
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

Raw	input	and	output
We've	recently	seen	how	C11	employs	arrays	of	characters	to	represent	strings,	treating	the	NULL-byte	with	special
significance.

At	the	lowest	level,	an	operating	system	will	only	communicate	using	bytes,	not	with	higher-level	integers	or	floating-point
values.	C11	employs	arrays	of	characters	to	hold	the	bytes	in	requests	for	raw	input	and	output.

File	descriptors	-	reading	from	a	file
Unix-based	operating	systems	provide	file	descriptors,	simple	integer	values,	to	identify	'communication	channels'	-	such	as
files,	interprocess-communication	pipes,	(some)	devices,	and	network	connections	(sockets).

In	combination,	our	C11	programs	will	use	integer	file	descriptors	and	arrays	of	characters	to	request	that	the	operating
system	performs	input	and	output	on	behalf	of	the	process	-	see	man	2	open.

#include		<stdio.h>
#include		<fcntl.h>
#include		<stdlib.h>
#include		<unistd.h>

#define		MYSIZE						10000

void	read_using_descriptor(char	filename[])								
{
//		ATTEMPT	TO	OPEN	THE	FILE	FOR	READ-ONLY	ACCESS
				int	fd				=	open(filename,	O_RDONLY);

//		CHECK	TO	SEE	IF	FILE	COULD	BE	OPENED
				if(fd	==	-1)	{
								printf("cannot	open	'%s'\n",	filename);
								exit(EXIT_FAILURE);
				}

//		DEFINE	A	CHARACTER	ARRAY	TO	HOLD	THE	FILE'S	CONTENTS
				char			buffer[MYSIZE];
				size_t	got;

//		PERFORM	MULTIPLE	READs	OF	FILE	UNTIL	END-OF-FILE	REACHED		
				while((got	=	read(fd,	buffer,	sizeof	buffer))	>	0)	{		
							
				}

//		INDICATE	THAT	THE	PROCESS	WILL	NO	LONGER	ACCESS	FILE
				close(fd);
}

Note	that	the	functions	open,	read,	and	close	are	not	C11	functions	but	operating	system	system-calls,	providing	the
interface	between	our	user-level	program	and	the	operating	system's	implementation.

	

CITS2002	Systems	Programming,	Lecture	7,	p1,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

File	descriptors	-	writing	to	a	file
Similarly,	we	use	integer	file	descriptors	and	arrays	of	characters	to	write	data	to	a	file.	We	require	a	different	file	descriptor
for	each	file	-	the	descriptor	identifies	the	file	to	use	and	the	operating	system	(internally)	remembers	the	requested
(permitted)	form	of	access.

Copying	a	file	using	file	descriptors

#include		<stdio.h>
#include		<fcntl.h>
#include		<stdlib.h>
#include		<unistd.h>

#define		MYSIZE						10000

int	copy_file(char	destination[],	char	source[])								
{
//		ATTEMPT	TO	OPEN	source	FOR	READ-ONLY	ACCESS
				int	fd0				=	open(source,	O_RDONLY);
//		ENSURE	THE	FILE	COULD	BE	OPENED
				if(fd0	==	-1)	{
								return	-1;
				}

//		ATTEMPT	TO	OPEN	destination	FOR	WRITE-ONLY	ACCESS
				int	fd1				=	open(destination,	O_WRONLY);
//		ENSURE	THE	FILE	COULD	BE	OPENED
				if(fd1	==	-1)	{
								close(fd0);
								return	-1;
				}

//		DEFINE	A	CHARACTER	ARRAY	TO	HOLD	THE	FILE'S	CONTENTS
				char			buffer[MYSIZE];
				size_t	got;

//		PERFORM	MULTIPLE	READs	OF	FILE	UNTIL	END-OF-FILE	REACHED		
				while((got	=	read(fd0,	buffer,	sizeof	buffer))	>	0)	{		
								if(write(fd1,	buffer,	got))	!=	got)	{		
												close(fd0);	close(fd1);
												return	-1;
								}
				}

				close(fd0);	close(fd1);
				return	0;
}

	

CITS2002	Systems	Programming,	Lecture	7,	p2,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Reading	and	writing	text	files
We'll	next	focus	on	reading	and	writing	from	human-readable	text	files.	C11	provides	additional	support	above	the	operating
systems's	system-calls	to	provide	more	efficient	buffering	of	I/O	operations,	and	treating	text	files	as	a	sequence	of	lines	(as
strings).

We	open	a	text	file	using	C's	fopen()	function.	
To	this	function	we	pass	the	name	of	the	file	we	wish	to	open	(as	a	character	array),	and	describe	how	we	wish	to	open,
and	later	access,	the	file.

The	returned	value	is	a	FILE	pointer,	that	we	use	in	all	subsequent	operations	with	that	file.

#include	<stdio.h>

#define	DICTIONARY						"/usr/share/dict/words"

....
//		ATTEMPT	TO	OPEN	THE	FILE	FOR	READ-ACCESS
				FILE			*dict	=	fopen(DICTIONARY,	"r");

//		CHECK	IF	ANYTHING	WENT	WRONG
				if(dict	==	NULL)	{
								printf("cannot	open	dictionary	'%s'\n",	DICTIONARY);
								exit(EXIT_FAILURE);
				}

//		READ	AND	PROCESS	THE	CONTENTS	OF	THE	FILE
			

//		WHEN	WE'RE	FINISHED,	CLOSE	THE	FILE
				fclose(dict);

If	fopen()	returns	the	special	value	NULL,	it	indicates	that	the	file	may	not	exist,	or	that	the	operating	system	is	not	giving	us
permission	to	access	it	as	requested.

	

CITS2002	Systems	Programming,	Lecture	7,	p3,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Declaring	how	the	file	will	be	used
In	different	applications,	we	may	need	to	open	the	file	in	different	ways.

We	pass	different	strings	as	the	second	parameter	to	fopen()	to	declare	how	we'll	use	the	file:

"r" open	for	reading

"r+" open	for	reading	and	writing

"w" create	or	truncate	file,	then	open	for	writing

"w+" create	or	truncate	file,	then	open	for	reading	and	writing

"a" create	if	necessary,	then	open	for	appending	(at	the	end	of	the
file)

"a+" create	if	necessary,	then	open	for	reading	and	appending

All	future	operations	to	read	and	write	an	open	file	are	checked	against	the	initial	file	access	mode.	Future	operations	will
fail	if	they	do	not	match	the	initial	declaration.

NOTE	-	File	access	mode	flag	"b"	can	optionally	be	specified	to	open	a	file	in	binary	mode	(described	later).	This	flag	has
effect	only	on	Windows	systems,	and	is	ignored	on	Linux	and	macOS.	This	flag	has	no	effect	when	reading	and	writing	text
files.

	

CITS2002	Systems	Programming,	Lecture	7,	p4,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Reading	a	text	file,	one	line	at	a	time
Having	opened	the	file	(for	read	access),	we	now	wish	to	read	it	in	-	one	line	at	a	time.	
We	generally	don't	need	to	store	each	line	of	text;	we	just	check	or	use	it	as	we	traverse	the	file:

The	text	data	in	the	file	is	(unsurprisingly)	also	stored	as	a	sequence	of	characters.	We	can	use	C's	character	arrays	to
store	each	line	as	we	read	it:

#include	<stdio.h>

....
				FILE			*dict;
				char			line[BUFSIZ];

				dict	=	fopen(.....);
			

//		READ	EACH	LINE	FROM	THE	FILE,
//		CHECKING	FOR	END-OF-FILE	OR	AN	ERROR
				while(fgets(line,	sizeof	line,	dict)	!=	NULL)	{		
							
												//	process	this	line
							
				}
//		AT	END-OF-FILE	(OR	AN	ERROR),	CLOSE	THE	FILE
				fclose(dict);

Of	note	in	this	code:

we	pass	to	fgets()	our	character	array,	into
which	each	line	will	be	read.

we	indicate	the	maximum	size	of	our	array,
so	that	fgets()	doesn't	try	to	read	in	too
much.

We	use	the	sizeof	operator	to	indicate	the
maximum	size	of	our	character	array.	
Using	sizeof	here,	rather	than	just
repeating	the	value	BUFSIZ,	means	that	we
can	change	the	size	of	line	at	any	time,	by
only	changing	the	size	at	its	definition.

We	pass	our	file	pointer,	dict,	to	our	file-
based	functions	to	indicate	which	file	to
read	or	write.	
It's	possible	to	have	many	files	open	at
once.

The	fgets()	functions	returns	the	constant
NULL	when	it	"fails".	When	reading	files,
this	indicates	that	the	end-of-file	has	been
reached,	or	some	error	detected	(e.g.	USB
key	removed!).

Assuming	that	we've	reached	end-of-file,
and	that	we	only	need	to	read	the	file	once,
we	close	the	file	pointer	(and	just	assume
that	the	closing	has	succeeded).

	

CITS2002	Systems	Programming,	Lecture	7,	p5,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

What	did	we	just	read	from	the	file?
Our	call	to	the	fgets()	function	will	have	read	in	all	characters	on	each	line	of	the	dictionary	but,	if	we're	interested	in
processing	the	characters	as	simple	strings,	we	find	that	we've	got	"too	much".

Each	line	read	will	actually	have:

a a r d v a r k \n \0

The	character	'\n',	the	familiar	newline	character	often	used	in	print(),	is	silently	added	to	text	lines	by	our	text	editors.

In	fact	on	Windows'	machines,	text	files	also	include	a	carriage-return	character	before	the	newline	character.

W i n d o w s \r \n \0

As	we	know,	we	can	simply	turn	this	into	a	more	manageable	string	by	replacing	the	newline	or	carriage-return	character	by
the	null-byte.

	

CITS2002	Systems	Programming,	Lecture	7,	p6,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Trimming	end-of-line	characters	from	a	line
To	make	future	examples	easy	to	read,	we'll	write	a	function,	named	trim_line(),	that	receives	a	line	(a	character	array)	as	a
parameter,	and	"removes"	the	first	carriage-return	or	newline	character	that	it	finds.

It's	very	similar	to	functions	like	my_strlen()	that	we've	written	in	laboratory	work:

//		REMOVE	ANY	TRAILING	end-of-line	CHARACTERS	FROM	THE	LINE
void	trim_line(char	line[])
{
				int	i	=	0;

//		LOOP	UNTIL	WE	REACH	THE	END	OF	line
				while(line[i]	!=	'\0')	{

//		CHECK	FOR	CARRIAGE-RETURN	OR	NEWLINE
								if(line[i]	==	'\r'	||	line[i]	==	'\n')	{
												line[i]	=	'\0';	//	overwrite	with	null-byte
												break;										//	leave	the	loop	early
								}
								i	=	i+1;												//	iterate	through	character	array
				}
}

We	note:

we	simply	overwrite	the	unwanted	character	with	the	null-byte.
the	function	will	actually	modify	the	caller's	copy	of	the	variable.
we	do	not	return	any	value.

	

CITS2002	Systems	Programming,	Lecture	7,	p7,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

Writing	text	output	to	a	file
We've	used	fgets()	to	'get'	a	line	of	text	(a	string)	from	a	file;	
we	similarly	use	fputs()	to	'put'	(write)	a	line	of	text.

The	file	pointer	passed	to	fputs()	must	previously	have	been	opened	for	writing	or	appending.

Copying	a	text	file	using	file	pointers
We	now	have	all	the	functions	necessary	to	copy	one	text	file	to	another,	one	line	line	at	a
time:

#include	<stdio.h>
#include	<stdlib.h>

void	copy_text_file(char	destination[],	char	source[])
{
				FILE								*fp_in			=	fopen(source,	"r");
				FILE								*fp_out		=	fopen(destination,		"w");

//		ENSURE	THAT	OPENING	BOTH	FILES	HAS	BEEN	SUCCESSFUL
				if(fp_in	!=	NULL	&&	fp_out	!=	NULL)	{
								char				line[BUFSIZ];

								while(fgets(line,	sizeof	line,	fp_in)	!=	NULL)	{		
												if(fputs(line,	fp_out)	==	EOF)	{
																printf("error	copying	file\n");
																exit(EXIT_FAILURE);
												}
								}
				}
//		ENSURE	THAT	WE	ONLY	CLOSE	FILES	THAT	ARE	OPEN
				if(fp_in	!=	NULL)	{
								fclose(fp_in);
				}
				if(fp_out	!=	NULL)	{
								fclose(fp_out);
				}
}

	

CITS2002	Systems	Programming,	Lecture	7,	p8,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

More	text	file	reading	-	the	game	of	Scrabble
Let's	quickly	consider	another	example	employing	reading	a	text	file.

In	the	game	of	Scrabble,	each	letter	tile	has	a	certain	value	-	the	rarer	a
letter	is	in	the	English	language,	the	higher	the	value	of	that	letter	('E'	is
common	and	has	the	value	1,	'Q'	is	rare	and	has	the	value	10).

Can	we	write	C	functions	to	determine:

the	value	of	a	word	in	Scrabble?
the	word	in	a	dictionary	with	the	highest	value?
the	best	word	to	choose	from	a	set	of	tiles?

In	writing	these	functions	we	won't	consider
all	of	the	rules	of	Scrabble.

Another	consideration	(which	we'll	ignore)	is
that	there	are	fixed	tile	frequencies	-	for
example,	there	are	12	'E's	but	only	1	'Q'.

Refer	to	Wikipedia	for	the	actual
distributions.

	

CITS2002	Systems	Programming,	Lecture	7,	p9,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://en.wikipedia.org/wiki/Scrabble_letter_distributions

Letter Value

A 1
B 3
C 3
D 2
E 1
F 4
G 2
H 4
I 1
J 8
K 5
L 1
M 3
N 1
O 1
P 3
Q 10
R 1
S 1
T 1
U 1
V 4
W 4
X 8
Y 4
Z 10

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

The	value	of	a	word	in	Scrabble
To	answer	our	Scrabble	questions,	we'll	develop	two	simple	helper	functions:

#include	<stdbool.h>
#include	<string.h>
#include	<ctype.h>

//		ENSURE	THAT	A	WORD	CONTAINS	ONLY	LOWERCASE	CHARACTERS
bool	valid_word(char	word[])
{
				int	i	=	0;

//		IF	NOT	A	LOWERCASE	CHARACTER,	THE	FUNCTION	RETURNS	false
				while(word[i]	!=	'\0')	{
	if(!	islower(word[i]))	{			//		if	not	islower	...
												return	false;
								}
								i	=	i+1;
				}
//		WE'VE	REACHED	THE	END	OF	THE	WORD	-	IT'S	ALL	LOWERCASE
				return	true;
}

//		CALCULATE	THE	SCRABBLE	VALUE	OF	ANY	WORD
int	calc_value(char	word[])
{
//		AN	ARRAY	TO	PROVIDE	THE	VALUE	OF	EACH	LETTER,	FROM	'a'	TO	'z'		
				int	values[]	=	{		1,	3,	3,	2,	1,	4,	2,	4,	1,	8,	5,	1,	3,	1,		
																						1,	3,	10,	1,	1,	1,	1,	4,	4,	8,	4,	10	};
				int	total				=	0;
				int	i								=	0;

//		TRAVERSE	THE	WORD	DETERMINING	THE	VALUE	OF	EACH	LETTER
				while(word[i]	!=	'\0')	{
								total			=	total	+	values[word[i]	-	'a'];
								i	=	i+1;
				}
				return	total;
}

	

CITS2002	Systems	Programming,	Lecture	7,	p10,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 11 next	→ 	CITS2002 	CITS2002	schedule 	

The	word	with	the	highest	value
Can	we	find	which	valid	word	from	a	dictionary	has	the	highest	value?

#include	<stdio.h>
#include	<stdbool.h>
#include	<string.h>
#include	<ctype.h>

#define	DICTIONARY						"/usr/share/dict/words"
#define	LONGEST_WORD				100

//		FIND	THE	WORD	WITH	THE	BEST	VALUE
void	findbest(char	filename[])
{
				FILE								*fp		=	fopen(filename,	"r");

//		ENSURE	THAT	WE	CAN	OPEN	(WITH	READ-ACCESS)	THE	FILE
				if(fp	!=	NULL)	{
								char				bestword[LONGEST_WORD];
								int					bestvalue							=	0;
								char				thisword[LONGEST_WORD];
								int					thisvalue							=	0;

//		READ	EACH	LINE	OF	THE	FILE
								while(fgets(thisword,	sizeof	thisword,	fp)	!=	NULL)	{
//		REPLACE	THE	NEWLINE	CHARACTER	WITH	A	NULL-BYTE
												trim_line(thisword);

//		ENSURE	THAT	THIS	WORD	IS	VALID	(previously	defined)
												if(valid_word(thisword))	{
																thisvalue	=	calc_value(thisword);

//		IS	THIS	WORD	BETTER	THAN	THE	PREVIOUSLY	BEST?
																if(bestvalue	<	thisvalue)	{
																				bestvalue			=	thisvalue;				//	save	current	details
																				strcpy(bestword,	thisword);
																}
												}
								}
								fclose(fp);
								printf("best	word	is	%s	=	%i\n",	bestword,	bestvalue);
				}
}

int	main(int	argc,	char	*argv[])
{
				findbest(DICTIONARY);
				return	0;
}

Full	solution	here.

	

CITS2002	Systems	Programming,	Lecture	7,	p11,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
file:///Users/chris/Sites/cits2002/lectures/lecture07/src/bestword.c

CITS2002	Systems	Programming		

←	prev 12 next	→ 	CITS2002 	CITS2002	schedule 	

Reading	and	writing	files	of	binary	data
To	date,	our	use	of	files	has	dealt	exclusively	with	lines	of	text,	using	fgets()	and	fputs()	to	perform	our	I/O.

This	has	provided	a	good	introduction	to	file	input/output	(I/O)	as	textual	data	is	easy	to	"see",	and	printing	it	to	the	screen
helps	us	to	verify	our	functions:

the	standard	fgets	function	manages	the	differing	lengths	of	input	lines	by	reading	until	the	'\n'	or	'\r'	character	is
found,

fgets	terminates	input	lines	by	appending	a	null-byte	to	them,	'turning'	them	into	C	strings,	and

the	null-byte	is	significant	when	later	managing	(copying,	printing,	...)	strings.

	

CITS2002	Systems	Programming,	Lecture	7,	p12,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 13 next	→ 	CITS2002 	CITS2002	schedule 	

Reading	and	writing	files	of	binary	data,	continued
However,	when	managing	files	of	arbitrary	data,	possibly	including	null-bytes	as	well,	we	must	use	different	functions	to
handle	binary	data:

#include	<stdio.h>
#include	<stdlib.h>

void	copyfile(char	destination[],	char	source[])
{
				FILE								*fp_in			=	fopen(source,	"rb");
				FILE								*fp_out		=	fopen(destination,		"wb");

//		ENSURE	THAT	OPENING	BOTH	FILES	HAS	BEEN	SUCCESSFUL
				if(fp_in	!=	NULL	&&	fp_out	!=	NULL)	{

								char				buffer[BUFSIZ];
								size_t		got,	wrote;

								while((got	=	fread(buffer,	1,	sizeof	buffer,	fp_in))	>	0)	{		
												wrote	=	fwrite(buffer,	1,	got,	fp_out);
												if(wrote	!=	got)	{
																printf("error	copying	files\n");
																exit(EXIT_FAILURE);
												}
								}

				}

//		ENSURE	THAT	WE	ONLY	CLOSE	FILES	THAT	ARE	OPEN
				if(fp_in	!=	NULL)	{
								fclose(fp_in);
				}
				if(fp_out	!=	NULL)	{
								fclose(fp_out);
				}
}

NOTE	-	The	access	mode	flag	"b"	has	been	used	in	both	calls	to	fopen()	as	we're	anticipating	opening	binary	files.	This	flag
has	effect	only	on	Windows	systems,	and	is	ignored	on	Linux	and	macOS.	This	flag	has	no	effect	when	reading	and	writing
text	files.

While	we	might	request	that	fread()	fetches	a	known	number	of	bytes,	fread()	might	not	provide	them	all!

we	might	be	reading	the	last	"part"	of	a	file,	or
the	data	may	be	arriving	(slowly)	over	a	network	connection,	or
the	operating	system	may	be	too	busy	to	provide	them	all	right	now.

	

CITS2002	Systems	Programming,	Lecture	7,	p13,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 14 next	→ 	CITS2002 	CITS2002	schedule 	

Reading	and	writing	binary	data	structures
The	fread()	function	reads	an	indicated	number	of	elements,	each	of	which	is	the	same	size:

				size_t		fread(void	*ptr,	size_t	eachsize,	size_t	nelem,	FILE	*stream);

This	mechanism	enables	our	programs	to	read	arbitrary	sized	data,	by	setting	eachsize	to	one	(a	single	byte),	or	to	read	a
known	number	of	data	items	each	of	the	same	size:

#include	<stdio.h>

int			intarray[N_ELEMENTS];
int			got,	wrote;

//		OPEN	THE	BINARY	FILE	FOR	READING	AND	WRITING
				FILE		*fp	=	fopen(filename,	"rb+");
			

				got	=	fread(intarray,	sizeof	int,	N_ELEMENTS,	fp);		
				printf("just	read	in	%i	ints\n",	got);

//		MODIFY	THE	BINARY	DATA	IN	THE	ARRAY
			

//		REWIND	THE	FILE	TO	ITS	BEGINNING
				rewind(fp);

//		AND	NOW	OVER-WRITE	THE	BEGINNING	DATA
				wrote	=	fwrite(intarray,	sizeof	int,	N_ELEMENTS,	fp);		
			

				fclose(fp);

	

CITS2002	Systems	Programming,	Lecture	7,	p14,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 15 	CITS2002 	CITS2002	schedule 	

Reading	and	writing	binary	data	structures,	continued
When	reading	and	writing	arbitrary	binary	data,	there	is	an	important	consideration	-	different	hardware	architectures	(the
computer's	CPU	and	data	circuitry)	store	and	manipulate	their	data	in	different	formats.

The	result	is	that	when	binary	data	written	via	one	architecture	(such	as	an	Intel	Pentium)	is	read	back	on	a	different
architecture	(such	as	an	IBM	PowerPC),	the	"result"	will	be	different!

Writing	on	a	32-bit	Intel	Pentium:

#include	<stdio.h>

#define	N					10

		int	array[N];

		for(int	n=0	;	n	<	N	;	++n)	{
						array[n]		=		n;
		}

		fwrite(array,	N,	sizeof	int,	fp_out);

Reading	on	a	32-bit	PowerPC:

#include	<stdio.h>

#define	N					10

		int	array[N];

		fread(array,	N,	sizeof	int,	fp_in);		

		for(int	n=0	;	n	<	N	;	++n)	{
						printf("%i	",	array[n]);
		}
		printf("\n");

Prints	the	output:

0	16777216	33554432	50331648	67108864	83886080	100663296	117440512	134217728	150994944

The	problems	of	reading	and	writing	of	binary	data,	to	and	from	different	architectures	and	across	networks,	are	discussed
and	solved	in	later	units,	such	as	CITS3002	Computer	Networks.

	

Jonathan	Swift's	Gulliver's	Travels,	published	in	1726,	provided	the	earliest	literary	reference	to	computers,	in	which	a	machine	would	write	books.	This	early	attempt	at	artificial	intelligence	was
characteristically	marked	by	its	inventor's	call	for	public	funding	and	the	employment	of	student	operators.	Gulliver's	diagram	of	the	machine	actually	contained	errors,	these	being	either	an	attempt	to
protect	his	invention	or	the	first	computer	hardware	glitch.

The	term	endian	is	used	because	of	an	analogy	with	the	story	Gulliver's	Travels,	in	which	Swift	imagined	a	never-ending	fight	between	the	kingdoms	of	the	Big-Endians	and	the	Little-Endians
(whether	you	were	Lilliputian	or	Brobdignagian),	whose	only	difference	is	in	where	they	crack	open	a	hard-boiled	egg.

	

CITS2002	Systems	Programming,	Lecture	7,	p15,	12th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://teaching.csse.uwa.edu.au/units/CITS3002/
http://en.wikipedia.org/wiki/Gulliver's_Travels

	Raw input and output
	File descriptors - reading from a file
	File descriptors - writing to a file
	Copying a file using file descriptors
	Reading and writing text files
	Declaring how the file will be used
	Reading a text file, one line at a time
	What did we just read from the file?
	Trimming end-of-line characters from a line
	Writing text output to a file
	Copying a text file using file pointers
	More text file reading - the game of Scrabble
	The value of a word in Scrabble
	The word with the highest value
	Reading and writing files of binary data
	Reading and writing files of binary data, continued
	Reading and writing binary data structures
	Reading and writing binary data structures, continued

