
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

Passing	pointers	to	functions
Consider	a	very	simple	function,	whose	role	is	to	swap	two	integer	values:

#include	<stdio.h>

void	swap(int	i,	int	j)
{
				int	temp;

				temp	=	i;
				i				=	j;
				j				=	temp;
}

int	main(int	argc,	char	*argv[])
{
				int	a=3,	b=5;		//	MULTIPLE	DEFINITIONS	AND	INITIALIZATIONS		

				printf("before	a=%i,	b=%i\n",	a,	b);

				swap(a,	b);				//	ATTEMPT	TO	SWAP	THE	2	INTEGERS

				printf("after		a=%i,	b=%i\n",	a,	b);
				return	0;
}

before	a=3,	b=5
after		a=3,	b=5

Doh!	What	went	wrong?

The	"problem"	occurs	because	we	are	not	actually	swapping	the	values	contained	in	our	variables	a	and	b,	but	are
(successfully)	swapping	copies	of	those	values.

	

CITS2002	Systems	Programming,	Lecture	12,	p1,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

Passing	pointers	to	functions,	continued
Instead,	we	need	to	pass	a	'reference'	to	the	two	integers	to	be	interchanged.

We	need	to	give	the	swap()	function	"access"	to	the	variables	a	and	b,	so	that	swap()	may	modify	those
variables:

#include	<stdio.h>

void	swap(int	*ip,	int	*jp)
{
				int	temp;

				temp		=	*ip;				//	swap's	temp	is	now	3
				*ip			=	*jp;				//	main's	variable	a	is	now	5
				*jp			=	temp;			//	main's	variable	b	is	now	3
}

int	main(int	argc,	char	*argv[])
{
				int	a=3,	b=5;

				printf("before	a=%i,	b=%i\n",	a,	b);

				swap(&a,	&b);			//	pass	pointers	to	our	local	variables		

				printf("after		a=%i,	b=%i\n",	a,	b);

				return	0;
}

before	a=3,	b=5
after		a=5,	b=3

Much	better!	Of	note:

The	function	swap()	is	now	dealing	with	the	original	variables,	rather	than	new	copies	of	their	values.
A	function	may	permit	another	function	to	modify	its	variables,	by	passing	pointers	to	those	variables.
The	receiving	function	now	modifies	what	those	pointers	point	to.

	

CITS2002	Systems	Programming,	Lecture	12,	p2,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Duplicating	a	string
We	know	that:

C	considers	null-byte	terminated	character	arrays	as	strings,	and
that	the	length	of	such	strings	is	not	determined	by	the	array	size,	but	by	where	the	null-byte	is.

So	how	could	we	take	a	duplicate	copy,	a	clone,	of	a	string?	We	could	try:

#include	<string.h>

char	*my_strdup(char	*str)
{
				char	bigarray[SOME_HUGE_SIZE];

				strcpy(bigarray,	str);		//	WILL	ENSURE	THAT	bigarray	IS	NULL-BYTE	TERMINATED	

				return	bigarray;								//	RETURN	THE	ADDRESS	OF	bigarray
}

But	we'd	instantly	have	two	problems:

1.	 we'd	never	be	able	to	know	the	largest	array	size	required	to	copy	the	arbitrary	string	argument,	and
2.	 we	can't	return	the	address	of	any	local	variable.	Once	function	my_strdup()	returns,	variable	bigarray	no	longer

exists,	and	so	we	can't	provide	the	caller	with	its	address.

	

CITS2002	Systems	Programming,	Lecture	12,	p3,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Allocating	new	memory
Let's	first	address	the	first	of	these	problems	-	we	do	not	know,	until	the	function	is	called,	how	big	the	array	should	be.

It	is	often	the	case	that	we	do	not	know,	until	we	execute	our	programs,	how	much	memory	we'll	really	need!

Instead	of	using	a	fixed	sized	array	whose	size	may	sometimes	be	too	small,	we	must	dynamically	request	some	new
memory	at	runtime	to	hold	our	desired	result.

This	is	a	fundamental	(and	initially	confusing)	concept	of	most	programming	languages	-	the	ability	to	request	from	the
operating	system	additional	memory	for	our	programs.

C11	provides	a	small	collection	of	functions	to	support	memory	allocation.	
The	primary	function	we'll	see	is	named	malloc(),	which	is	declared	in	the	standard	<stdlib.h>	header	file:

#include	<stdlib.h>

extern	void	*malloc(size_t	nbytes);

malloc()	is	a	function	(external	to	our	programs)	that	returns	a	pointer.	
However,	malloc()	doesn't	really	know	what	it's	returning	a	pointer	to	-	it	doesn't	know	if	it's	a	pointer	to	an	integer,	or	a
pointer	to	a	character,	or	even	to	one	our	own	user-defined	types.

For	this	reason,	we	use	the	generic	pointer,	pronounced	"void	star"	or	"void	pointer".

It's	a	pointer	to	"something",	and	we	only	"know"	what	that	is	when	we	place	an	interpretation	on	the	pointer.

malloc()	needs	to	be	informed	of	the	amount	of	memory	that	it	should	allocate	-	the	number	of	bytes	we	require.

We	use	the	standard	datatype	size_t	to	hold	an	integer	value	that	may	be	0	or	positive	(we	obviously	can't	request	a
negative	amount	of	memory!).

We	have	used,	but	skipped	over,	the	use	of	size_t	before	-	it's	the	datatype	of	values	returned	by	the	sizeof	operator,
and	the	pedantically-correct	type	returned	by	the	strlen()	function.

	

CITS2002	Systems	Programming,	Lecture	12,	p4,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Checking	memory	allocations
Of	course,	the	memory	in	our	computers	is	finite	(even	if	it	has	several	physical	gigabytes,	or	is	using	virtual	memory),	and	if
we	keep	calling	malloc()	in	our	programs,	we'll	eventually	exhaust	available	memory.

Note	that	a	machine's	operating	system	will	probably	not	allocate	all	memory	to	a	single	program,	anyway.	There's	a	lot
going	on	on	a	standard	computer,	and	those	other	activities	all	require	memory,	too.

For	programs	that	perform	more	than	a	few	allocations,	or	even	some	potentially	large	allocations,	we	need	to	check	the
value	returned	by	malloc()	to	determined	if	it	succeeded:

#include	<stdlib.h>

		size_t	bytes_wanted			=	1000000	*	sizeof(int);

		int				*huge_array				=	malloc(bytes_wanted);

		if(huge_array	==	NULL)	{			//	DID	malloc	FAIL?
						printf("Cannot	allocate	%i	bytes	of	memory\n",	bytes_wanted);				
						exit(EXIT_FAILURE);
		}

Strictly	speaking,	we	should	check	all	allocation	requests	to	both	malloc()	and	calloc().

	

CITS2002	Systems	Programming,	Lecture	12,	p5,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

Duplicating	a	string	revisited
We'll	now	use	malloc()	to	dynamically	allocate,	at	runtime,	exactly	the	correct	amount	of	memory	that	we	need.

When	duplicating	a	string,	we	need	enough	new	bytes	to	hold	every	character	of	the	string,	including	a	null-byte	to
terminate	the	string.	
This	is	1	more	than	the	value	returned	by	strlen:

#include	<stdlib.h>
#include	<string.h>

char	*my_strdup2(char	*str)
{
				char	*new	=	malloc(strlen(str)	+	1);

				if(new	!=	NULL)	{
								strcpy(new,	str);		//	ENSURES	THAT	DUPLICATE	WILL	BE	NUL-TERMINATED	
				}
				return	new;
}

Of	note:

we	are	not	returning	the	address	of	a	local	variable	from	our	function	-	we've	solved	both	of	our	problems!

we're	returning	a	pointer	to	some	additional	memory	given	to	us	by	the	operating	system.

this	memory	does	not	"disappear"	when	the	function	returns,	and	so	it's	safe	to	provide	this	value	(a	pointer)	to
whoever	called	my_strdup2.

the	new	memory	provided	by	the	operating	system	resides	in	a	reserved	(large)	memory	region	termed	the	heap.	We
never	access	the	heap	directly	(we	leave	that	to	malloc())	and	just	use	(correctly)	the	space	returned	by	malloc().

	

CITS2002	Systems	Programming,	Lecture	12,	p6,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Allocating	an	array	of	integers
Let's	quickly	visit	another	example	of	malloc().	We'll	allocate	enough	memory	to	hold	an	array	of	integers:

#include	<stdlib.h>

int	*randomints(int	wanted)
{
				int		*array	=	malloc(wanted	*	sizeof(int));

				if(array	!=	NULL)	{
								for(int	i=0	;	i<wanted	;	++i)	{
													array[i]	=	rand()	%	100;
								}
				}
				return	array;
}

Of	note:

malloc()	is	used	here	to	allocate	memory	that	we'll	be	treating	as	integers.
malloc()	does	not	know	about	our	eventual	use	for	the	memory	it	returns.
how	much	memory	did	we	need?

We	know	how	many	integers	we	want,	wanted,	and	we	know	the	space	occupied	by	each	of	them,
sizeof(int).	
We	thus	just	multiply	these	two	to	determine	how	many	bytes	we	ask	malloc()	for.

	

CITS2002	Systems	Programming,	Lecture	12,	p7,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

Requesting	that	new	memory	be	cleared
In	many	situations	we	want	our	allocated	memory	to	have	a	known	value.	The	C11	standard	library	provides	a	single
function	to	provide	the	most	common	case	-	clearing	allocated	memory:

#include	<stdlib.h>

extern	void	*calloc(size_t	nitems,	size_t	itemsize);
			
				int		*intarray	=	calloc(N,	sizeof(int));

It's	lost	in	C's	history	why	malloc()	and	calloc()	have	different	calling	sequences.

To	explain	what	is	happening,	here,	we	can	even	write	our	own	version,	if	we	are	careful:

#include	<stdlib.h>
#include	<string.h>

void	*my_calloc(size_t	nitems,	size_t	itemsize)
{
				size_t		nbytes		=	nitems	*	itemsize;

				void	*result	=	malloc(nbytes);

				if(result	!=	NULL)	{
								memset(result,	0,	nbytes);		//	SETS	ALL	BYTES	IN	result	TO	THE	VALUE	0		
				}
				return	result;
}

			
				int		*intarray	=	my_calloc(N,	sizeof(int));

	

CITS2002	Systems	Programming,	Lecture	12,	p8,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

Deallocating	memory	with	free
In	programs	that:

run	for	a	long	time	
(perhaps	long-running	server	programs	such	as	web-servers),	or
temporarily	require	a	lot	of	memory,	and	then	no	longer	require	it,

we	should	deallocate	the	memory	provided	to	us	by	malloc()	and	calloc().

The	C11	standard	library	provides	an	obvious	function	to	perform	this:

extern	void	free(void	*pointer);

Any	pointer	successfully	returned	by	malloc()	or	calloc()	may	be	freed.

Think	of	it	as	requesting	that	some	of	the	allocated	heap	memory	be	given	back	to	the	operating	system	for	re-use.

#include	<stdlib.h>

				int			*vector	=	randomints(1000);

				if(vector	!=	NULL)	{
								//	USE	THE	vector
							
								free(vector);
				}

Note,	there	is	no	need	for	your	programs	to	completely	deallocate	all	of	their	allocated	memory	before	they	exit	-	the
operating	system	will	do	that	for	you.

	

CITS2002	Systems	Programming,	Lecture	12,	p9,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 	CITS2002 	CITS2002	schedule 	

Reallocating	previously	allocated	memory
We'd	already	seen	that	it's	often	the	case	that	we	don't	know	our	program's	memory	requirements	until	we	run	the	program.

Even	then,	depending	on	the	input	given	to	our	program,	or	the	execution	of	our	program,	we	often	need	to	allocate	more	than	our	initial	"guess".

The	C11	standard	library	provides	a	function,	named	realloc()	to	grow	(or	rarely	shrink)	our	previously	allocate	memory:

extern	void	*realloc(void	*oldpointer,	size_t	newsize);

We	pass	to	realloc()	a	pointer	than	has	previously	been	allocated	by	malloc(),	calloc(),	or	(now)	realloc().	
Most	programs	wish	to	extend	the	initially	allocated	memory:

#include	<stdlib.h>

		int		original;
		int		newsize;
		int		*array;
		int		*newarray;

	
		array	=	malloc(original	*	sizeof(int));		
		if(array	==	NULL)	{
						//	HANDLE	THE	ALLOCATION	FAILURE
		}
	

		newarray	=	realloc(array,	newsize	*	sizeof(int));
		if(newarray	==	NULL)	{
						//	HANDLE	THE	ALLOCATION	FAILURE
		}
	

#include	<stdlib.h>

		int		nitems	=	0;
		int		*items	=	NULL;

	
		while(fgets(line)	!=	NULL)	{
						items	=	realloc(items,	(nitems+1)	*	sizeof(items[0]));
						if(items	==	NULL)	{
														//	HANDLE	THE	ALLOCATION	FAILURE
						}
									//	COPY	OR	PROCESS	THE	LINE	JUST	READ
						++nitems;
		}
	
		if(items	!=	NULL)	{
						free(items);
		}

Of	note:

if	realloc()	fails	to	allocate	the	revised	size,	it	returns	the	NULL	pointer.
if	successful,	realloc()	copies	any	old	data	into	the	newly	allocated	memory,	and	then	deallocates	the	old	memory.
if	the	new	request	does	not	actually	require	new	memory	to	be	allocated,	realloc()	will	usually	return	the	same	value	of	oldpointer.
a	request	to	realloc()	with	an	"initial"	address	of	NULL,	is	identical	to	just	calling	malloc().

	

CITS2002	Systems	Programming,	Lecture	12,	p10,	28th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Passing pointers to functions
	Passing pointers to functions, continued
	Duplicating a string
	Allocating new memory
	Checking memory allocations
	Duplicating a string revisited
	Allocating an array of integers
	Requesting that new memory be cleared
	Deallocating memory with free
	Reallocating previously allocated memory

