
CITS2200 Data Structures and Algorithms

Topic 18

Search

• Dictionary Specifications

• Dictionary specifications

• Dictionary representations — set-based representations, search trees

• Self-balancing Search Trees

Reading: Weiss, Chapter 19.
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1. Dictionary Specification

! Constructors

1. Dictionary(): creates an empty dictionary.

! Checkers

2. isEmpty(): returns true if the dictionary is empty, false otherwise.

3. isMember(e): returns true if e is a member of the dictionary, false otherwise.

4. isPredecessor(e): returns true if there is an element in the dictionary that pre-
cedes e in the total order, false otherwise.

5. isSuccessor(e): returns true if there is an element in the dictionary that succeeds
e in the total order, false otherwise.
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!Manipulators

6. insert(e): adds e (if not already present) to the dictionary in the appropriate
position.

7. predecessor(e): returns the largest element in the dictionary that is smaller than
e if one exists, otherwise throws an exception.

8. successor(e): returns the smallest element in the dictionary that is larger than e
if one exists, otherwise throws an exception.

9. range(p,s): returns the dictionary of all elements that lie between p and s (in-
cluding p and s if present) in the ordering.

10. delete(e): removes item e from the dictionary if it exists.
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2. Dictionary Representations

2.1 Representations Based on Set

We have already seen two representations that can be used for Sets when there is
a total ordering on the universe. . .

• characteristic function (bit vector) representation

– time efficiency (eg O(1) for isMember) gained by indexing directly to appro-
priate bits

– bounded — universe fixed in advance

– space wasted if universe is large compared with commonly occurring sets
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• List based (ordered block) representation

– time efficiency (eg O(logn) for isMember) comes from binary search

– bounded

– space usage may be poor if large block is set aside

We now examine a representation which supports a binary-like search but is un-
bounded. . .
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2.2 Binary Search Trees

A binary search tree is a binary tree whose internal nodes are labelled with elements
(or their keys) such that they satisfy the binary search tree condition:

For every internal node u, all nodes in u’s left subtree precede u in the ordering
and all nodes in u’s right subtree succeed u in the ordering.

eg.

miss_piggy

kermit

ernie

grouch

big_bird

bert
cookie_monster
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eg.

big_bird

bert

cookie_monster

ernie

grouch

kermit

miss_piggy
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Searching

If information is stored in a binary search tree, a simple recursive “divide and con-
quer” algorithm can be used to find elements:

if (t.isEmpty()) terminate unsuccessfully;
else {

r becomes the element on the root node of t;
if (e equals r) terminate successfully;
else if (e < r) repeat search on left subtree;
else repeat search on right subtree;

}
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Performance

Depends on the shape of the tree. . .

Exercise

• Best case is a perfect binary tree. What is the performance of isMember?

•Worst case is a skinny binary tree. What is the performance of isMember?
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insert and delete

insert is fairly straightforward

• perform a search for the element as above

• if the element is found, take no further action

• if an empty node is reached, insert a new node containing the element

delete is straightforward if the element is found on a node with at least one external
child — just use the standard Bintree delete operation

Otherwise:

1. replace the deleted element with its predecessor — note that the predecessor will
always have an empty right child

2. delete the predecessor
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Balancing Trees

Note that the delete procedure described here has a tendency over time to skew
the tree to the right — as we have seen this will make it less efficient.

Alternative: alternate between replacing with predecessor and successor.

In general, it is beneficial to try to keep the tree as “balanced” or “complete” as
possible to maintain search efficiency.

There are a number of data structures that are designed to keep trees balanced —
B-trees, AVL-trees and Red-black trees.

Note: Java.util.TreeMap uses Red-Black trees in its implementation. In general, for
search trees with guaranteed logarithmic performance, it is better to use this class
than to write your own.
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2.3 AVL Trees

We will look at the three types of self-balancing trees, but we will only examine the
operations of AVL trees. (The other trees just involve more complicated versions
of these operations).

An AVL tree is a binary search tree where, for every node, the height of the left and
right subtrees differ by at most one. This means the depth of any external node is
no more than twice the depth of any other internal node.
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The picture below demonstrates some AVL-trees. Nodes are marked with the height
of the right sub-tree minus the height of the left sub-tree.
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AVL trees have O(log n) time peformance for searching, inserting, and deleting.
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AVL Tree Operations

Since an AVL tree is a binary search tree, the searching algorithm is exactly the
same as for a binary tree.

However, the insertion and deletion operations must be modified to maintain the
balance of the tree.
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AVL Tree Insertions

We first find the appropriate place (a leaf node) to add the new element. If the
insertion makes the tree unbalanced, then we locally reorganize the tree (via a
rotation) to restore balance.

To insert an element, we:

1. Insert the element into an external node (as per usual for a binary search tree).

2. Starting with its parent, check each ancestor of the new node to ensure the left
and right subtree heights differ by less than two.

3. If we find a node such that one child has height k − 2 and the other has height
k, then we perform a rotation to restore balance.
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Rotation Case I

Suppose u is a node where its left child l has height two less than its right child r,
and the right child of r has height one more than the left child of r.

We rearrange the tree as follows:

k+1

kk−2

k

k−2 k−1 k−2 k−2

k−1 k−1r a

u

l

b a l

u

b

r
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Rotation Case II

Suppose u is a node where its left child l has height two less than its right child r,
and the left child of r has height one more than the right child of r.

We rearrange the tree as follows:

k+1
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AVL Tree Deletions

Note that both rotations do not increase the height of the sub-tree, so insertion
only needs to be done at the lowest unbalanced ancestor.

To delete an element, we:

• Delete the element (as per usual for a binary search tree).

• Starting with its parent, check each ancestor of the new node to make sure it’s
balanced.

• If any node is not balanced, perform the necessary rotation (as above).

• Continue to check the ancestors of the deleted node up to the root.
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Complexity

Rotations are constant time operations.

Insertions and deletions involve searching the tree for the element (O(h), where h
is the height of the tree) and then checking every ancestor of that element (O(h)
in the worst case).

Complexity follows from the claim: the height of an AVL tree is less than 2 log n
where n is the number of elements in the tree.
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2.4 B-trees

A B-tree is a tree data structure that allows searching, insertion, and deletion in
amortized logarithmic time.

Each node of a B-tree can contain multiple items and multiple children (these
numbers can be varied to tweak performance).

We will consider 2-3 B-trees, where each node can contain up to two items and up
to three children.

children.

19 34

11 24 31 46

9 13 25 33 60 65454220 22
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If there is just one item in the node, then the B-Tree is organised as a binary search
tree: all items in the left sub-tree must be less than the item in the node, and all
items in the right sub-tree must be greater.

It there are two elements in the node, then:

• all items in the left sub-tree must be less than the smallest item in the node

• all items in the middle sub-tree must be between the two items in the node

• all elements in the right sub-tree must be greater than the largest item in the
node

Also, every non-leaf node must have at least two successors and all leaf nodes must
be at the same level.
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2.5 Red-black Trees

A red-black tree is another variation of a binary search tree that is slightly more
efficient (and complicated) than B-trees and AVL trees.

A red-black tree is a binary tree where each node is coloured either red or black
such that the colouring satisfies:

• the root property — the root is black

• the external property — every external node is black

• the internal property — the children of a red node are black

• the depth property — every external node has the same number of black ances-
tors.
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Picture courtesy of Wikimedia Commons
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3. Summary

We have outlined 3 ADTs for use with collections of unique elements or records:

• Set — includes set-theoretic operations, elements may or may not be ordered

• Table — restriction of Set with fewer operations, elements assumed not ordered

• Dictionary — extension of Table, assumes ordering and contains “order-related”
operations
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We have covered a number of representations:

• List — can be used for unordered sets and tables

• ordered list (block) — can improve efficiency for ordered sets and can be used
for bounded dictionaries

• characteristic function — can be very efficient for ordered sets and dictionaries
in certain cases, bounded

• binary search tree — unbounded representation for dictionaries, efficiency better
than List but depends on tree shape

Next — efficient representations for Tables. . .
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