
Globbing, case, for

Lecture 7

Michael J. Wise

L7 Globbing, case, for - 2

Globbing/wildcards
• Globbing is just another way

of saying match-anything
(aka wild-card).

• * matches anything in a
filename, e.g. ls x*
matches: x, x.bak, x.txt,
x1, xfer_peter (The last is
a directory)

• ? Matches a single letter. In
the list above x? only
matches x1

L7 Globbing, case, for - 3

Globbing/wildcards

• [<letters>]
– Match any one of these letters (can be a range)

• [! <letters>]
– Match any one letter BUT NOT any of these (can

be a range
% ls [a-z].*
a.awk a.sed x.bak x.txt x.xml
% ls [!x].* returns, what?

L7 Globbing, case, for - 4

case

• Case implements a multiple choice test, looking for a
pattern match.

case <expression> in
<pattern> [| <pattern>]) <statements> ;;
<pattern> [| <pattern>]) <statements> ;;
.......

esac

• The <expression> is anything (i.e. variable or
command) that returns a string

• Each <pattern> can be of the sort used in file-name
generation, including wild-cards.

• Alternate patterns, but with the same set of actions,
are separated by |.

L7 Globbing, case, for - 5

case

• The expression is evaluated and the result tested
against the patterns top-down, left-to-right across
alternative patterns separated by |.

• If a match, the corresponding statements are
executed (up to the ;;).

• If no patterns match, execution proceeds to the next
statement

• * matches every string, so is used as the default
pattern (i.e. just like else).

L7 Globbing, case, for - 6

case

case $DAY in
Mon | Fri) echo ${DAY}day ;;
Tue | Thu) echo ${DAY}sday ;;
Wed) echo ${DAY}nesday ;;
S??) echo WEEKEND! ;;
*) echo "$DAY is not a day I understand."

echo "April Fool’s Day?" ;;
esac

L7 Globbing, case, for - 7

for
for <name> in <list>
do

<commands>
done

• <list> is just a white-space list of strings
• At each iteration, the variable <name> is assigned

the next item in the list.
for i in *.[ch] # * at shell level is list of files
do

echo $i
diff $i ../tempdir/$i
echo

done

L7 Globbing, case, for - 8

for can be used on files
The for loop can also be used to read through text files
for word in $(< file)
do
………
done

Returns each word. To return lines need to change
Shell variable IFS (Internal Field Separator)

IFS=“ # This captures a new line

“

for word in $(< file)

…. etc …

L7 Globbing, case, for - 9

Demo

• What does this code do?
for i in one 2 "2 1/2"
do

echo "$i:${#i}"
done

L7 Globbing, case, for - 10

Demo

• What does this code do?
for i in *
do

echo "$i:${#i}"
done

L7 Globbing, case, for - 11

Demo

IFS=“
“
for i in $(< Alice_in_Wonderland.txt)
do
…… <etc>

Can be used to go through the lines in a text file, one
at a time (i is set to first line, then the second line,
etc).

• Write a script, longest_line which, given a text
file, reports the longest line and its length.

