
CITS2200 Data Structures and Algorithms

Topic 13

Priority Queues

• The PQueue ADT

• A linked implementation

• Heaps

• A heap implementation of a priority queue

• Heapsort

Reading: Weiss Section 6.9 and Chapter 21
c© Tim French CITS2200 Priority Queues Slide 1

1. Priority Queues

A priority queue is an extension of the queue ADT. In a priority queue however,
when an item is added to the queue, it is assigned a priority (an integer) to indicate
the relative importance of the item.

Instead of storing items in chronological order, a priority queue archives items with
the highest priority before all others.

Items are no longer removed on a first-in-first-out basis — items are removed de-
pending on their priority, with items of equal priority processed in chronological
order.

Example uses include:

• scheduling services — eg distributing CPU time among several threads

• optimization algorithms — such as Prim’s algorithms, Dijkstra’s Algorithm, A∗

• sorting

c© Tim French CITS2200 Priority Queues Slide 2

2. PQueue Specification

! Constructors

1. PQueue(): initialises an empty priority queue.

! Checkers

2. isEmpty(): returns true if the priority queue is empty.

!Manipulators

3. enqueue(e, k): places e in the priority queue with key (or priority) k, or throws
an exception if k is negative. The item is placed in front of all elements with
lesser priority, but behind all others.

4. examine(): returns the element at the front of the queue, or throws an exception
if the queue is empty.

5. dequeue(): removes the element at the front of the queue and returns it, or
throws an exception if the queue is empty.

c© Tim French CITS2200 Priority Queues Slide 3

2.1 Example

PQueue p = new PQueue(); []

p.enqueue(’a’, 1); [<a,1>]

p.enqueue(’b’, 3); [<b,3>, <a,1>]

p.enqueue(’c’, 3); [<b,3>, <c,3>, <a,1>]

p.enqueue(’d’, 2); [<b,3>, <c,3>, <d,2>, <a,1>]

p.dequeue(); [<c,3>, <d,2>, <a,1>]
// b is returned.

c© Tim French CITS2200 Priority Queues Slide 4

3. Linked Implementation

/**
* A Linked Priority Queue for the generic type E
**/
public class PQueueLinked<E> {

// Only one link is required!
private Link<E> front;

// Constructor
public PQueueLinked() {
front = null;

}

c© Tim French CITS2200 Priority Queues Slide 5

3.1 A Link Inner Class

/**
* An inner class to hold the element, the successor,
* and the priority
**/
private class Link<E> {
E element;
int priority;
Link<E> next;

public Link(E e, int p, Link<E> n) {
this.element = e;
this.priority = p;
this.next = n;

}

}

c© Tim French CITS2200 Priority Queues Slide 6

3.2 isEmpty, examine, and dequeue

The process of checking to see if the priority queue is empty, examining the front
element, or dequeuing the front element can all be done in the same way as for the
queue ADT.

priority

a 1 b 2 c 3

front

element

c© Tim French CITS2200 Priority Queues Slide 7

public boolean isEmpty() {return front == null;}

public E examine() throws Exception {
if (!isEmpty()) {
return (E) front.element;

} else throw new Exception("Empty Queue");
}

public E dequeue() throws Exception {
if (!isEmpty()) {
E temp = (E) front.element;
front = front.next;
return temp;

} else throw new Exception("Empty Queue");
}

c© Tim French CITS2200 Priority Queues Slide 8

3.3 Enqueuing

To enqueue, we start at the front of the queue and keep moving back until we find
some element of lesser priority, or reach the end of the queue.

We then insert the new element in front of the lesser element.

public void enqueue(E e, int p) {
if (isEmpty() || p > front.priority) {
front = new Link<E>(e, p, front);

} else {
Link<E> l = front;
while (l.next != null && l.next.priority >= p) {
l = l.next;

}
l.next = new Link<E>(e, p, l.next);

}
}

c© Tim French CITS2200 Priority Queues Slide 9

3.4 Performance

• enqueue: This operation is performed by iterating through the queue from the
front to the back until the correct location to insert the new element is found.
In the worst case, the entire queue will be examined ⇒ O(n) where n is the
size of the queue.

• examine: This operation simply returns the element at the front of the queue
⇒ O(1).

• dequeue: This operation returns the element at the front of the queue and
updates the value of front ⇒ O(1).

c© Tim French CITS2200 Priority Queues Slide 10

4. Heap Implementation

The Heap data structure is based on a binary tree, where each node of the tree
contains an element and a key (an integer) — effectively the priority of the element.

A heap has the added property that the key associated with any node is greater
than or equal to the key associated with either of its children.

⇒ the root of the binary tree has the largest key.

Note also that there is no requirement to order the left and right children of a node.

c© Tim French CITS2200 Priority Queues Slide 11

5 1 2 6 40 50 11

15 7 55 23

23 78

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

Just like the infinite binary tree, we store the heap as a linear array:

99 23 78 15 7 55 23 5 1 2 6 40 50 11

The bottom level of the binary tree, if not complete, is filled from the left.

c© Tim French CITS2200 Priority Queues Slide 12

4.1 Parents and Children

Suppose the array A is indexed from 1.

Then A[1] holds the root of the binary tree, which by the heap property is, the
element with the largest key value.

The two children of the root are stored in A[2] and A[3].

In general, the left child of node i is 2i and the right child is 2i + 1.

Conversely, the parent of node i is #i/2$.

⇒ operations to determine both the parent and children of a node are O(1).

c© Tim French CITS2200 Priority Queues Slide 13

4.2 Heapify

Most of the operations we wish to perform on the heap will alter the data structure.
Often these operations will destroy the heap property and it will have to be restored.

For example, suppose we decide to alter the value associated with one of the nodes
— eg we wish to set A[3] = 10.

5 1 2 6 40 50 11

15 7 55 23

23 78

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

c© Tim French CITS2200 Priority Queues Slide 14

Making the change is trivial, but the resulting structure is no longer a heap — the
entry A[3] is no longer larger than both of its children.

5 1 2 6 40 50 11

15 7 55 23

23 10

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

c© Tim French CITS2200 Priority Queues Slide 15

We can rectify this by swapping A[3] with the larger of its two children.

5 1 2 6 40 50 11

15 7 10 23

23 55

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

This means that the problem at A[3] has been fixed — however, we may have
introduced a problem at A[6].

c© Tim French CITS2200 Priority Queues Slide 16

So we now examine A[6] and if it is smaller than its children we perform another
exchange.

We continue recursively checking the swapped child until we restore the heap prop-
erty or reach the end of the tree.

The procedure outlined above, whereby a small element “percolates” down the tree
is called heapify.

Heapify takes a position i in the tree as an argument and iterates down the tree
from i, swapping entries if necessary until the heap property is restored.

Heapify assumes that the two children of i are proper heaps, but that the key value
A[i] may not be larger than the key values of its children.

c© Tim French CITS2200 Priority Queues Slide 17

5 1 2 6 40 10 11

15 7 50 23

23 55

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

c© Tim French CITS2200 Priority Queues Slide 18

4.3 Complexity of heapify

A balanced binary tree with n elements in it has a height of log n and hence heapify
performs at most log n exchanges.

⇒ heapify is O(logn).

Consider now how all the operations necessary for a priority queue can be accom-
plished by using a heap together with heapify. . .

c© Tim French CITS2200 Priority Queues Slide 19

4.4 Performance

• enqueue: The key is entered at the end of the array (ie, in the last position in
the tree). The resulting structure may not be a heap, because the value of the
new key may be greater than its parent. If this is the case, exchange the two
keys and proceed to examine the parent. In the worst case, log n exchanges will
have to be done ⇒ O(log n).

• examine: The root of the binary tree is the entry with the largest key value.
Hence, merely return the root of the tree ⇒ O(1).

• dequeue: In this case, we must also delete the root node from the tree and then
restore the heap property. This can be achieved by moving the final entry in the
tree to the newly-vacated root position and then calling heapify(1) to restore
the heap property. This involves a few constant time operations, together with
one call to heapify ⇒ O(logn).

c© Tim French CITS2200 Priority Queues Slide 20

4.5 Heapsort

The heap data structure allows us to implement a relatively efficient sorting proce-
dure. Suppose we are given an unordered array containing a number of integers (or
objects that can be completely ordered) that we wish to arrange from highest to
lowest. Suppose there are n elements in the array.

Imagine enqueuing each of the elements into a priority queue with a priority equal
to their value. This involves n operations at O(logn) each ⇒ O(n logn).

We can then dequeue each element into an array; the elements being dequeued in
sorted order. This involves n operations at O(log n) each ⇒ O(n log n).

⇒ overall complexity isO(n log n), which is optimal for sorting using comparisons.

c© Tim French CITS2200 Priority Queues Slide 21

4.6 Pseudo-code for Heapsort

int[] heapSort(int[] arr) {
// Create a priority queue
PQueue p = new PQueue();
// Add in the elements with themselves as the key
for (int i : arr) {
p.enqueue(i, i);

}

// Create a new array to store the result
int[] ans = new int[arr.length];
// Dequeue the elements from the priority queue into ans
for (int i = 0; i < ans.length; i++) {

ans[i] = p.dequeue();
}
return ans;

}

c© Tim French CITS2200 Priority Queues Slide 22

5. Performance Comparison

Operation Linked Heap
enqueue n log n
examine 1 1
dequeue 1 log n

c© Tim French CITS2200 Priority Queues Slide 23

6. Summary

• Priority queues behave like queues except elements are enqueued with a priority
and are returned in order of their priority

• Linked representation

– based on maintaining the elements in sorted priority order

– constant time examination and dequeuing

– linear time enqueuing

• Heap representation

– based on maintaining elements in a heap: elements are stored in a binary tree
with the added property that all nodes have a greater than or equal value to
both of its children.

– constant time examination

– logarithmic time enqueuing and dequeuing

c© Tim French CITS2200 Priority Queues Slide 24

