
CITS2200 Data Structures and Algorithms

Topic 3

Recursive Data Structures

• Review of recursion: mathematical functions

• Recursive data structures: Stacks and Lists

• Implementing linked stacks in Java

• Java and pointers

• Trees

Reading: Weiss, Chapter 6 and 7
c© Tim French CITS2200 Recursive Data Structures Slide 1

1. Recursion

Powerful technique for solving problems which can be expressed in terms of smaller
problems of the same kind.

In the previous lecture we saw recursion in the QuickSort Algorithm:

procedure QUICKSORT(A, p, r)
if p < r

then q ← PARTITION(A, p, r)
QUICKSORT(A, p, q − 1); QUICKSORT(A, q + 1, r)

c© Tim French CITS2200 Recursive Data Structures Slide 2

Recursion is:

• powerful — can solve arbitrarily large problems

• concise — code doesn’t increase in size with problem

• closely linked to the very important proof technique called mathematical induc-
tion.

• not necessarily efficient

– we’ll see later that the time taken by this implementation of multiplication
increases with approximately the square of the second argument

– long multiplication taught in school is approximately linear in the number of
digits in the second argument

c© Tim French CITS2200 Recursive Data Structures Slide 3

2. Recursive Data Structures

Recursive programs usually operate on recursive data structures

⇒ data structure defined in terms of itself

2.1 Lists

A list may be defined recursively as follows:

• an empty list (or null list) is a list

• an item followed by (or linked to) a list is a list

Notice that the definition is like a recursive program — it has a base case and a
recursive case!

c© Tim French CITS2200 Recursive Data Structures Slide 4

Building a list. . .

nulla

nullabc

nullab

null link

c© Tim French CITS2200 Recursive Data Structures Slide 5

2.2 List ADT

As an abstract data type, a list should allow us to:

1. Construct an empty list

2. Insert an element into the list

3. Look at an element in the list

4. Delete an element from the list

5. Move up and down the list

We will specify the List ADT more formally later . . .

For now, we will just look at a simpler data structure called a stack that allows us
to insert, delete, and examine only the first element in the list.

c© Tim French CITS2200 Recursive Data Structures Slide 6

3. A Stack Class in Java

3.1 The Links

Defined recursively. . .

// link class for chars
class Link {

Object item; // the item stored in this link
LinkChar successor; // the link stored in this link

Link (Object c, LinkChar s) {item = c; successor = s;}
}

Notice that the constructor makes a new link from an item and an existing link.

c© Tim French CITS2200 Recursive Data Structures Slide 7

3.2 The Linked List

Next we need an object to “hold” the links. We will call this LinkedStack.

Contains a variable which is either equal to “null” or to the first link (which in
turn contains any other links), so it must be of type Link. . .

class LinkedStack {
Link first;

}

Now the methods. . .

c© Tim French CITS2200 Recursive Data Structures Slide 8

Link successor; //the link stored in this linkLink successor;

Link (Object c, Link s) { item=c; successor=s}
}

• Constructing an empty stack

class LinkedStack {

Link first;

LinkedStack () {first = null;} // constructor
}

Conceptually, think of this as assigning a “null object” (an empty stack) to first.
(Technically it makes first a null-reference, but don’t worry about this subtlety
for now.)

c© Tim French CITS2200 Recursive Data Structures Slide 9

• Adding to the stack

class LinkedStack {
Link first;
LinkedStack () {first = null;}

// insert a char at the front of the list
void insert (Object o) {first = new Link(o, first);}

}

c© Tim French CITS2200 Recursive Data Structures Slide 10

nulla

nullabc

nullab

nullfirst =

first =

first =

first =

c© Tim French CITS2200 Recursive Data Structures Slide 11

To create the stack shown above, the class that uses LinkedStack,
say LinkedStackTest, would include something like. . .

LinkedStack myStack; // myStack is an object
// of type LinkedStack

myStack = new LinkedStack(); // call constructor to
// create empty stack

myStack.insert(’a’);
myStack.insert(’b’);
myStack.insert(’c’);

c© Tim French CITS2200 Recursive Data Structures Slide 12

• Examining the first item in the Stack

// define a test for the empty stack
boolean isEmpty () {return first == null;}

// if not empty return the first item
Object examine () {if (!isEmpty()) return first.item;}

c© Tim French CITS2200 Recursive Data Structures Slide 13

• Deleting the first item in the stack

void delete () {if (!isEmpty()) first = first.successor;}

first then refers to the “tail” of the list.

Note that we no longer have a reference to the previous first link in the stack (and
can never get it back). We haven’t really “deleted” it so much as “abandoned” it.
Java’s automatic garbage collection reclaims the space that the first link used.

⇒ This is one of the advantages of Java — in C/C++ we have to reclaim that
space with additional code.

c© Tim French CITS2200 Recursive Data Structures Slide 14

The Complete Program

import CITS2200.*; // Use a package of
// exceptions defined elsewhere.

/**
* A basic recursive stack.
*/

public class LinkedStack {
/**
* Reference to the first link in the stack, or null if
* the stack is empty.
*/
private Link first; // Private - users cannot access

// this directly.

c© Tim French CITS2200 Recursive Data Structures Slide 15

/**
* Create an empty stack.
*/
public LinkedStack() {first = null;} // The constructor.

/**
* Test whether the stack is empty.
* @return true if the stack is empty, false otherwise
*/
public boolean isEmpty () {return first == null;}

/**
* Insert an item at the front of the stack.
* @param o the Object to insert
*/
public void insert (Object o) {first = new Link(o, first);}

c© Tim French CITS2200 Recursive Data Structures Slide 16

/**
* Examine the first item in the stack.
* @return the first item in the stack
* @exception Underflow if the stack is empty
*/
public Object examine () throws Underflow {
if (!isEmpty()) return first.item;
else throw new Underflow("examining empty list");

}
// Underflow is an example of an exception that
// occurs (or is ‘‘thrown’’) if the list is empty.

/**
* Delete the first item in the stack.
* @exception Underflow if the stack is empty
*/
public void delete () throws Underflow {
if (!isEmpty()) first = first.successor;
else throw new Underflow("deleting from empty list");

}

c© Tim French CITS2200 Recursive Data Structures Slide 17

// Many classes provide a string representation
// of the data, for example for printing,
// defined by a method called ‘‘toString()’’.

/**
* construct a string representation of the stack
* @return the string representation
*/
public String toString () {
Link cursor = first;
String s = "";
while (cursor != null) {
s = s + cursor.item;
cursor = cursor.successor;

}
return s;

}
}

c© Tim French CITS2200 Recursive Data Structures Slide 18

4. Java and Pointers

Conceptually, the successor of a stack is a stack.

One of the great things about Java (and other suitable object oriented languages) is
that the program closely reflects this “theoretical” concept — from a programmer’s
point-of-view the successor of a LinkChar is a LinkChar.

Internally, however, all instance variables act as references, or “pointers”, to the
actual data.

c© Tim French CITS2200 Recursive Data Structures Slide 19

Therefore, a list that looks conceptually like

nullabcfirst =

internally looks more like

abc null
first

For simplicity of drawing, we will often use the latter type of diagram for representing
recursive data structures.

c© Tim French CITS2200 Recursive Data Structures Slide 20

5. Data Abstraction

The above class provides:

• data, and instructions to access it

• “higher-level” role of the program

We specified our stack so that we always added, examined and deleted at the front
of a sequence.

MAPLE
SYRUP

c© Tim French CITS2200 Recursive Data Structures Slide 21

Operations on a stack:

1. Create an empty stack

2. Test whether the stack is empty

3. Add (push) a new element on the top

4. Examine (peek at) the top element

5. Delete (pop) the top element

c© Tim French CITS2200 Recursive Data Structures Slide 22

We could change these operations slightly so that we always examined and deleted
from the front of the sequence, but added at the back of the sequence.

This is just what a queue, or FIFO (first-in, first-out buffer), does!

Queue This Way
PASSPORTSNext..

c© Tim French CITS2200 Recursive Data Structures Slide 23

In general, the operations on a queue include:

1. Create an empty queue

2. Test whether the queue is empty

3. Add (enqueue) a new latest element

4. Examine the earliest element

5. Delete (dequeue) the earliest element

c© Tim French CITS2200 Recursive Data Structures Slide 24

6. Specifying ADTs

We saw in Topic 1 that ADTs consist of a set of operations on a set of data values.
We can specify ADTs by listing the operations (or methods).

The lists of operations on the previous pages are very informal and not sufficient
for writing code. For example

2. Test whether the queue is empty

doesn’t tell us the name of the method, what arguments it is called with, what is
returned, and whether it can throw an exception.

c© Tim French CITS2200 Recursive Data Structures Slide 25

In these notes, we will specify ADTs by providing at least:

• the name of each operation

• example parameters (the implementation may use different parameter names,
but will have the same number, type and order)

• an explanation of what the operation does — in particular, any constraints on or
changes to the parameters, changes to the ADT instance on which the method
operates, what is returned, and any exceptions thrown

c© Tim French CITS2200 Recursive Data Structures Slide 26

Thus, a Queue ADT might be specified by the following operations:

1. Queue(): create an empty queue

2. isEmpty(): return true if the queue is empty, false otherwise

3. enqueue(e): e is added as the last item in the queue

4. examine(): return the first item in the queue, or throw an exception if the queue
is empty

5. dequeue(): remove and return the first item in the queue, or throw an exception
if the queue is empty

c© Tim French CITS2200 Recursive Data Structures Slide 27

Similarly, the specification of a Stack ADT:

1. Stack(): create an empty stack

2. isEmpty(): return true if the stack is empty, false otherwise

3. push(e): item e is pushed onto the top of the stack

4. peek(): return the item on the top of the stack, or throw an exception if the
stack is empty

5. pop(): remove and return the item on the top of the stack, or throw an exception
if the stack is empty

Note: The use of upper and lowercase in method names should follow the rules
described in the document Java Programming Conventions.

c© Tim French CITS2200 Recursive Data Structures Slide 28

7. Summary

Recursive data structures:

• can be arbitrarily large

• support recursive programs

• are a fundamental part of computer science — they will appear again and again
in this and other units

⇒ You need to understand them. If not, seek help!

We will see many in this unit, including more on lists and trees.

c© Tim French CITS2200 Recursive Data Structures Slide 29

