Dageey 1HE UNIVERSITY OF

2Y WESTERN
“as? AUSTRALIA

%

Shell Functions and Make/Makefiles

Lecture 16

Michael J Wise

Shell functions

o If a Shell script is calling another Shell script that
you've written, you can also define the called script
within the main script as a function.

e The format 1s:

function <name> {

<commands>
return [<exit status>]

}
Or

<name> () |

<commands>
return [<exit status>]

L16 shell functions, make - 2

Input values and return values

There are no formal parameters between the

brackets (e.g. as in Python functions), instead you
use $1, $2, etc within the body of the function

$0 1s the name of the function

The values returned by Shell functions (like Shell
scripts) are exit statuses. Default is O.

Other positive integers can be returned (like Shell
scripts)

L16 shell functions, make - 3

Scope of variables

By default, the scope of all variables i1s global — all
variables are visible everywhere

 To have a variable only visible within a function, use
the command local after the function header to
declare variable(s) as local to that function.

L16 shell functions, make - 4

Example — regression testing

 Regression testing 1s where, as you work on your
code, you check that any changes you've made don’t
break something else 1in the code

— Have a range of test that grows with new
functionality

L16 shell functions, make - 5

Example — regression testing

function run a test {
testagrepy.py $1 $2 > out
if cmp out $3

then

echo "Test: $1 $2 ok"
else

echo "Test: $1 $2 failg"
fi

}

 Testing an approximate string matching algorithm.
e.g.

run a test oo wooloomooloo expected.l

run a test fred wooloomooloo expected.?Z

L16 shell functions, make - 6

Limitation

* A function 1s not a script.

— Calling a function within a script is more efficient
than calling a separate script

— BUT a function (in a script) cannot be called by a
different script

L16 shell functions, make - 7

Make —
Doing only what’s needed

Historically, programs such as those written in C,
were created from modules.

— Each module had to be compiled into a binary

— Binaries had then to be linked to form an
executable

If one module changes, no point recompiling every
other module, just the affected module (and down-
stream), and re-link

The Unix tool make takes specification of what needs

to be done, what the inputs are and what the
processes are, 1n the form of a Makefile.

Useful for any process where intermediate files
expensive to recompute or there are multiple stages

L16 shell functions, make - 8

Makefile format

 Unlike Sed, Awk, there 1s no command-line Make.
Need to have a Makefile (or makefile). Can also
specify makefile name with make —-f (but not

recommended)

 There are two sorts of components 1n Makefiles:
Rules and Variables.

* Rules look like:
<target(s)> : <pre-requisites>

<commands>

L16 shell functions, make - 9

Makefile format

 There can be more than one targets (space

separated) and zero or more pre-requisites, but keep
1t simple and have only one target

« Commands appear on successive lines. MUST begin
with a <tab> character

« Execution begins with the first target

L16 shell functions, make - 10

Example

Cl4UBT results.txt : Cl4UBT clean.tsv

analyseUBT.py Cl14UBT clean.tsv >
Cl4UBT results.txt

Cl4UBT clean.tsv: PW clean.csv CP clean.csv

cat PW clean.csv CP clean.csv > Cl4UBT clean.tsv

PW clean.csv: PW data.csv

clean C14UBT PW.csv > PW clean.csv

CP clean.csv: CP data.csv

clean C14UBT CP.csv > CP clean.csv

L16 shell functions, make - 11

Make variables

 Make variables are typically found at the start of a
Makefile.

<name>= <string>
data root = /usr/home/michaelw/etseq/Cl4UBT/data

* In the body of the Makefile, use $ () to insert value

PW clean.csv: PW data.csv

clean C14UTB $ (data root)/PW.csv > PW clean.csv

L16 shell functions, make - 12

% Wildcard

* % 1s to Make what .* 1s to regular expressions —
match zero or more characters, typically in a file
name 1n a target or pre-cursor.

®)

5 clean.csv: % data.csv

L16 shell functions, make - 13

Automatic (built-in) variables

Like Sed and Awk, Makefiles have access to
automatic (1.e. built-in variables

S @
S<
& A
S *

- the target
- the first precondition
- a list of all the preconditions (space separated)

- whatever has matched a wild-card pattern

L16 shell functions, make - 14

Special targets

 There are a number of Special Targets, 1.e. targets
that are not intended to be made, but convey other
information. One 1s particularly useful.

.PRECIOUS
By default, Make tidies up by removing intermediate

files. This may be undesirable if it’s taken a lot of
time to compute them and they've not changed

.PRECIOUS %.clean tsv

L16 shell functions, make - 15

Example — take 2

data root = /usr/home/michaelw/etseq/Cl4UBT/data
OBJ = Cl4UBT results.txt
.PRECIOUS % clean.csv

What to make: $(OBJ) # allows for multiple top targets

Cl4UBT results.txt : Cl4UBT clean.tsv
analyseUBT.py $< >$0

Cl4UBT clean.tsv: PW clean.csv CP clean.csv
cat $7 > $d

o)

5 clean.csv: % data.csv
clean C14UTB S (data root)/S$*.csv > S0

L16 shell functions, make - 16

Invoking make

 Make will generally be used without command-line
options. However, a couple are useful:

-3 <IN> - Instead of just one make target being made
at a time, make N targets in parallel

-k - Keep going to next target if an error 1s
encountered. Otherwise exits.

L16 shell functions, make - 17

Caveat and competitor

 Make 1s a very brittle program.

— FEasy to get the syntax errors or target errors (i.e.
the item to be made fails to match any of the
target patterns

 Make 1s very widely used
 There are competitors, e.g. Snakemake
https://snakemake.github.10/

L16 shell functions, make - 18

https://snakemake.github.io/

The original “Computers” at NASA Ames

il
|

M

H

‘!“ll

l

-

\,
S —

https://twitter.com/nasaames/status/12048687820966993927

L16 shell functions, make - 19

