THE UNIVERSITY OF

WESTERN

A AUSTRALIA

CITS2002 Systems Programming

1 next — @ CITS2002 & CITS2002 schedule

Passing pointers to functions

Consider a very simple function, whose role is to swap two integer values:

#include <stdio.h>
{
int temp;
temp = 1i;
i = 3j;
J = temp;
int main (int argc,
int a=3, b=5;
printf ("before
swap(a, b);
printf ("after
return O;

}

before a=3, b=5
after a=3, b=5

void swap (int i, int j)

char *argv([])
// MULTIPLE DEFINITIONS AND INITIALIZATIONS
a=%i, b=%i\n", a, b):

// ATTEMPT TO SWAP THE 2 INTEGERS

a=%i, b=%i\n", a, b);

Doh! What went wrong?

The "problem" occurs because we are not actually swapping the values contained in our variables a and b, but are
(successfully) swapping copies of those values.

CITS2002 Systems Programming, Lecture 12, p1, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

@ AUSTRALIA

«— prev 2 next — ®CITS2002 @ CITS2002 schedule

Passing pointers to functions, continued

Instead, we need to pass a 'reference' to the two integers to be interchanged.

We need to give the swap() function "access" to the variablesa and b, so that swap() may modify those
variables:

#include <stdio.h>

void swap (int *ip, int *jp)
{

int temp;

temp = *ip; // swap's temp is now 3
*ip = *Jp; // main's variable a is now 5
*jp = temp; // main's variable b is now 3

int main (int argc, char *argv[])
int a=3, b=5;
printf ("before a=%i, b=%i\n", a, b);
swap (&a, &b); // pass pointers to our local variables
printf ("after a=%i, b=%i\n", a, b);

return 0;

}

before a=3, b=5
after a=5, b=3

Much better! Of note:

e The function swap() is now dealing with the original variables, rather than new copies of their values.
¢ A function may permit another function to modify its variables, by passing pointers to those variables.
e The receiving function now modifies what those pointers point to.

CITS2002 Systems Programming, Lecture 12, p2, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

M. %ES%EEIEIPAI CITS2002 Systems Programming

«— prev 3 next — ®CITS2002 @ CITS2002 schedule

Duplicating a string
We know that:

e C considers null-byte terminated character arrays as strings, and
¢ that the length of such strings is not determined by the array size, but by where the null-byte is.

So how could we take a duplicate copy, a clone, of a string? We could try:

#include <string.h>
char *my strdup(char *str)
{
char bigarray[SOME HUGE SIZE];

strcpy (bigarray, str); // WILL ENSURE THAT bigarray IS NULL-BYTE TERMINATED

return bigarray; // RETURN THE ADDRESS OF bigarray

But we'd instantly have two problems:

1. we'd never be able to know the largest array size required to copy the arbitrary string argument, and
2. we can't return the address of any local variable. Once function my_strdup() returns, variable bigarray no longer
exists, and so we can't provide the caller with its address.

CITS2002 Systems Programming, Lecture 12, p3, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

@m@m| THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 4 next — ®CITS2002 @ CITS2002 schedule

Allocating new memory

Let's first address the first of these problems - we do not know, until the function is called, how big the array should be.
It is often the case that we do not know, until we execute our programs, how much memory we'll really need!

Instead of using a fixed sized array whose size may sometimes be too small, we must dynamically request some new
memory at runtime to hold our desired result.

This is a fundamental (and initially confusing) concept of most programming languages - the ability to request from the
operating system additional memory for our programs.

C11 provides a small collection of functions to support memory allocation.
The primary function we'll see is named malloc(), which is declared in the standard<stdlib.h> header file:

#include <stdlib.h>

extern void *malloc(size t nbytes);

e malloc() is a function (external to our programs) that returns a pointer.
However, malloc() doesn't really know what it's returning a pointer to - it doesn't know if it's a pointer to an integer, or a
pointer to a character, or even to one our own user-defined types.

For this reason, we use the generic pointer, pronounced "void star” or "void pointer".
It's a pointer to "something", and we only "know" what that is when we place an interpretation on the pointer.
e malloc() needs to be informed of the amount of memory that it should allocate - thenumber of bytes we require.

We use the standard datatype size_t to hold an integer value that may be 0 or positive (we obviously can't request a
negative amount of memory!).

We have used, but skipped over, the use of size_t before - it's the datatype of values returned by thesizeof operator,
and the pedantically-correct type returned by the strlen() function.

CITS2002 Systems Programming, Lecture 12, p4, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

‘:nam THE UNIVERSITY OF

M. %%%EEEIE CITS2002 Systems Programming

«— prev 5 next — ®CITS2002 @ CITS2002 schedule

Checking memory allocations

Of course, the memory in our computers is finite (even if it has several physical gigabytes, or is using virtual memory), and if
we keep calling malloc() in our programs, we'll eventually exhaust available memory.

Note that a machine's operating system will probably not allocate all memory to a single program, anyway. There's a lot
going on on a standard computer, and those other activities all require memory, too.

For programs that perform more than a few allocations, or even some potentially large allocations, we need to check the
value returned by malloc() to determined if it succeeded:

#include <stdlib.h>

size t bytes wanted = 1000000 * sizeof (int);
int *huge array = malloc(bytes wanted);
if (huge array == NULL) { // DID malloc FAIL?

printf ("Cannot allocate %i bytes of memory\n", bytes wanted);
exit (EXIT FAILURE);

Strictly speaking, we should check all allocation requests to both malloc() and calloc().

CITS2002 Systems Programming, Lecture 12, p5, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

ﬂ!:ﬂl‘ THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 6 next — ®CITS2002 @ CITS2002 schedule

Duplicating a string revisited
We'll now use malloc() to dynamically allocate, at runtime, exactly the correct amount of memory that we need.

When duplicating a string, we need enough new bytes to hold every character of the string, including a null-byte to
terminate the string.
This is 1 more than the value returned by strien:

#include <stdlib.h>
#include <string.h>

char *my strdup2(char *str)

{

char *new = malloc(strlen(str) + 1);

if (new != NULL) {
strcpy (new, str); // ENSURES THAT DUPLICATE WILL BE NUL-TERMINATED
}

return new;

Of note:

e we are not returning the address of a local variable from our function - we've solved both of our problems!

we're returning a pointer to some additional memory given to us by the operating system.

this memory does not "disappear" when the function returns, and so it's safe to provide this value (a pointer) to
whoever called my_strdup2.

the new memory provided by the operating system resides in a reserved (large) memory region termed the heap. We
never access the heap directly (we leave that to malloc()) and just use (correctly) the space returned by malloc().

CITS2002 Systems Programming, Lecture 12, p6, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

@ AUSTRALIA

«— prev 7 next — ®CITS2002 @ CITS2002 schedule

Allocating an array of integers

Let's quickly visit another example of malloc(). We'll allocate enough memory to hold an array of integers:

#include <stdlib.h>

int *randomints (int wanted)

{

int *array = malloc(wanted * sizeof(int))

if (array != NULL) {
for (int i=0 ; i<wanted ; ++i) {
array[i] = rand() % 100;

}
}

return array;

Of note:

e malloc() is used here to allocate memory that we'll be treating as integers.
e malloc() does not know about our eventual use for the memory it returns.
e how much memory did we need?

We know how many integers we want, wanted, and we know the space occupied by each of them,
sizeof(int).
We thus just multiply these two to determine how many bytes we ask malloc() for.

CITS2002 Systems Programming, Lecture 12, p7, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN

o AUSTRALIA CITS2002 Systems Programming

«— prev 8 next — ®CITS2002 @ CITS2002 schedule

Requesting that new memory be cleared

In many situations we want our allocated memory to have a known value. The C11 standard library provides a single
function to provide the most common case - clearing allocated memory:

#include <stdlib.h>
extern void *calloc(size t nitems, size t itemsize);

int “*intarray = calloc(N, sizeof(int));

It's lost in C's history why malloc() and calloc() have different calling sequences.

To explain what is happening, here, we can even write our own version, if we are careful:

#include <stdlib.h>
#include <string.h>

void *my calloc(size t nitems, size t itemsize)
{

size t nbytes = nitems * itemsize;

void *result = malloc(nbytes);

if (result != NULL) {

memset (result, 0, nbytes); // SETS ALL BYTES IN result TO THE VALUE 0
}

return result;

int *intarray = my calloc (N, sizeof(int));

CITS2002 Systems Programming, Lecture 12, p8, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

‘: gm| THE UNIVERSITY OF

JOA %%%EEE&I CITS2002 Systems Programming

«— prev 9 next — ®CITS2002 @ CITS2002 schedule

Deallocating memory with free

In programs that:

o run for a long time
(perhaps long-running server programs such as web-servers), or

o temporarily require a lot of memory, and then no longer require it,
we should deallocate the memory provided to us bymalloc() and calloc().

The C11 standard library provides an obvious function to perform this:

extern void free(void *pointer);

Any pointer successfully returned by malloc() or calloc() may be freed.

Think of it as requesting that some of the allocated heap memory be given back to the operating system for re-use.

#include <stdlib.h>
int *vector = randomints(1000);

if (vector != NULL) {
// USE THE vector

free(vector);

Note, there is no need for your programs to completely deallocate all of their allocated memory before they exit - the
operating system will do that for you.

CITS2002 Systems Programming, Lecture 12, p9, 28th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

|,!_g THE UNIVERSITY OF

CITS2002 Systems Programming

A% AUSTRALIA

«— prev 10 © CITS2002 & CITS2002 schedule

Reallocating previously allocated memory

We'd already seen that it's often the case that we don't know our program's memory requirements until we run the program.
Even then, depending on the input given to our program, or the execution of our program, we often need to allocate more than our initial "guess".

The C11 standard library provides a function, named realloc() to grow (or rarely shrink) our previously allocate memory:

extern void *realloc(void *oldpointer, size t newsize);

We pass to realloc() a pointer than has previously been allocated by malloc(), calloc(), or (now) realloc().
Most programs wish to extend the initially allocated memory:

#include <stdlib.h> #include <stdlib.h>
int original; int nitems = 0;
int newsize; int *items = NULL;

int “*array;
int “*newarray; cooo
while(fgets(line) != NULL) {

e items = realloc(items, (nitems+1l) * sizeof(items[0]));
array = malloc(original * sizeof (int)); if (items == NULL) {
if (array == NULL) { // HANDLE THE ALLOCATION FAILURE

// HANDLE THE ALLOCATION FAILURE }
} e // COPY OR PROCESS THE LINE JUST READ

++nitems;
}
newarray = realloc(array, newsize * sizeof(int)); e
if (newarray == NULL) { if (items != NULL) {
// HANDLE THE ALLOCATION FAILURE free(items);

} }

Of note:

o if realloc() fails to allocate the revised size, it returns the NULL pointer.

« if successful, realloc() copies any old data into the newly allocated memory, and then deallocates the old memory.

o if the new request does not actually require new memory to be allocated, realloc() will usually return the same value of oldpointer.
e arequest to realloc() with an "initial" address of NULL, is identical to just calling malloc().

CITS2002 Systems Programming, Lecture 12, p10, 28th August 2024

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Passing pointers to functions
	Passing pointers to functions, continued
	Duplicating a string
	Allocating new memory
	Checking memory allocations
	Duplicating a string revisited
	Allocating an array of integers
	Requesting that new memory be cleared
	Deallocating memory with free
	Reallocating previously allocated memory

