
CITS2200 Data Structures and Algorithms

Topic 15

Shortest Path Algorithms

• Priority-first search

• Shortes path problems

• Dijkstra’s algorithm

• The Bellman-Ford algorithm.

• The all pairs shortest path problem

• Dynamic programming method

•Matrix product algorithm

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 1

• Floyd-Warshall algorithm

Reading: Weiss Chapter 14
c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 2

Priority-first search

Let us generalize the ideas behind the implementation of Prim’s algorithm.

Consider the following very general graph-searching algorithm. We will later show
that by choosing different specifications of the priority we can make this algorithm
do very different things. This algorithm will produce a priority-first search tree.

The key-values or priorities associated with each vertex are stored in an array called
key .

Initially we set key [v] to ∞ for all the vertices v ∈ V (G) and build a heap with
these keys — this can be done in time O(V ).

Then we select the source vertex s for the search and perform change(s,0) to
change the key of s to 0, thus placing s at the top of the priority queue.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 3

The operation of PFS

After initialization the operation of PFS is as follows:

procedure PFS(s)
change(s,0)
while Q ̸= ∅

u← Q.dequeue()
for each v adjacent to u do

if v ∈ Q ∧ PRIORITY < key [v] then
π[v]← u
change(Q,v,PRIORITY)

end if
end for

end while

It is important to notice how the array π is managed — for every vertex v ∈ Q
with a finite key value, π[v] is the vertex not in Q that was responsible for the key
of v reaching the highest priority it has currently reached.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 4



Complexity of PFS

The complexity of this search is easy to calculate — the main loop is executed
V times, and each extractmin operation takes O(lg V ) yielding a total time of
O(V lg V ) for the extraction operations.

During all V operations of the main loop we examine the adjacency list of each
vertex exactly once — hence we make E calls, each of which may cause a change
to be performed. Hence we do at most O(E lg V ) work on these operations.

Therefore the total is

O(V lg V + E lg V ) = O(E lg V ).

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 5

Prim’s algorithms is PFS

Prim’s algorithm can be expressed as a priority-first search by observing that the
priority of a vertex is the weight of the shortest edge joining the vertex to the rest
of the tree.

This is achieved in the code above by simply replacing the string PRIORITY by

weight(u, v)

At any stage of the algorithm:

• The vertices not in Q form the tree so far.

• For each vertex v ∈ Q, key [v] gives the length of the shortest edge from v to a
vertex in the tree, and π[v] shows which tree vertex that is.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 6

Shortest paths

Let G be a directed weighted graph. The shortest path between two vertices v and
w is the path from v to w for which the sum of the weights on the path-edges is
lowest. Notice that if we take an unweighted graph to be a special instance of a
weighted graph, but with all edge weights equal to 1, then this coincides with the
normal definition of shortest path.

The weight of the shortest path from v to w is denoted by δ(v, w).

Let s ∈ V (G) be a specified vertex called the source vertex.

The single-source shortest paths problem is to find the shortest path from s to every
other vertex in the graph (as opposed to the all-pairs shortest paths problem, where
we must find the distance between every pair of vertices).

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 7

Dijkstra’s algorithm

Dijkstra’s algorithm is a famous single-source shortest paths algorithm suitable for
the cases when the weights are all non-negative.

Dijkstra’s algorithm can be implemented as a priority-first search by taking the
priority of a vertex v ∈ Q to be the shortest path from s to v that consists entirely
of vertices in the priority-first search tree (except of course for v).

This can be implemented as a PFS by replacing PRIORITY with

key [u] + weight(u, v)

At the end of the search, the array key [] contains the lengths of the shortest paths
from the source vertex s.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 8



Dijkstra’s algorithm in action

2

7

1

4

2

1

5

5

2

6

2

2

2

8

1

1

5

2

6

3

1

2

2

1

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 9

Proof of correctness

It is possible to prove that Dijkstra’s algorithm is correct by proving the following
claim (assuming T = V (G) − Q is the set of vertices that have already been
removed from Q).

At the time that a vertex u is removed from Q and placed into T key [u] =
δ(s, u).

This is a proof by contradiction, meaning that we try to prove key [u] ̸= δ(s, u) and
if we fail then we will have proved the opposite.

Assuming u ̸= s then T ̸= ∅ and there exists a path p from s to u. We can
decompose the path into three sections:

1. A path p1 from s to vertex x, such that x ∈ T and the path is of length 0 or
more.

2. An edge between x and y, such that y ∈ Q and (x, y) ∈ E(G).

3. A path p2 from y to u of length 0 or more.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 10

Proof (contd)

The decomposed path may be illustrated thus.

T=V(G)−Q

x y

u

s

p1 p2

Firstly, we know key [y] = δ(s, y) since the edge (x, y) will have been examined
when x was added to T .

Furthermore, we know that y is before u on path p and therefore δ(s, y) ≤ δ(s, u).
This implies key [y] ≤ key [u] (inequality A).
c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 11

Proof (contd)

But we also know that u was chosen from Q before y which implies key [u] ≤ key [y]
(inequality B) since the priority queue always returns the vertex with the smallest
key.

Inequalities A and B can only be satisfied if key [u] = key [y] but this implies

key [u] = δ(s, u) = δ(s, y) = key [y]

But our initial assumption was that key [u] ̸= δ(s, u) giving rise to the contradiction.
Hence we have proved that key [u] = δ(s, u) at the time that u enters T .

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 12



Relaxation

Consider the following property of Dijkstra’s algorithm.

• At any stage of Dijkstra’s algorithm the following inequality holds:

δ(s, v) ≤ key [v]

This is saying that the key[] array always holds a collection of upper bounds on
the actual values that we are seeking. We can view these values as being our
“best estimate” to the value so far, and Dijkstra’s algorithm as a procedure for
systematically improving our estimates to the correct values.

The fundamental step in Dijkstra’s algorithm, where the bounds are altered is when
we examine the edge (u, v) and do the following operation

key [v]←min(key [v], key [u] + weight(u, v))

This is called relaxing the edge (u, v).

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 13

Relaxation schedules

Consider now an algorithm that is of the following general form:

• Initially an array d[] is initialized to have d[s] = 0 for some source vertex s
and d[v] =∞ for all other vertices
• A sequence of edge relaxations is performed, possibly altering the values in
the array d[].

We observe that the value d[v] is always an upper bound for the value δ(s, v)
because relaxing the edge (u, v) will either leave the upper bound unchanged or
replace it by a better estimate from an upper bound on a path from s→ u→ v.

Dijkstra’s algorithm is a particular schedule for performing the edge relaxations that
guarantees that the upper bounds converge to the exact values.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 14

Negative edge weights

Dijkstra’s algorithm cannot be used when the graph has some negative edge-weights
(why not? find an example).

In general, no algorithm for shortest paths can work if the graph contains a cycle
of negative total weight (because a path could be made arbitrarily short by going
round and round the cycle). Therefore the question of finding shortest paths makes
no sense if there is a negative cycle.

However, what if there are some negative edge weights but no negative cycles?

The Bellman-Ford algorithm is a relaxation schedule that can be run on graphs with
negative edge weights. It will either fail in which case the graph has a negative cycle
and the problem is ill-posed, or will finish with the single-source shortest paths in
the array d[].

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 15

Bellman-Ford algorithm

The initialization step is as described above. Let us suppose that the weights on
the edges are given by the function w.

Then consider the following relaxation schedule:

for i = 1 to |V (G)|− 1 do
for each edge (u, v) ∈ E(G) do

d[v]←min(d[v], d[u] + w(u, v))
end for each

end for

Finally we make a single check to determine if we have a failure:

for each edge (u, v) ∈ E(G) do
if d[v] > d[u] + w(u, v) then

FAIL
end if

end for each

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 16



Complexity of Bellman-Ford

The complexity is particularly easy to calculate in this case because we know exactly
how many relaxations are done — namely E(V − 1), and adding that to the final
failure check loop, and the initialization loop we see that Bellman-Ford is O(EV )

There remains just one question — how does it work?

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 17

Correctness of Bellman-Ford

Let us consider some of the properties of relaxation in a graph with no negative
cycles.

Property 1 Consider an edge (u, v) that lies on the shortest path from s to v. If
the sequence of relaxations includes relaxing (u, v) at a stage when d[u] = δ(s, u),
then d[v] is set to δ(s, v) and never changes after that.

Once convinced that Property 1 holds we can show that the algorithm is correct for
graphs with no negative cycles, as follows.

Consider any vertex v and let us examine the shortest path from s to v, namely

s ∼ v1 ∼ v2 · · · vk ∼ v

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 18

Now at the initialization stage d[s] = 0 and it always remains the same. After
one pass through the main loop the edge (s, v1) is relaxed and by Property 1,
d[v1] = δ(s, v1) and it remains at that value. After the second pass the edge
(v1, v2) is relaxed and after this relaxation we have d[v2] = δ(s, v2) and it remains
at this value.

As the number of edges in the path is at most |V (G)|− 1, after all the loops have
been performed d[v] = δ(s, v).

Note that this is an inductive argument where the induction hyptohesis is “after n
iterations, all shortest paths of length n have been found”.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 19

All-pairs shortest paths

Recall the Shortest Path Problem in Topic ??.

Now we turn our attention to constructing a complete table of shortest distances,
which must contain the shortest distance between any pair of vertices.

If the graph has no negative edge weights then we could simply make V runs of
Dijkstra’s algorithm, at a total cost of O(V E lg V ), whereas if there are negative
edge weights then we could make V runs of the Bellman-Ford algorithm at a total
cost of O(V 2E).

The two algorithms we shall examine both use the adjacency matrix representation
of the graph, hence are most suitable for dense graphs. Recall that for a weighted
graph the weighted adjacency matrix A has weight(i, j) as its ij-entry, where
weight(i, j) =∞ if i and j are not adjacent.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 20



A dynamic programming method

Dynamic programming is a general algorithmic technique for solving problems that
can be characterised by two features:

• The problem is broken down into a collection of smaller subproblems
• The solution is built up from the stored values of the solutions to all of the
subproblems

For the all-pairs shortest paths problem we define the simpler problem to be

“What is the length of the shortest path from vertex i to j that uses at most m
edges?”

We shall solve this for m = 1, then use that solution to solve for m = 2, and so on
. . .

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 21

The initial step

We shall let d(m)
ij denote the distance from vertex i to vertex j along a path that

uses at most m edges, and define D(m) to be the matrix whose ij-entry is the value
d(m)
ij .

As a shortest path between any two vertices can contain at most V − 1 edges, the
matrix D(V−1) contains the table of all-pairs shortest paths.

Our overall plan therefore is to use D(1) to compute D(2), then use D(2) to compute
D(3) and so on.

The case m = 1

Now the matrix D(1) is easy to compute — the length of a shortest path using at
most one edge from i to j is simply the weight of the edge from i to j. Therefore
D(1) is just the adjacency matrix A.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 22

The inductive step

What is the smallest weight of the path from vertex i to vertex j that uses at most
m edges? Now a path using at most m edges can either be

(1) A path using less than m edges
(2) A path using exactly m edges, composed of a path using m − 1 edges
from i to an auxiliary vertex k and the edge (k, j).

We shall take the entry d(m)
ij to be the lowest weight path from the above choices.

Therefore we get

d(m)
ij = min

⎛

⎝d(m−1)ij , min
1≤k≤V

{d(m−1)ik + w(k, j)}
⎞

⎠

= min
1≤k≤V

{d(m−1)ik + w(k, j)}

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 23

Example

Consider the weighted graph with the following weighted adjacency matrix:

A = D(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Let us see how to compute an entry in D(2), suppose we are interested in the (1, 3)
entry:

1→ 1→ 3 has cost 0 + 11 = 11 1→ 2→ 3 has cost ∞ + 4 =∞
1→ 3→ 3 has cost 11 + 0 = 11 1→ 4→ 3 has cost 2 + 6 = 8
1→ 5→ 3 has cost 6 + 6 = 12

The minimum of all of these is 8, hence the (1, 3) entry of D(2) is set to 8.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 24



Computing D(2)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 4 8 2 5
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3
16 ∞ 6 ∞ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

If we multiply two matrices AB = C, then we compute

cij =
k=V
∑

k=1
aikbkj

If we replace the multiplication aikbkj by addition aik + bkj and replace summation
Σ by the minimum min then we get

cij =
k=V
min
k=1

aik + bkj

which is precisely the operation we are performing to calculate our matrices.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 25

The remaining matrices

Proceeding to compute D(3) from D(2) and A, and then D(4) from D(3) and A we
get:

D(3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 ∞ 6 18 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(4) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 20 6 18 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 26

A new matrix “product”

Recall the method for computing d(m)
ij , the (i, j) entry of the matrix D(m) using the

method similar to matrix multiplication.

d(m)
ij ←∞

for k = 1 to V do

d(m)
ij = min(d(m)

ij , d(m−1)ik + w(k, j))
end for

Let us use ⋆ to denote this new matrix product.

Then we have
D(m) = D(m−1) ⋆A

Hence it is an easy matter to see that we can compute as follows:

D(2) = A ⋆ A D(3) = D(2) ⋆A . . .

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 27

Complexity of this method

The time taken for this method is easily seen to be O(V 4) as it performs V matrix
“multiplications” each of which involves a triply nested for loop with each variable
running from 1 to V .

However we can reduce the complexity of the algorithm by remembering that we
do not need to compute all the intermediate products D(1), D(2) and so on, but we
are only interested in D(V−1). Therefore we can simply compute:

D(2) = A ⋆ A

D(4) = D(2) ⋆D(2)

D(8) = D(4) ⋆D(4)

Therefore we only need to do this operation at most lg V times before we reach the
matrix we want. The time required is therefore actually O(V 3⌈lg V ⌉).

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 28



Floyd-Warshall

The Floyd-Warshall algorithm uses a different dynamic programming formalism.

For this algorithm we shall define d(k)ij to be the length of the shortest path from i
to j whose intermediate vertices all lie in the set {1, . . . , k}.

As before, we shall define D(k) to be the matrix whose (i, j) entry is d(k)ij .

The initial case

What is the matrix D(0) — the entry d(0)ij is the length of the shortest path from i
to j with no intermediate vertices. Therefore D(0) is simply the adjacency matrix
A.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 29

The inductive step

For the inductive step we assume that we have constructed already the matrix
D(k−1) and wish to use it to construct the matrix D(k).

Let us consider all the paths from i to j whose intermediate vertices lie in {1, 2, . . . , k}.
There are two possibilities for such paths

(1) The path does not use vertex k
(2) The path does use vertex k

The shortest possible length of all the paths in category (1) is given by d(k−1)ij which
we already know.

If the path does use vertex k then it must go from vertex i to k and then proceed
on to j, and the length of the shortest path in this category is d(k−1)ik + d(k−1)kj .

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 30

The overall algorithm

The overall algorithm is then simply a matter of running V times through a loop,
with each entry being assigned as the minimum of two possibilities. Therefore the
overall complexity of the algorithm is just O(V 3).

D(0)← A
for k = 1 to V do

for i = 1 to V do
for j = 1 to V do

d(k)ij = min(d(k−1)ij , d(k−1)ik + d(k−1)kj )
end for j

end for i
end for k

At the end of the procedure we have the matrix D(V ) whose (i, j) entry contains
the length of the shortest path from i to j, all of whose vertices lie in {1, 2, . . . , V }
— in other words, the shortest path in total.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 31

Example

Consider the weighted directed graph with the following adjacency matrix:

D(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ∞ 11 2 6
1 0 4
10 ∞ 0
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

To find the (2, 4) entry of this matrix we have to consider the paths through the
vertex 1 — is there a path from 2 – 1 – 4 that has a better value than the current
path? If so, then that entry is updated.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 32



The entire sequence of matrices

D(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ∞ 11 2 6
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3
∞ ∞ 6 ∞ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ∞ 11 2 6
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3
16 ∞ 6 18 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(4) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 20 6 18 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(5) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 20 6 18 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 33

Finding the actual shortest paths

In both of these algorithms we have not addressed the question of actually finding
the paths themselves.

For the Floyd-Warshall algorithm this is achieved by constructing a further sequence
of arrays P (k) whose (i, j) entry contains a predecessor of j on the path from i to
j. As the entries are updated the predecessors will change — if the matrix entry is
not changed then the predecessor does not change, but if the entry does change,
because the path originally from i to j becomes re-routed through the vertex k,
then the predecessor of j becomes the predecessor of j on the path from k to j.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 34

Summary

1. Priority first search generalizes Prim’s algorithm

2. Dijkstra’s Algorithm is a priority-first search that can solve the shortest path
problem in time O(E lg V ), provided all graph edges have non-negative edge
weights.

3. The Bellman-Ford algorithm can solve all shortest path problems and runs in
time O(EV ).

4. Dynamic Programming is a general approach for solving problems which can
be decomposed into sub-problems and where solutions to sub-problems can be
combined to solve the main problem.

5. Dynamic Programming can be used to solve the shortest path problem directly
or via the Floyd-Warshall formulation.

c⃝ Tim French CITS2200 Shortest Path Algorithms Slide 35


