
Shell Functions and Make/Makefiles

Lecture 16

Michael J Wise

L16 shell functions, make - 2

Shell functions

• If a Shell script is calling another Shell script that
you’ve written, you can also define the called script
within the main script as a function.

• The format is:
function <name> {

<commands>
return [<exit status>]

}

Or
<name> () {

<commands>
return [<exit status>]

}

L16 shell functions, make - 3

Input values and return values

• There are no formal parameters between the
brackets (e.g. as in Python functions), instead you
use $1, $2, etc within the body of the function

• $0 is the name of the function
• The values returned by Shell functions (like Shell

scripts) are exit statuses. Default is 0.
• Other positive integers can be returned (like Shell

scripts)

L16 shell functions, make - 4

Scope of variables

• By default, the scope of all variables is global – all
variables are visible everywhere

• To have a variable only visible within a function, use
the command local after the function header to
declare variable(s) as local to that function.

L16 shell functions, make - 5

Example – regression testing

• Regression testing is where, as you work on your
code, you check that any changes you’ve made don’t
break something else in the code
– Have a range of test that grows with new

functionality

L16 shell functions, make - 6

Example – regression testing

function run_a_test {
testagrepy.py $1 $2 > out
if cmp out $3
then

echo "Test: $1 $2 ok"
else

echo "Test: $1 $2 fails"
fi

}

• Testing an approximate string matching algorithm.
e.g.

run_a_test oo wooloomooloo expected.1
run_a_test fred wooloomooloo expected.2

L16 shell functions, make - 7

Limitation

• A function is not a script.
– Calling a function within a script is more efficient

than calling a separate script
– BUT a function (in a script) cannot be called by a

different script

L16 shell functions, make - 8

Make –
Doing only what’s needed

• Historically, programs such as those written in C,
were created from modules.
– Each module had to be compiled into a binary
– Binaries had then to be linked to form an

executable
• If one module changes, no point recompiling every

other module, just the affected module (and down-
stream), and re-link

• The Unix tool make takes specification of what needs
to be done, what the inputs are and what the
processes are, in the form of a Makefile.

• Useful for any process where intermediate files
expensive to recompute or there are multiple stages

L16 shell functions, make - 9

Makefile format

• Unlike Sed, Awk, there is no command-line Make.
Need to have a Makefile (or makefile). Can also
specify makefile name with make –f (but not
recommended)

• There are two sorts of components in Makefiles:
Rules and Variables.

• Rules look like:
<target(s)> : <pre-requisites>

<commands>

L16 shell functions, make - 10

Makefile format

• There can be more than one targets (space
separated) and zero or more pre-requisites, but keep
it simple and have only one target

• Commands appear on successive lines. MUST begin
with a <tab> character

• Execution begins with the first target

L16 shell functions, make - 11

Example

C14UBT_results.txt : C14UBT_clean.tsv

analyseUBT.py C14UBT_clean.tsv >
C14UBT_results.txt

C14UBT_clean.tsv: PW_clean.csv CP_clean.csv

cat PW_clean.csv CP_clean.csv > C14UBT_clean.tsv

PW_clean.csv: PW_data.csv

clean_C14UBT PW.csv > PW_clean.csv

CP_clean.csv: CP_data.csv

clean_C14UBT CP.csv > CP_clean.csv

L16 shell functions, make - 12

Make variables

• Make variables are typically found at the start of a
Makefile.

<name> = <string>
data_root = /usr/home/michaelw/etseq/C14UBT/data

• In the body of the Makefile, use $() to insert value

PW_clean.csv: PW_data.csv

clean_C14UTB $(data_root)/PW.csv > PW_clean.csv

L16 shell functions, make - 13

% Wildcard

• % is to Make what .* is to regular expressions –
match zero or more characters, typically in a file
name in a target or pre-cursor.

%_clean.csv: %_data.csv

L16 shell functions, make - 14

Automatic (built-in) variables

• Like Sed and Awk, Makefiles have access to
automatic (i.e. built-in variables

• $@ - the target
• $< - the first precondition
• $^ - a list of all the preconditions (space separated)
• $* - whatever has matched a wild-card pattern

L16 shell functions, make - 15

Special targets

• There are a number of Special Targets, i.e. targets
that are not intended to be made, but convey other
information. One is particularly useful.

.PRECIOUS
• By default, Make tidies up by removing intermediate

files. This may be undesirable if it’s taken a lot of
time to compute them and they’ve not changed

.PRECIOUS %.clean_tsv

L16 shell functions, make - 16

Example – take 2

data_root = /usr/home/michaelw/etseq/C14UBT/data

OBJ = C14UBT_results.txt

.PRECIOUS %_clean.csv

What_to_make: $(OBJ) # allows for multiple top targets

C14UBT_results.txt : C14UBT_clean.tsv
analyseUBT.py $< >$@

C14UBT_clean.tsv: PW_clean.csv CP_clean.csv
cat $^ > $@

%_clean.csv: %_data.csv
clean_C14UTB $(data_root)/$*.csv > $@

L16 shell functions, make - 17

Invoking make

• Make will generally be used without command-line
options. However, a couple are useful:

-j <N> - Instead of just one make target being made
at a time, make N targets in parallel

-k - Keep going to next target if an error is
encountered. Otherwise exits.

L16 shell functions, make - 18

Caveat and competitor

• Make is a very brittle program.
– Easy to get the syntax errors or target errors (i.e.

the item to be made fails to match any of the
target patterns

• Make is very widely used
• There are competitors, e.g. Snakemake
https://snakemake.github.io/

https://snakemake.github.io/

L16 shell functions, make - 19

The original “Computers” at NASA Ames

https://twitter.com/nasaames/status/1204868782096699392?

