• Floyd-Warshall algorithm

CITS2200 Data Structures and Algorithms

Topic 15

Shortest Path Algorithms

- Priority-first search
- Shortes path problems
- Dijkstra's algorithm
- The Bellman-Ford algorithm.
- The all pairs shortest path problem
- Dynamic programming method
- Matrix product algorithm

© Tim French

CITS2200 Shortest Path Algorithms Slide 1

Reading: Weiss Chapter 14

© Tim French

CITS2200 Shortest Path Algorithms Slide 2

Priority-first search

Let us generalize the ideas behind the implementation of Prim's algorithm.

Consider the following very general graph-searching algorithm. We will later show that by choosing different specifications of the priority we can make this algorithm do very different things. This algorithm will produce a *priority-first search tree*.

The key-values or priorities associated with each vertex are stored in an array called key.

Initially we set key[v] to ∞ for all the vertices $v \in V(G)$ and build a heap with these keys — this can be done in time O(V).

Then we select the source vertex s for the search and perform **change**(s,0) to change the key of s to 0, thus placing s at the top of the priority queue.

The operation of PFS

After initialization the operation of PFS is as follows:

```
procedure PFS(s)

change(s,0)

while Q \neq \emptyset

u \leftarrow Q.dequeue()

for each v adjacent to u do

if v \in Q \land PRIORITY < key[v] then

\pi[v] \leftarrow u

change(Q, v, PRIORITY)

end if

end for

end while
```

It is important to notice how the array π is managed — for every vertex $v \in Q$ with a finite key value, $\pi[v]$ is the vertex *not in* Q that was responsible for the key of v reaching the highest priority it has currently reached.

Complexity of PFS

The complexity of this search is easy to calculate — the main loop is executed V times, and each **extractmin** operation takes $O(\lg V)$ yielding a total time of $O(V \lg V)$ for the extraction operations.

During all V operations of the main loop we examine the adjacency list of each vertex exactly once — hence we make E calls, each of which may cause a **change** to be performed. Hence we do at most $O(E \lg V)$ work on these operations.

Therefore the total is

$$O(V \lg V + E \lg V) = O(E \lg V).$$

Prim's algorithms is PFS

Prim's algorithm can be expressed as a priority-first search by observing that the priority of a vertex is the weight of the shortest edge joining the vertex to the rest of the tree.

This is achieved in the code above by simply replacing the string *PRIORITY* by

weight(u, v)

At any stage of the algorithm:

• The vertices not in Q form the tree so far.

• For each vertex $v \in Q$, key[v] gives the length of the shortest edge from v to a vertex in the tree, and $\pi[v]$ shows which tree vertex that is.

© Tim French

CITS2200 Shortest Path Algorithms Slide 5

Shortest paths

Let G be a directed weighted graph. The *shortest path* between two vertices v and w is the path from v to w for which the sum of the weights on the path-edges is lowest. Notice that if we take an unweighted graph to be a special instance of a weighted graph, but with all edge weights equal to 1, then this coincides with the normal definition of shortest path.

The weight of the shortest path from v to w is denoted by $\delta(v, w)$.

Let $s \in V(G)$ be a specified vertex called the *source* vertex.

The *single-source shortest paths* problem is to find the shortest path from s to every other vertex in the graph (as opposed to the *all-pairs shortest paths problem*, where we must find the distance between every pair of vertices).

Dijkstra's algorithm

© Tim French

Dijkstra's algorithm is a famous single-source shortest paths algorithm suitable for the cases when the weights are all non-negative.

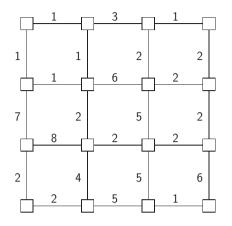
Dijkstra's algorithm can be implemented as a priority-first search by taking the priority of a vertex $v \in Q$ to be the shortest path from s to v that consists entirely of vertices in the priority-first search tree (except of course for v).

This can be implemented as a PFS by replacing PRIORITY with

key[u] + weight(u,v)

At the end of the search, the array key[] contains the lengths of the shortest paths from the source vertex s.

Dijkstra's algorithm in action

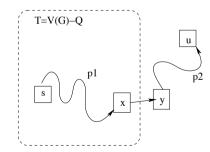


© Tim French

CITS2200 Shortest Path Algorithms Slide 9

Proof (contd)

The decomposed path may be illustrated thus.



Firstly, we know $key[y]=\delta(s,y)$ since the edge (x,y) will have been examined when x was added to T.

Furthermore, we know that y is before u on path p and therefore $\delta(s, y) \leq \delta(s, u)$. This implies $key[y] \leq key[u]$ (inequality A). **Proof of correctness**

It is possible to prove that Dijkstra's algorithm is correct by proving the following claim (assuming T = V(G) - Q is the set of vertices that have already been removed from Q).

At the time that a vertex u is removed from Q and placed into T $key[u] = \delta(s, u).$

This is a proof by contradiction, meaning that we try to prove $key[u] \neq \delta(s, u)$ and if we fail then we will have proved the opposite.

Assuming $u\neq s$ then $T\neq \emptyset$ and there exists a path p from s to u. We can decompose the path into three sections:

- 1. A path p_1 from s to vertex x, such that $x\in T$ and the path is of length 0 or more.
- 2. An edge between x and y, such that $y \in Q$ and $(x, y) \in E(G)$.
- 3. A path p_2 from y to u of length 0 or more.

© Tim French

CITS2200 Shortest Path Algorithms Slide 10

Proof (contd)

But we also know that u was chosen from Q before y which implies $key[u] \le key[y]$ (inequality B) since the priority queue always returns the vertex with the smallest key.

Inequalities A and B can only be satisfied if key[u] = key[y] but this implies

$$key[u] = \delta(s, u) = \delta(s, y) = key[y]$$

But our initial assumption was that $key[u] \neq \delta(s, u)$ giving rise to the contradiction. Hence we have proved that $key[u] = \delta(s, u)$ at the time that u enters T.

Relaxation

Consider the following property of Dijkstra's algorithm.

• At any stage of Dijkstra's algorithm the following inequality holds:

```
\delta(s,v) \leq key[v]
```

This is saying that the key[] array always holds a collection of *upper bounds* on the actual values that we are seeking. We can view these values as being our "best estimate" to the value so far, and Dijkstra's algorithm as a procedure for systematically improving our estimates to the correct values.

The fundamental step in Dijkstra's algorithm, where the bounds are altered is when we examine the edge $\left(u,v\right)$ and do the following operation

```
key[v] \leftarrow \min(key[v], key[u] + weight(u, v))
```

This is called *relaxing* the edge (u, v).

© Tim French

CITS2200 Shortest Path Algorithms Slide 13

Negative edge weights

Dijkstra's algorithm cannot be used when the graph has some negative edge-weights (why not? find an example).

In general, no algorithm for shortest paths can work if the graph contains a cycle of negative total weight (because a path could be made arbitrarily short by going round and round the cycle). Therefore the question of finding shortest paths makes no sense if there is a negative cycle.

However, what if there are some negative edge weights but no negative cycles?

The Bellman-Ford algorithm is a relaxation schedule that can be run on graphs with negative edge weights. It will either *fail* in which case the graph has a negative cycle and the problem is ill-posed, or will finish with the single-source shortest paths in the array d[].

Relaxation schedules

Consider now an algorithm that is of the following general form:

- Initially an array d[] is initialized to have d[s] = 0 for some source vertex s and $d[v] = \infty$ for all other vertices
- \bullet A sequence of edge relaxations is performed, possibly altering the values in the array d[].

We observe that the value d[v] is always an upper bound for the value $\delta(s,v)$ because relaxing the edge (u,v) will either leave the upper bound unchanged or replace it by a better estimate from an upper bound on a path from $s \to u \to v$.

Dijkstra's algorithm is a particular schedule for performing the edge relaxations that guarantees that the upper bounds converge to the exact values.

© Tim French

CITS2200 Shortest Path Algorithms Slide 14

Bellman-Ford algorithm

The initialization step is as described above. Let us suppose that the weights on the edges are given by the function w.

Then consider the following relaxation schedule:

```
\begin{array}{l} \text{for } i=1 \text{ to } |V(G)|-1 \text{ do} \\ \text{for each edge } (u,v) \in E(G) \text{ do} \\ d[v] \leftarrow \min(d[v],d[u]+w(u,v)) \\ \text{end for each} \\ \text{end for} \end{array}
```

Finally we make a single check to determine if we have a failure:

```
for each edge (u, v) \in E(G) do
if d[v] > d[u] + w(u, v) then
FAIL
end if
end for each
```

© Tim French

Complexity of Bellman-Ford

The complexity is particularly easy to calculate in this case because we know exactly how many relaxations are done — namely E(V - 1), and adding that to the final failure check loop, and the initialization loop we see that Bellman-Ford is O(EV)

There remains just one question — how does it work?

Staring at the ceiling, she asked me what I was thinking about.	I should have made something up.	The Bellman-Ford algorithm makes terrible pillow talk.
Ŕ	Â	Ŕ

© Tim French

CITS2200 Shortest Path Algorithms Slide 17

Now at the initialization stage d[s]=0 and it always remains the same. After one pass through the main loop the edge (s,v_1) is relaxed and by Property 1, $d[v_1]=\delta(s,v_1)$ and it remains at that value. After the second pass the edge (v_1,v_2) is relaxed and after this relaxation we have $d[v_2]=\delta(s,v_2)$ and it remains at this value.

As the number of edges in the path is at most |V(G)| - 1, after all the loops have been performed $d[v] = \delta(s, v)$.

Note that this is an inductive argument where the induction hyptohesis is "after n iterations, all shortest paths of length n have been found".

Correctness of Bellman-Ford

Let us consider some of the properties of relaxation in a graph with no negative cycles.

Property 1 Consider an edge (u, v) that lies on the shortest path from s to v. If the sequence of relaxations includes relaxing (u, v) at a stage when $d[u] = \delta(s, u)$, then d[v] is set to $\delta(s, v)$ and never changes after that.

Once convinced that Property 1 holds we can show that the algorithm is correct for graphs with no negative cycles, as follows.

Consider any vertex v and let us examine the shortest path from s to v, namely

 $s \sim v_1 \sim v_2 \cdots v_k \sim v$

© Tim French

CITS2200 Shortest Path Algorithms Slide 18

All-pairs shortest paths

Recall the Shortest Path Problem in Topic ??.

Now we turn our attention to constructing a complete table of shortest distances, which must contain the shortest distance between any pair of vertices.

If the graph has no negative edge weights then we could simply make V runs of Dijkstra's algorithm, at a total cost of $O(VE \lg V)$, whereas if there are negative edge weights then we could make V runs of the Bellman-Ford algorithm at a total cost of $O(V^2E)$.

The two algorithms we shall examine both use the adjacency matrix representation of the graph, hence are most suitable for dense graphs. Recall that for a weighted graph the weighted adjacency matrix A has weight(i, j) as its ij-entry, where $weight(i, j) = \infty$ if i and j are not adjacent.

A dynamic programming method

Dynamic programming is a general algorithmic technique for solving problems that can be characterised by two features:

- The problem is broken down into a collection of smaller subproblems
- The solution is built up from the stored values of the solutions to all of the subproblems

For the all-pairs shortest paths problem we define the simpler problem to be

"What is the length of the shortest path from vertex $i \mbox{ to } j$ that uses at most m edges?"

We shall solve this for m=1, then use that solution to solve for m=2, and so on \ldots

© Tim French

CITS2200 Shortest Path Algorithms Slide 21

© Tim French

The initial step

 $D^{(3)}$ and so on.

The case m = 1

 $D^{(1)}$ is just the adjacency matrix A.

 $d_{ii}^{(m)}$.

CITS2200 Shortest Path Algorithms Slide 22

The inductive step

What is the smallest weight of the path from vertex i to vertex j that uses at most m edges? Now a path using at most m edges can either be

(1) A path using less than m edges

(2) A path using exactly m edges, composed of a path using m-1 edges from i to an auxiliary vertex k and the edge (k, j).

We shall take the entry $d_{ij}^{(m)}$ to be the lowest weight path from the above choices.

Therefore we get

$$\begin{split} d_{ij}^{(m)} &= \min\left(d_{ij}^{(m-1)}, \min_{1 \leq k \leq V} \{d_{ik}^{(m-1)} + w(k, j)\}\right) \\ &= \min_{1 \leq k \leq V} \{d_{ik}^{(m-1)} + w(k, j)\} \end{split}$$

Example

Consider the weighted graph with the following weighted adjacency matrix:

We shall let $d_{ij}^{(m)}$ denote the distance from vertex *i* to vertex *j* along a path that

uses at most m edges, and define $D^{(m)}$ to be the matrix whose ij-entry is the value

As a shortest path between any two vertices can contain at most V-1 edges, the

Our overall plan therefore is to use $D^{(1)}$ to compute $D^{(2)}$, then use $D^{(2)}$ to compute

Now the matrix $D^{(1)}$ is easy to compute — the length of a shortest path using at

most one edge from i to j is simply the weight of the edge from i to j. Therefore

matrix $D^{(V-1)}$ contains the table of all-pairs shortest paths.

$$A = D^{(1)} = \begin{pmatrix} 0 & \infty & 11 & 2 & 6 \\ 1 & 0 & 4 & \infty & \infty \\ 10 & \infty & 0 & \infty & \infty \\ \infty & 2 & 6 & 0 & 3 \\ \infty & \infty & 6 & \infty & 0 \end{pmatrix}$$

Let us see how to compute an entry in ${\cal D}^{(2)}\text{,}$ suppose we are interested in the (1,3) entry:

 $\begin{array}{ll} 1 \rightarrow 1 \rightarrow 3 \text{ has cost } 0+11 = 11 & 1 \rightarrow 2 \rightarrow 3 \text{ has cost } \infty + 4 = \infty \\ 1 \rightarrow 3 \rightarrow 3 \text{ has cost } 11+0 = 11 & 1 \rightarrow 4 \rightarrow 3 \text{ has cost } 2+6 = 8 \\ 1 \rightarrow 5 \rightarrow 3 \text{ has cost } 6+6 = 12 \end{array}$

The minimum of all of these is 8, hence the (1,3) entry of $D^{(2)}$ is set to 8.

Computing $D^{(2)}$

1	(0	∞	11	2	6	11	0	∞	11	2	6)						5)	۱
	1	0	4	∞	∞		1	0	4	∞	∞		1	0	4	3	7	
	10	∞	0	∞	∞		10	∞	0	∞	∞	=	10	∞	0	12	16	
					3								3	2	6	0	3	
	(∞)	∞	6	∞	0		∞	∞	6	∞	0)		16	∞	6	∞	0)	

If we multiply two matrices AB = C, then we compute

$$c_{ij} = \sum_{k=1}^{k=V} a_{ik} b_{kj}$$

If we replace the multiplication $a_{ik}b_{kj}$ by addition $a_{ik} + b_{kj}$ and replace summation Σ by the minimum min then we get

$$c_{ij} = \min_{k=1}^{k=V} a_{ik} + b_{kj}$$

which is precisely the operation we are performing to calculate our matrices.

© Tim French

CITS2200 Shortest Path Algorithms Slide 25

The remaining matrices

Proceeding to compute $D^{(3)} \mbox{ from } D^{(2)} \mbox{ and } A,$ and then $D^{(4)} \mbox{ from } D^{(3)} \mbox{ and } A$ we get:

$$D^{(3)} = \begin{pmatrix} 0 & 4 & 8 & 2 & 5 \\ 1 & 0 & 4 & 3 & \boxed{6} \\ 10 & \boxed{14} & 0 & 12 & \boxed{15} \\ 3 & 2 & 6 & 0 & 3 \\ 16 & \infty & 6 & \boxed{18} & 0 \end{pmatrix} \qquad D^{(4)} = \begin{pmatrix} 0 & 4 & 8 & 2 & 5 \\ 1 & 0 & 4 & 3 & 6 \\ 10 & 14 & 0 & 12 & 15 \\ 3 & 2 & 6 & 0 & 3 \\ 16 & \boxed{20} & 6 & 18 & 0 \end{pmatrix}$$

© Tim French

CITS2200 Shortest Path Algorithms Slide 26

A new matrix "product"

Recall the method for computing $d_{ij}^{(m)}$, the (i, j) entry of the matrix $D^{(m)}$ using the method similar to matrix multiplication.

 $\begin{array}{l} d_{ij}^{(m)} \leftarrow \infty \\ \text{for } k = 1 \text{ to } V \text{ do} \\ d_{ij}^{(m)} = \min(d_{ij}^{(m)}, d_{ik}^{(m-1)} + w(k,j)) \\ \text{end for} \end{array}$

Let us use \star to denote this new matrix product.

Then we have

$$D^{(m)} = D^{(m-1)} \star A$$

Hence it is an easy matter to see that we can compute as follows:

$$D^{(2)} = A \star A$$
 $D^{(3)} = D^{(2)} \star A \dots$

Complexity of this method

The time taken for this method is easily seen to be ${\cal O}(V^4)$ as it performs V matrix "multiplications" each of which involves a triply nested for loop with each variable running from 1 to V.

However we can reduce the complexity of the algorithm by remembering that we do not need to compute *all* the intermediate products $D^{(1)}$, $D^{(2)}$ and so on, but we are only interested in $D^{(V-1)}$. Therefore we can simply compute:

$$D^{(2)} = A \star A$$
$$D^{(4)} = D^{(2)} \star D^{(2)}$$
$$D^{(8)} = D^{(4)} \star D^{(4)}$$

Therefore we only need to do this operation at most $\lg V$ times before we reach the matrix we want. The time required is therefore actually $O(V^3 \lceil \lg V \rceil)$.

Flovd-Warshall

The Floyd-Warshall algorithm uses a different dynamic programming formalism.

For this algorithm we shall define $d_{ii}^{(k)}$ to be the length of the shortest path from i to *i* whose intermediate vertices all lie in the set $\{1, \ldots, k\}$.

As before, we shall define $D^{(k)}$ to be the matrix whose (i, j) entry is $d_{ij}^{(k)}$.

The initial case

What is the matrix $D^{(0)}$ — the entry $d_{ii}^{(0)}$ is the length of the shortest path from i to *i* with *no* intermediate vertices. Therefore $D^{(0)}$ is simply the adjacency matrix Α.

The inductive step

For the inductive step we assume that we have constructed already the matrix $D^{(k-1)}$ and wish to use it to construct the matrix $D^{(k)}$.

Let us consider all the paths from *i* to *j* whose intermediate vertices lie in $\{1, 2, \ldots, k\}$. There are two possibilities for such paths

(1) The path does not use vertex k(2) The path does use vertex k

The shortest possible length of all the paths in category (1) is given by $d_{ij}^{(k-1)}$ which we already know.

If the path does use vertex k then it must go from vertex i to k and then proceed on to j, and the length of the shortest path in this category is $d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

© Tim French

CITS2200 Shortest Path Algorithms Slide 29

The overall algorithm

The overall algorithm is then simply a matter of running V times through a loop. with each entry being assigned as the minimum of two possibilities. Therefore the overall complexity of the algorithm is just $O(V^3)$.

 $D^{(0)} \leftarrow A$ for k = 1 to V do for i = 1 to V do for j = 1 to V do $\tilde{d}_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ end for jend for *i* end for k

At the end of the procedure we have the matrix $D^{(V)}$ whose (i, j) entry contains the length of the shortest path from i to j, all of whose vertices lie in $\{1, 2, \dots, V\}$ — in other words, the shortest path in total.

Example

© Tim French

Consider the weighted directed graph with the following adjacency matrix:

$$D^{(0)} = \begin{pmatrix} 0 & \infty & 11 & 2 & 6 \\ 1 & 0 & 4 & \infty & \infty \\ 10 & \infty & 0 & \infty & \infty \\ \infty & 2 & 6 & 0 & 3 \\ \infty & \infty & 6 & \infty & 0 \end{pmatrix} \qquad D^{(1)} = \begin{pmatrix} 0 & \infty & 11 & 2 & 6 \\ 1 & 0 & 4 & & \\ 10 & \infty & 0 & & \\ \infty & 2 & 6 & 0 & 3 \\ \infty & \infty & 6 & \infty & 0 \end{pmatrix}$$

To find the (2,4) entry of this matrix we have to consider the paths through the vertex 1 — is there a path from 2 - 1 - 4 that has a better value than the current path? If so, then that entry is updated.

The entire sequence of matrices

$$D^{(2)} = \begin{pmatrix} 0 & \infty & 11 & 2 & 6 \\ 1 & 0 & 4 & 3 & 7 \\ 10 & \infty & 0 & 12 & 16 \\ 3 & 2 & 6 & 0 & 3 \\ \infty & \infty & 6 & \infty & 0 \end{pmatrix} \qquad D^{(3)} = \begin{pmatrix} 0 & \infty & 11 & 2 & 6 \\ 1 & 0 & 4 & 3 & 7 \\ 10 & \infty & 0 & 12 & 16 \\ 3 & 2 & 6 & 0 & 3 \\ 16 & \infty & 6 & 18 & 0 \end{pmatrix}$$
$$D^{(4)} = \begin{pmatrix} 0 & 4 & 8 & 2 & 5 \\ 1 & 0 & 4 & 3 & 6 \\ 10 & 14 & 0 & 12 & 15 \\ 3 & 2 & 6 & 0 & 3 \\ 16 & 20 & 6 & 18 & 0 \end{pmatrix} \qquad D^{(5)} = \begin{pmatrix} 0 & 4 & 8 & 2 & 5 \\ 1 & 0 & 4 & 3 & 6 \\ 10 & 14 & 0 & 12 & 15 \\ 3 & 2 & 6 & 0 & 3 \\ 16 & 20 & 6 & 18 & 0 \end{pmatrix}$$

Finding the actual shortest paths

In both of these algorithms we have not addressed the question of actually finding the paths themselves.

For the Floyd-Warshall algorithm this is achieved by constructing a further sequence of arrays $P^{(k)}$ whose (i, j) entry contains a predecessor of j on the path from i to j. As the entries are updated the predecessors will change — if the matrix entry is not changed then the predecessor does not change, but if the entry does change, because the path originally from i to j becomes re-routed through the vertex k, then the predecessor of j on the path from k to j.

© Tim French

CITS2200 Shortest Path Algorithms Slide 33

© Tim French

CITS2200 Shortest Path Algorithms Slide 34

Summary

- 1. Priority first search generalizes Prim's algorithm
- 2. Dijkstra's Algorithm is a priority-first search that can solve the shortest path problem in time ${\rm O}(E\lg V)$, provided all graph edges have non-negative edge weights.
- 3. The Bellman-Ford algorithm can solve all shortest path problems and runs in time ${\rm O}(EV).$
- 4. Dynamic Programming is a general approach for solving problems which can be decomposed into sub-problems and where solutions to sub-problems can be combined to solve the main problem.
- 5. Dynamic Programming can be used to solve the shortest path problem directly or via the Floyd-Warshall formulation.