
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

A	slow	introduction	to	pointers	in	C
The	C11	programming	language	has	a	very	powerful	feature	for	addressing	and	modifying
memory	which,	for	now,	we'll	casually	term	"pointers	in	C".

If	used	correctly	pointers
can	enable	very	fast,
efficient,	execution	of	C
programs.

If	misunderstood	or	used
incorrectly,	pointers	can
make	your	programs	do
very	strange,	incorrect
things,	and	result	in	very
hard	to	diagnose	and	debug
programs.

The	primary	role	of	pointers	-	to
allow	a	program	(at	run-time)	to
access	its	own	memory	-	sounds
like	a	useful	feature,	but	is	often
described	as	a	very	dangerous
feature.

There	is	much	written	about	the
power	and	expressiveness	of	C's
pointers,	with	general	agreement
that	C's	pointers	are	a	threshold
concept	in	Computer	Science.

(Recently	much	has	been	written
about	Java's	lack	of	pointers.
More	precisely,	Java	does	have
pointers,	termed	references,	but
the	references	to	Java's	objects
are	so	consistently	and	carefully
constrained	at	both	compile-	and
run-times,	that	little	information
about	the	run-time	environment	is
exposed	to	the	running	program,
and	little	can	go	wrong).

Pointers	on	C,
Kenneth	Reek,
Addison-Wesley,
636pp,	1998.

Understanding
and	Using	C
Pointers,
Richard	Reese,
O'Reilly	Media,
226pp,	2013.

Pointers	in	C
Programming,
Thomas
Mailund,
APress,
537pp,	2021.

	

CITS2002	Systems	Programming,	Lecture	11,	p1,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
p504-boustedt.pdf
http://www.pearsonhighered.com/educator/product/Pointers-on-C/9780673999863.page
http://www.pearsonhighered.com/educator/product/Pointers-on-C/9780673999863.page
http://shop.oreilly.com/product/0636920028000.do
http://shop.oreilly.com/product/0636920028000.do
https://www.oreilly.com/library/view/pointers-in-c/9781484269275/
https://www.oreilly.com/library/view/pointers-in-c/9781484269275/

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

What	are	pointers?
We	know	that	C	has	both	''standard''	variables,	holding	integers,	characters,	and	floating-point
values,	termed	scalar	variables.	
In	addition,	we've	seen	arrays	and	structures	of	these,	termed	aggregate	variables.

Let's	follow	this	simplified	explanation:

We	understand	that	variables	occupy	memory
locations	(1	or	more	bytes)	of	a	computer's	memory.

Each	variable	requires	enough	(at	least)	bytes	to
store	the	values	the	variable	will	(ever)	need	to	hold.
For	example,	on	typical	desktop	and	laptop
computers	a	simple	C	integer	will	require	4	bytes	of
memory.	However	a	bool	value,	only	requiring	1-bit,
will	typically	occupy	1	byte.

Similarly,	an	array	of	100	integers,	will	require	400
bytes	of	contiguous	memory	-	there	is	no	padding
between	elements.

Computers	have	a	large	amount	of	memory,	e.g.	our
lab	computers	have	16	gigabytes	of	memory	(16GB),
or	nearly	17.1	billion	bytes.

Each	of	a	computer's	memory	bytes	is	uniquely
numbered,	from	0	to	some	large	value.	Each	such
number	is	termed	the	byte's	memory	address.

We	often	refer	to	memory	locations	as	just	addresses
and	the	action	of	identifying	an	address	as
addressing.

With	these	points	in	mind,	we	can	make	3	simple	statements:

1.	 Pointers	are	variables	that	hold	the	address	of	a	memory	location.
2.	 Pointers	are	variables	that	point	to	memory	locations.
3.	 Pointers	(usually)	point	to	memory	locations	being	used	to	hold	variables'

values/contents.

	

CITS2002	Systems	Programming,	Lecture	11,	p2,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

The	&	operator,	the	address-of	operator,	the	ampersand	operator
The	punctuation	character	&,	often	pronounced	as	the	address-of	operator,	is	used	to	find	a
variable's	address.

For	example,	we'd	pronounce	this	as:

int	total;

....	&total

"the	address	of	total",	and	if	the	integer	variable	total	was	located	at	memory	address	10,000
then	the	value	of	&total	would	be	10,000.

We	can	now	introduce	a	variable	named	p,	which	is	a	pointer	to	an	integer	
(pedantically,	p	is	a	variable	used	to	store	the	address	of	a	memory	location	that	we	expect	to
hold	an	integer	value).

int	total;
int	*p	;

				p	=	&total	;

If	the	integer	variable	total	was	located	at	memory	address	10,000	then	the	value	of	p	would	be
10,000.

If	necessary	(though	rarely),	we	can	print	out	the	address	of	a	variable,	or	the	value	of	a	pointer,
by	first	casting	it	to	something	we	can	print,	such	as	an	unsigned	integer,	or	to	an	"generic"
pointer:

int	total;
int	*p					=	&total	;

				printf("address	of	variable	is:		%lu\n",	(unsigned	long)&total);
				printf("	value	of	pointer	p	is:		%lu\n",	(unsigned	long)p);
				printf("	value	of	pointer	p	is:		%p\n",	(void	*)p);

	

CITS2002	Systems	Programming,	Lecture	11,	p3,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Dereferencing	a	pointer
We	now	know	that	a	pointer	may	point	to	memory	locations	holding	variables'	values.

It	should	also	be	obvious	that	if	the	variable's	value	(contents)	changes,	then	the	pointer	will
keep	pointing	to	the	same	variable,	(which	now	holds	the	new	value).

We	can	use	C's	concept	of	dereferencing	a	pointer	to	determine	the	value	the	pointer	points	to:

int	total;
int	*p					=	&total	;

				total		=		3;

				printf("value	of	variable	total	is:							%i\n",	total);
				printf("value	pointed	to	by	pointer	p	is:	%i\n",	*p);

				++total;						//	increment	the	value	that	p	points	to			

				printf("value	of	variable	total	is:							%i\n",	total);
				printf("value	pointed	to	by	pointer	p	is:	%i\n",	*p);

Even	though	the	variable's	value	has	changed	(from	3	to	4),	the	pointer	still	points	at	the
variable's	location.

The	pointer	first	pointed	at	an	address	containing	3,	and	the	pointer	kept	pointing	at	the	(same)
address	which	now	contains	4.

	

CITS2002	Systems	Programming,	Lecture	11,	p4,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Dereferencing	a	pointer,	continued
We	now	know	that	changing	the	value	that	a	pointer	points	to	does	not	change	the	pointer
(good!).

Now	we'd	like	to	change	the	value	held	in	the	address	that	the	pointer	points	to.

Similarly,	this	will	not	change	the	pointer	itself.

int	total;
int	*p					=	&total	;
int	bigger;

				total		=		8;

				printf("value	of	variable	total	is:							%i\n",			total);
				printf("value	pointed	to	by	pointer	p	is:	%i\n\n",	*p);

				*p		=		*p	+	2	;					//	increment,	by	2,	the	value	that	p	points	to			

				printf("value	of	variable	total	is:							%i\n",			total);
				printf("value	pointed	to	by	pointer	p	is:	%i\n\n",	*p);

				bigger		=		*p	+	2	;	//	just	fetch	the	value	that	p	points	to			

				printf("value	of	variable	total	is:							%i\n",	total);
				printf("value	of	variable	bigger	is:						%i\n",	bigger);
				printf("value	pointed	to	by	pointer	p	is:	%i\n",	*p);

	

CITS2002	Systems	Programming,	Lecture	11,	p5,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

An	array's	name	is	an	address
When	finding	the	address	of	a	scalar	variable	(or	a	structure),	we	precede	the	name	by	the
address	of	operator,	the	ampersand:

int	total;
int	*p	=	&total	;

However,	when	requiring	the	address	of	an	array,	we're	really	asking	for	the	address	of	the	first
element	of	that	array:

#define		N					5

int	totals[N];

int	*first		=	&totals[0];				//	the	first	element	of	the	array			
int	*second	=	&totals[1];				//	the	second	element	of	the	array			
int	*third		=	&totals[2];				//	the	third	element	of	the	array			

As	we	frequently	use	a	pointer	to	traverse	the	elements	of	an	array	(see	the	following	slides	on
pointer	arithmetic),	we	observe	the	following	equivalence:

						int	*p	=	&totals[0]	;
//	and:
						int	*p	=	totals	;

That	is:	"an	array's	name	is	synonymous	with	the	address	of	the	first	element	of	that	array".

	

CITS2002	Systems	Programming,	Lecture	11,	p6,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Pointer	Arithmetic
Another	facility	in	C	is	the	use	of	pointer	arithmetic	with	which	we	may	change	a	pointer's	value	so
that	it	points	to	successive	memory	locations.

We	employ	pointer	arithmetic	in	the	same	way	that	we	specify	numeric	arithmetic,	using
		++		and		—	—			to	request	pre-	and	post-	increment	and	decrement	operators.

We	generally	use	pointer	arithmetic	when	accessing	successive	elements	of	arrays.

Consider	the	following	example,	which	initializes	all	elements	of	an	integer	array:

#define		N					5

int	totals[N];
int	*p	=	totals;	//	p	points	to	the	first/leftmost	element	of	totals			

				for(int	i=0	;	i<N	;	++i)	{
								*p	=	0;		//	set	what	p	points	to	to	zero			
								++p;					//	advance/move	pointer	p	"right"	to	point	to	the	next	integer			
				}

				for(int	i=0	;	i<N	;	++i)	{
								printf("address	of	totals[%i]	is:		%p\n",	i,	(void	*)&totals[i]);
	printf("		value	of	totals[%i]	is:		%i\n",	i,										totals[i]);
				}

	

CITS2002	Systems	Programming,	Lecture	11,	p7,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

How	far	does	the	pointer	move?
It	would	make	little	sense	to	be	able	to	''point	anywhere''	into	memory,	and	so	C	automatically
'adjusts'	pointers'	movement	(forwards	and	backwards)	by	values	that	are	multiples	of	the	size
of	the	base	types	to	which	the	pointer	points(!).

In	our	example:

for(int	i=0	;	i<N	;	++i)	{
				*p	=	0;		//	set	what	p	points	to	to	zero			
				++p;					//	advance/move	pointer	p	"right"	to	point	to	the	next	integer			
}

p	will	initially	point	to	the	location	of	the	variable:

totals[0],	then	to
totals[1],	then	to
totals[2]	...

Similarly,	we	can	say	that	p	has	the	values:

&totals[0],	then
&totals[1],	then
&totals[2]	...

	

CITS2002	Systems	Programming,	Lecture	11,	p8,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

Combining	pointer	arithmetic	and	dereferencing
With	great	care	(because	it's	confusing),	we	can	also	combine	pointer	arithmetic	with
dereferencing:

#define	N				5	

int	totals[N];
int	*p	=	totals	;

				for(int	i=0	;	i<N	;	++i)	{
								*p++	=	0;	//	set	what	p	points	to	to	zero,	and	then			
																		//	advance	p	to	point	to	the	"next"	integer			
				}

				for(int	i=0	;	i<N	;	++i)	{
	printf("value	of	totals[%i]	is:		%i\n",	i,	totals[i]);			
				}

In	English,	we	read	this	as:

"set	the	contents	of	the	location	that	the	pointer	p	currently	points	to	the	value	zero,	and

then	increment	the	value	of	pointer	p	by	the	size	of	the	variable	that	it	points	to"	��

Similarly	we	can	employ	pointer	arithmetic	in	the	control	of	for		loops.	Consider	this	excellent
use	of	the	preprocessor:

int	array[N];
int	n,	*a;

#define	FOREACH_ARRAY_ELEMENT		for(n=0,	a=array	;	n<N	;	++n,	++a)	

				FOREACH_ARRAY_ELEMENT	{
								if(*a	==	0)	{
											
								}
				}

	

CITS2002	Systems	Programming,	Lecture	11,	p9,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

Functions	with	pointer	parameters
We	know	that	pointers	are	simply	variables.	
We	now	use	this	fact	to	implement	functions	that	receive	pointers	as	parameters.

A	pointer	parameter	will	be	initialized	with	an	address	when	the	function	is	called.

Consider	two	equivalent	implementations	of	C's	standard	strlen	function	-	the	traditional	approach	is	to	employ	a	parameter	that	"looks	like"	an
array;	new	approaches	employ	a	pointer	parameter:

int	strlen_array(char	array[])
{
				int			len	=	0;

				while(array[len]	!=	'\0')	{
								++len;
				}

				return	len;
}

int	strlen_pointer(char	*strp)				
{
				int			len	=	0;

				while(*strp	!=	'\0')	{
								++len;
								++strp;
				}
				return	len;
}

int	strlen_pointer(char	*strp)				
{
				char			*s	=	strp;

				while(*s	!=	'\0')	{
								++s;
				}
				return	(s	-	strp);
}

During	the	execution	of	the	function,	any	changes	to	the	pointer	will	simply	change	what	it	points	to.	
In	this	example,	strp	traverses	the	null-byte	terminated	character	array	(a	string)	that	was	passed	as	an	argument	to	the	function.

We	are	not	modifying	the	string	that	the	pointer	points	to,	we	are	simply	accessing	adjacent,	contiguous,	memory	locations	until	we	find	the
null-byte.

	

CITS2002	Systems	Programming,	Lecture	11,	p10,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 11 	CITS2002 	CITS2002	schedule 	

Returning	a	pointer	from	a	function
Here	we	provide	two	equivalent	implementations	of	C's	standard	strcpy	function,	which	copies	a	string	from	its	source,	src,	to	a	new	destination,	dest.

The	C11	standards	state	that	the	strcpy	function	function	must	return	a	copy	of	its	(original)	destination	parameter.

In	both	cases,	we	are	returning	a	copy	of	the	(original)	dest	parameter	-	that	is,	we	are	returning	a	pointer	as	the	function's	value.

We	say	that	"the	function's	return-type	is	a	pointer".

char	*strcpy_array(char	dest[],	char	src[])
{
				int			i	=	0;

				while(src[i]	!=	'\0')	{
	dest[i]	=	src[i];
	++i;
				}
				dest[i]	=	'\0';

				return	dest;					//	returns	original	destination	parameter
}

char	*strcpy_pointer(char	*dest,	char	*src)	//	two	pointer	parameters
{
				char	*origdest	=	dest;		//	take	a	copy	of	the	dest	parameter

				while(*src	!=	'\0')	{
								*dest	=	*src;							//	copy	one	character	from	src	to	dest
								++src;
								++dest;
				}
				*dest	=	'\0';

				return	origdest;	//	returns	copy	of	original	destination	parameter
}

Note:

in	the	array	version,	the	function's	return	type	is	a	pointer	to	a	char.	This	further	demonstrates	the	equivalence	between	array	names	(here,	dest)	and	a	pointer
to	the	first	element	of	that	array.

in	the	pointer	version,	we	move	the	dest	parameter	after	we	have	copied	each	character,	and	thus	we	must	first	save	and	then	return	a	copy	of	the	parameter's
original	value.

if	very	careful,	we	could	reduce	the	whole	loop	to	the	statement		while((*dest++	=	*src++));	
But	don't.

	

CITS2002	Systems	Programming,	Lecture	11,	p11,	26th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	A slow introduction to pointers in C
	What are pointers?
	The & operator, the address-of operator, the ampersand operator
	Dereferencing a pointer
	Dereferencing a pointer, continued
	An array's name is an address
	Pointer Arithmetic
	How far does the pointer move?
	Combining pointer arithmetic and dereferencing
	Functions with pointer parameters
	Returning a pointer from a function

