
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

Processes
The	fundamental	activity	of	an	operating	system	is	the	creation,	management,	and	termination	of	processes.

What	is	a	process?	Naively:

a	program	under	execution,
the	"animated"	existence	of	a	program,
an	identifiable	entity	executed	on	a	processor	by	the	operating	system.

More	particularly,	we	consider	how	the	operating	system	itself	views	a	process:

as	an	executable	instance	of	a	program,
as	the	associated	data	operated	upon	by	the	program	(variables,	temporary	results,	external	(file)	storage,	...),	and
as	the	program's	execution	context.

It	is	a	clear	requirement	of	modern	operating	systems	that	they	enable	many	processes	to	execute	efficiently,	by
maximising	their	use	of	the	processor,	by	supporting	inter-process	communication,	and	by	maintaining	reasonable
response	time.

This	is	an	ongoing	challenge:	as	hardware	improves,	it	is	"consumed"	by	larger,	"hungrier"	pieces	of	interlinked	software.

	

CITS2002	Systems	Programming,	Lecture	8,	p1,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

Process	States
We	can	view	the	process	from	two	points	of	view:	that	of	the	processor,	and	that	of	the	process	itself.

The	processor's	view	is	simple:	the	processor's	only	role	is	to	execute	machine	instructions	from	main	memory.
Over	time,	the	processor	continually	executes	the	sequence	of	instructions	indicated	by	the	program	counter	(PC).

The	processor	is	unaware	that	different	sequences	of	instructions	have	a	logical	existence,	that	different	sequences
under	execution	are	referred	to	as	processes	or	tasks.

From	the	process's	point	of	view,	it	is	either	being	executed	by	the	processor,	or	it	is	waiting	to	be	executed	(for
simplicity	here,	we	consider	that	a	terminated	process	no	longer	exists).

We've	already	identified	two	possible	process	states	that	a	process	may	be	in	at	any	one	time:	Running	and	Ready.

Question:	Can	a	process	determine	in	what	state	it	is?

	

CITS2002	Systems	Programming,	Lecture	8,	p2,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Process	Transitions
The	operating	system's	role	is	to	manage	the	execution	of	existing	and	newly	created	processes	by	moving	them	between
the	two	states	until	they	finish.

So	we	have	a	simple	model	consisting	of	two	recurring	steps:

1.	 Newly	created	processes	are	created	and	marked	as	Ready,	and	are	queued	to	run.

2.	 There	is	only	ever	a	single	process	in	the	Running	state.	It	will	either:

complete	its	execution	and	terminate	(exit),	or

be	suspended	(by	itself	or	by	the	operating	system),	be	marked	as	Ready,	and	be	again	queued	to	run.

One	of	the	other	Ready	processes	is	then	commenced	(or	resumed).

	

Here	the	operating	system	has	the	role	of	a	dispatcher	-	dispatching	work	for	the	processor	according	to	some	defined
policy	addressing	a	combination	of	fairness,	priority,	apparent	"interactivity",	...

For	simplicity	(of	both	understanding	and	implementation)	modern	operating	systems	support	the	idle	process	which	is	always	ready	to	run,
and	never	terminates.

	

CITS2002	Systems	Programming,	Lecture	8,	p3,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

The	Simple	2-state	Process	Model
As	we	generally	have	more	than	two	processes	available,	the	Ready	state	is	implemented	as	a	queue	of	available
processes:	

When	scheduling	is	discussed,	we	will	introduce	process	priorities	when	deciding	which	Ready	process	should	be	the	next
to	execute.

	

CITS2002	Systems	Programming,	Lecture	8,	p4,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Process	Creation
In	supporting	the	creation	of	a	new	process,	the	operating	system	must	allocate	resources	both	for	the	process	and	the
operating	system	itself.

The	process	(program	under	execution)	will	require	a	portion	of	the	available	memory	to	contain	its	(typically,	read-only)
instructions	and	initial	data	requirements.	As	the	process	executes,	it	will	demand	additional	memory	for	its	execution	stack
and	its	heap.

The	operating	system	(as	dispatcher)	will	need	to	maintain	some	internal	control	structures	to	support	the	migration	of	the
process	between	states.

Where	do	new	processes	come	from?

an	"under-burdened"	operating	system	may	take	new	process	requests	from	a	batch	queue,
a	user	logging	on	at	a	terminal	usually	creates	an	interactive	control	or	encapsulating	process	(shell	or	command
interpreter),
an	existing	process	may	request	a	new	process,	and
the	operating	system	itself	may	create	a	process	after	an	indirect	request	for	service	(to	support	networking,
printing,	...)

Different	operating	systems	support	process	creation	in	different	ways.

by	requesting	that	an	existing	process	be	duplicated	(using	the	fork()	call	in	Linux	and	macOS),
by	instantiating	a	process's	image	from	a	named	location,	typically	the	program's	image	from	a	disk	file	(using	the
spawn()	call	in	(old)DEC-VMS	and	the	CreateProcess()	call	in	Windows).

	

CITS2002	Systems	Programming,	Lecture	8,	p5,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

Process	Termination
Stallings	summarises	typical	reasons	why	a	process	will	terminate:

normal	termination,
execution	time-limit	exceeded,
a	resource	requested	is	unavailable,
an	arithmetic	error	(division	by	zero),
a	memory	access	violation,
an	invalid	request	of	memory	or	a	held	resource,
an	operating	system	or	parent	process	request,	or
its	parent	process	has	terminated.

These	and	many	other	events	may	either	terminate	the	process,	or	simply	return	an	error	indication	to	the	running	process.
In	all	cases,	the	operating	system	will	provide	a	default	action	which	may	or	may	not	be	process	termination.

It	is	clear	that	process	termination	may	be	requested	(or	occur)	when	a	process	is	either	Running	or	Ready.	The	operating
system	(dispatcher)	must	handle	both	cases.

If	a	process	is	considered	as	a	(mathematical)	function,	its	return	result,	considered	as	a	Boolean	or	integral	result,	is
generally	made	available	to	(some)	other	processes.

	

CITS2002	Systems	Programming,	Lecture	8,	p6,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://www.amazon.com/Operating-Systems-Internals-Principles-Edition/dp/0133805913/ref=dp_ob_title_bk

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Timer	Interrupts
Why	does	a	process	move	from	Running	to	Ready?

The	operating	system	must	meet	the	two	goals	of	fairness	amongst	processes	and	maximal	use	of	resources	(here,	the
processor	and,	soon,	memory).

The	first	is	easily	met:	enable	each	process	to	execute	for	a	predetermined	period	before	moving	the	Running	process	to
the	Ready	queue.

A	hardware	timer	will	periodically	generate	an	interrupt	(say,	every	10	milliseconds).	Between	the	execution	of	any
two	instructions,	the	processor	will	"look	for"	interrupts.	When	the	timer	interrupt	occurs,	the	processor	will	begin
execution	of	the	interrupt	handler.

The	handler	will	increment	and	examine	the	accumulated	time	of	the	currently	executing	process,	and	eventually
move	it	from	Running	to	Ready.

The	maximum	time	a	process	is	permitted	to	run	before	changing	state	is	often	termed	the	time	quantum.

	

CITS2002	Systems	Programming,	Lecture	8,	p7,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

The	Blocking	of	Processes
The	above	scenario	is	simple	and	fair	if	all	Ready	processes	are	always	truly	ready	to	execute.

However,	the	existence	of	processes	which	continually	execute	to	the	end	of	their	time	quanta,	often	termed	compute-
bound	processes,	is	rare.

More	generally,	a	process	will	request	some	input	or	output	(I/O)	from	a	comparatively	slow	source	(such	as	a	disk	drive,
tape,	keyboard,	mouse,	or	clock).	Even	if	the	"reply"	to	the	request	is	available	immediately,	a	synchronous	check	of	this
will	often	exceed	the	remainder	of	the	process's	time	quantum.	In	general	the	process	will	have	to	wait	for	the	request	to	be
satisfied.

The	process	should	no	longer	be	Running,	but	it	is	not	Ready	either:	at	least	not	until	its	I/O	request	can	be	satisfied.

We	now	introduce	a	new	state	for	the	operating	system	to	support,	Blocked,	to	describe	processes	waiting	for	I/O	requests
to	be	satisfied.	A	process	requesting	I/O	will,	of	course,	request	the	operating	system	to	undertake	the	I/O,	but	the
operating	system	supports	this	as	three	activities:

1.	 requesting	I/O	to	or	from	the	device,
2.	 moving	the	process	from	Running	to	Blocked,
3.	 preparing	to	accept	an	interrupt	when	I/O	completes.

(Very	simply)	when	the	I/O	completion	interrupt	occurs,	the	requesting	process	is	moved	from	Blocked	to	Ready.

A	degenerate	case	of	blocking	occurs	when	a	process	simply	wishes	to	sleep	for	a	given	period.	We	consider	such	a
request	as	"blocking	until	a	timer	interrupt",	and	have	the	operating	system	handle	it	the	same	way.

	

CITS2002	Systems	Programming,	Lecture	8,	p8,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

The	5-State	Model	of	Process	Execution
At	this	point,	Stallings	introduces	his	5-state	model:	

This	includes	two	new	states:

New	for	newly	created	processes	which	haven't	yet	been	admitted	to	the	Ready	queue	for	resourcing	reasons;
Exit	for	terminated	processes	whose	return	result	or	resources	may	be	required	by	other	processes,	e.g.	for	post-
process	accounting.

Each	of	these	states,	except	for	Running,	is	likely	to	'hold'	more	than	one	process	(i.e.	there	may	be	more	than	one
process	in	one	of	these	states).

If	a	queue	of	processes	is	not	always	ordered	in	a	first-come-first-served	(FCFS)	manner,	then	a	priority	or	scheduling
mechanism	is	necessary.

	

CITS2002	Systems	Programming,	Lecture	8,	p9,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

Supporting	Multiple	Blocked	States
When	notification	of	an	I/O	or	timer	completion	occurs,	the	simplest	queuing	model	requires	the	operating	system	to	scan
its	Blocked	queue	to	determine	which	process(es)	requested,	or	are	interested	in,	the	event:

	

CITS2002	Systems	Programming,	Lecture	8,	p10,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 11 next	→ 	CITS2002 	CITS2002	schedule 	

Supporting	Multiple	Blocked	States,	continued
A	better	scheme	is	to	maintain	a	queue	for	each	possible	event	type.	When	an	event	occurs,	its	(shorter)	queue	is	scanned
more	quickly:

A	typical	example	would	have	one	queue	for	processes	blocked	on	disk-drive-1,	another	blocked	on	disk-drive-2,	another
blocked	on	the	keyboard

Then,	when	an	interrupt	occurs,	it's	quick	to	determine	which	process(es)	should	be	unblocked,	and	moved	to	Ready.

	

CITS2002	Systems	Programming,	Lecture	8,	p11,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 12 next	→ 	CITS2002 	CITS2002	schedule 	

The	Dispatching	Role	of	Operating	Systems
As	should	now	be	clear,	this	view	of	the	operating	system	as	a	dispatcher	involves	the	moving	of	processes	from	one
execution	state	to	another.

The	process's	state	is	reflected	by	where	it	resides,	although	its	state	will	also	record	much	other	information.

The	possible	state	transitions	that	we	have	now	discussed	are:

Null	→	New a	new	process	is	requested.

New	→	Ready resources	are	allocated	for	the	new
process.

Ready	→	Running a	process	is	given	a	time	quantum.

Running	→	Ready a	process's	execution	time	quantum
expires.

Running	→	Blocked a	process	requests	slow	I/O.

Blocked	→	Ready an	I/O	interrupt	signals	that	I/O	is	ready.

Running	→	Exit normal	or	abnormal	process	termination.

Ready	or	Blocked	→
Exit external	process	termination	requested.

	

CITS2002	Systems	Programming,	Lecture	8,	p12,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 13 next	→ 	CITS2002 	CITS2002	schedule 	

Suspension	of	Processes
Recall	that	the	processor	is	much	faster	than	I/O.	As	a	consequence,	it	is	quite	possible	for	all	processes	to	be	blocked	on
I/O	requests,	when	the	processor	will	be	idle	most	of	the	time	while	waiting	for	I/O	interrupts.

Question:	How	to	get	more	executing	processes,	given	that	resources	such	as	memory	are	finite?

To	enable	more	true	work	to	be	performed	by	the	processor,	we	could	provide	more	memory	to	support	the	requirements	of
more	processes.

But	aside	from	the	expense,	providing	more	memory	tends	to	encourage	larger	processes,	not	(in	general)	better	support
for	more	processes.

	

CITS2002	Systems	Programming,	Lecture	8,	p13,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 14 	CITS2002 	CITS2002	schedule 	

Swapping	of	Processes
Another	solution	is	swapping:	moving	(part	of)	a	process's	memory	to	disk	when	it	is	not	needed.

When	none	of	the	processes	in	main	memory	is	Ready	and	more	memory	is	required,	the	operating	system	swaps	the
memory	of	some	of	the	Blocked	processes	to	disk	to	reclaim	some	memory	space.	Such	processes	are	moved	to	a	new
state:	the	Suspend	state,	a	queue	of	processes	that	have	been	"kicked	out"	of	main	memory:

If	desperate	for	even	more	memory,	the	operating	system	can	similarly	reclaim	memory	from	Ready	processes.	
When	memory	becomes	available,	the	operating	system	may	now	resume	execution	of	a	process	from	Suspend,	or	admit
a	process	from	New	to	Ready.

	

CITS2002	Systems	Programming,	Lecture	8,	p14,	14th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Processes
	Process States
	Process Transitions
	The Simple 2-state Process Model
	Process Creation
	Process Termination
	Timer Interrupts
	The Blocking of Processes
	The 5-State Model of Process Execution
	Supporting Multiple Blocked States
	Supporting Multiple Blocked States, continued
	The Dispatching Role of Operating Systems
	Suspension of Processes
	Swapping of Processes

