output
aababacbaa 〈0, 0, a〉

aababacbaa aaaa aaba 〈0, 2, b〉

abacbaa aaab a abac 〈2, 3, c〉

baa abac baa 〈1, 2, a〉

This outputs
〈0, 0, a〉〈0, 2, b〉〈2, 3, c〉〈1, 2, a〉

c© Tim French CITS2200 Data Compression Slide 17

LZ77 Example cont.

To decompress the code we can reconstruct the sliding window at each step of the
algorithm. Eg, given

〈0, 0, a〉〈0, 2, b〉〈2, 3, c〉〈1, 2, a〉

Input Window Output
〈0, 0, a〉

〈0, 2, b〉 aaaa aab? aab

〈2, 3, c〉 aaab a abac abac

〈1, 2, a〉 abac baa? baa

Note the trick with the third triple 〈2, 3, c〉 that allows the look-back buffer to
overflow into the look ahead buffer.

c© Tim French CITS2200 Data Compression Slide 18

Algorithms: LZW

The LZW algorithms use a dynamic dictionary The dictionary maps words to codes
and is initially defined for every byte (0-255). The compression algorithm is as
follows:

w = null
while(k = next byte)

if wk in the dictionary
w = wk

else
add wk to dictionary
output code for w
w = k

output code for w

c© Tim French CITS2200 Data Compression Slide 19

Algorithms: LZW

The decompression algorithm is as follows:

k = next byte
output k
w = k
while(k = next byte)

if there’s no dictionary entry for k
entry = w + first letter of w

else
entry = dictionary entry for k

output entry
add w + first letter of entry to dictionary
w = entry

c© Tim French CITS2200 Data Compression Slide 20

LZW Example

Consider the word w = aababa, and a dictionary D where D[0] = a, D[1] = b and
D[2] = c. The compression algorithm proceeds as follows:

Read Do Output
a w = a −
a w = a,D[3] = aa 0
b w = b,D[4] = ab 0
a w = a,D[5] = ba 1
b w = ab −
a w = a,D[6] = aba 4
c w = c,D[7] = ac 0
b w = b,D[8] = cb 2
a w = ba −
a w = a,D[9] = baa 5

0

c© Tim French CITS2200 Data Compression Slide 21

LZW Example cont.

To decompress the code 〈00140250〉 we initialize the dictionary as before. Then

Read Do Output
0 w = a a
0 w = a,D[3] = aa a
1 w = b,D[4] = ab b
4 w = ab,D[5] = ba ab
0 w = a,D[6] = aba a
2 w = c,D[7] = ac c
5 w = ba,D[8] = cb ba
0 w = a,D[9] = baa a

c© Tim French CITS2200 Data Compression Slide 22

Summary

1. Data Compression algorithms use pattern matching to find efficient ways to
compress file.

2. Huffman coding uses a greedy approach to recode the alphabet with a more
efficient binary code.

3. Adaptive Huffman coding uses the same approach, but with the overhead of
precomputing the code.

4. LZ77 uses pattern matching to express segments of the file in terms of recently
occuring segments.

5. LZW uses a hash function to store commonly occuring strings so it can refer to
them by their key.

c© Tim French CITS2200 Data Compression Slide 23

