CITS2200 Data Structures and Algorithms

Topic 6

Performance Analysis 1: Introduction

e Types of performance measurement
— empirical
— analytical
e An example of analytical analysis using Queue

e Introduction to growth rates

Reading: Weiss Chapter 5.

© Tim French CITS2200 Performance Analysis 1: Introduction  Slide 1

Can compare data structures on the same problems (same machine, same compiler,
etc)

= benchmark programs

e Useful if test input is close to expected input.

e Not much use if we are developing eg a library of modules for use in many
different contexts

In some cases, it is not feasible to test a programme “in the field” (e.g. nuclear
weapons systems). Here, we may construct a (computer) model of the system and
evaluate performance with simulated data.

A computer program normally acts as its own model — run on simulated data
(often generated using pseudo-random numbers).

However, a simplified model may be built or the program modified to fit the simu-
lated data.

@© Tim French CITS2200  Performance Analysis 1: Introduction  Slide 3

1. Types of Performance Measurement

Empirical measurement

We will see that the most efficient queue ADT to use depends on the program that
uses it — which operations are used most often.

If we have access to the program(s), we may be able to measure the performance
in those programs, on real data — called evaluation in context.

This is the “get yer hands dirty” approach. Run the system with real-world input
and observe, or monitor (automatically), the results.

@© Tim French CITS2200  Performance Analysis 1: Introduction ~ Slide 2

Advantages

e nondestructive
e cheap
o fast

e reproducible
Disadvantages

e only as good as the simulations

e can never be sure it matches reality

@© Tim French CITS2200  Performance Analysis 1: Introduction  Slide 4



Analytical Measurement

Construct a mathematical or theoretical model — use theoretical techniques to
estimate system performance.

Usually

e coarse estimates
e growth rates, complexity classes rather than ‘actual’ time

® worst case or average case

But...!

© Tim French CITS2200 Performance Analysis 1: Introduction  Slide 5

2. Example: A Basic Analysis of the Queue ADTs

As an example of comparison of ADT performance we consider different represen-
tations of queues using a crude time estimate

Simplifying assumptions:

e each high-level operation (arithmetic operation, Boolean operation, subscripting,
assignment) takes 1 time unit

e conditional statement takes 1 time unit + time to evaluate Boolean expression
+ time taken by most time consuming alternative (worst-case assumption)

o field lookup (“dot” operation) takes 1 time unit

e method takes 1 (for the call) plus 1 for each argument (since each is an assign-
ment)

e creating a new object (from a different class) takes 7, time units

@© Tim French CITS2200  Performance Analysis 1: Introduction  Slide 7

e fundamental view of behaviour — less susceptible to

—speed of hardware, number of other processes run
— choice of data sets

— unrepresentative examples, spurious responses
e gives a better understanding of the problems

—why is it slow?

— could it be improved?

We will concentrate on analytical analyses.

®© Tim French

ning, etc

CITS2200  Performance Analysis 1: Introduction  Slide 6

2.1 Block Representation Queues (Without Wraparound)

public QueueBlock (int size) {
items = new Object[sizel;
first = 0;
last = -1;

}

5 + T, time units
public boolean isEmpty () {return first

4 time units

//2
//1+Tc
//1
//1

== last + 1;}

public boolean isFull () {return last == items.length - 1;}

5 time units

© Tim French

CITS2200  Performance Analysis 1: Introduction  Slide §



public void enqueue (Object a) throws Overflow { //2 Exercise:

if (1isFull()) { /77
last++: //1 How many time units for each of the following. ..
items[last] = a; //2

public Object examine () throws Underflow {
if (!isEmpty()) return items[first];
else throw new Underflow("examining empty queue");

}

else throw new Overflow("enqueuing to full queue");
J }
12 time units
public Object dequeue() throws Underflow {
if (lisEmpty()) {
Object a = items[first];
first++;
return a;

}

else throw new Underflow("dequeuing from empty queue");

}

© Tim French CITS2200 Performance Analysis 1: Introduction  Slide 9 @© Tim French CITS2200 Performance Analysis 1: Introduction  Slide 10

Summary for Block Implementation 2.2 Recursive (Linked) Representation Queues

isEmpty, enqueue, examine and dequeue are constant time operations

. . . . . ublic QueueLinked ()
Queue is constant time if T, is constant time P . q {
first = null;

last = null;

}

3 time units
public boolean isEmpty () {return first == null;}

3 time units

@© Tim French CITS2200  Performance Analysis 1: Introduction  Slide 11 @© Tim French CITS2200 Performance Analysis 1: Introduction  Slide 12



public void enqueue (Object a) { //2

if (isEmpty()) { //4
first = new Link(a,null); //1+Tc
last = first; //1

}

else {
last.successor = new Link(a,null); //2+Tc
last = last.successor; //2

}
}

10 + 7. time units

public Object examine () throws Underflow {
if ('isEmpty()) return first.item;
else throw new Underflow("examining empty queue");

}

8 time units
@© Tim French CITS2200 Performance Analysis 1: Introduction Slide 13
Comparison. ..
‘ block recursive ‘

Queve |5+ T, 3

isEmpty| 4 3

enqueue| 12 10 + T,

examine| 9 8

dequeue| 11 16

...shows no clear winner, especially given

e estimates are very rough — many assumptions

e dependent on relative usage of operations in the programs calling the ADT —
eg. is isEmpty used more or less than dequeue

We will generally not be interested in these “small” differences (eg 5 time units vs
3 time units) — given the assumptions made these are not very informative.

Rather we will be interested in classifying operations according to rates of growth. . .

@© Tim French CITS2200  Performance Analysis 1: Introduction  Slide 15

public Object dequeue () throws Underflow { //1

if (1isEmpty()) { /75
Object ¢ = first.item; //2
first = first.successor; //2
if (isEmpty()) 1last = null; //5
return c; //1

}

else throw new Underflow("dequeuing from empty queue");

}

16 time units

Summary for Linked Implementation

Again all are constant time, assuming 7., is.

@© Tim French CITS2200  Performance Analysis 1: Introduction  Slide 14

3. Growth Rates

For comparative purposes, exact numbers are pretty irrelevant! It is the rate of
growth that is important.

We will abstract away from inessential detail. ..

e ignore specific values of input and just consider the number of items, or “size”
of input

e ignore precise duration of operations and consider the number of (specific) op-
erations as an abstract measure of time

e ignore actual storage space occupied by data elements and consider the number
of items stored as an abstract measure of space

@© Tim French CITS2200  Performance Analysis 1: Introduction  Slide 16



4. Summary

Two main types of performance measurement — empirical and analytical.

We will concentrate on analytical:

e fundamental view of behaviour
e abstracts away from machine, data sets, etc

e helps in understanding data structures and their implementations

Rather than attempting ‘fine grained’ analysis that compares small differences, we
will concentrate on a coarser (but more robust) analysis in terms of rates of growth.

© Tim French CITS2200 Performance Analysis 1: Introduction  Slide 17



