
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

An	Overview	of	Computer	Hardware
Any	study	of	operating	systems	requires	a	basic	understanding	of	the	components	of	a	computer	system.

Although	the	variety	of	computer	system	configurations	is	forever	changing,	as	(new)	component	types	employ	different
standards	for	their	interconnection,	it	is	still	feasible	to	discuss	a	simple	computer	model,	and	to	discuss	components'	roles
in	operating	systems.

Traditionally,	we	consider	four	main	structural	components:

The	Central	Processing	Unit,	or	CPU,	undertakes	arithmetic	and	logical
computation,	and	directs	most	input	and	output	services	from	memory
and	peripherals.	There	may	be	multiple	processors	in	a	system,	each
executing	the	(same,	single)	operating	system	or	user/application
programs.

Main	Memory,	or	RAM	(Random	Access	Memory)	is	used	to	store	both
instructions	and	data.	Processors	read	and	write	items	of	memory	both	at
the	direction	of	programs	(for	data),	and	as	an	artifact	of	running	programs
(for	instructions).

Secondary	Storage	and	Peripheral	Devices,	(or	input/output	modules)
and	their	I/O	controllers,	move	data	to	and	from	the	other	components
usually	to	provide	longer-term,	persistent	storage	of	data	(disks,	tapes),

A	communications	bus,	or	system	bus,	connects	the	processor(s),	main
memory,	and	I/O	devices	together,	providing	a	"highway"	on	which	data
may	travel	between	the	components.	Typically	only	one	component	may
control	the	bus	at	once,	and	bus	arbitration	decides	which	that	will	be.

Excellent,	albeit	expensive,	computer	organisation	texts

Computer	Organization	and
Design
(MIPS	Edition):
The	Hardware/Software
Interface,
by	David	A.	Patterson	and	John
L.	Hennessy.
Morgan	Kaufmann	Publishers,
6th	edition,	2021.

Computer
Organization:
Basic	Processor
Structure,
James	Gil	de
Lamadrid,
Chapman	and
Hall/CRC,
Published	February
23,	2018,
372pp,	ISBN
9781498799515.

Computer	Systems:
A	Programmer's
Perspective,
Randal	Bryant	and
David	O'Hallaron,
October	2015,
1120pp,	ISBN
1292101768.

	

CITS2002	Systems	Programming,	Lecture	6,	p1,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://www.amazon.com.au/Computer-Organization-Design-Hardware-Interface/dp/0128201096/ref=sr_1_7?dchild=1&keywords=computer+organization&qid=1628404019&sr=8-7
https://www.crcpress.com/Computer-Organization-Basic-Processor-Structure/Gil-de-Lamadrid/p/book/9781498799515
https://www.amazon.com.au/Computer-Systems-Programmers-Perspective-Global

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

Basic	Computer	Components
Many	OS	textbooks	(often	in	their	1st	or	2nd	chapters)	outline	a	traditional	computer	model,	in	which	the	CPU,	main	memory,	and	I/O	devices	are	all	interconnected	by	a	single	system	bus
(figures	are	taken	from	Stallings'	website).

Instruction	and	data	fetching

The	CPU	fetches	a	copy	of	the	contents	of	uniquely-addressed	memory	locations,	by
identifying	the	required	location	in	its	MAR	(Memory	Address	Register).

Depending	on	why	the	CPU	requested	the	memory's	value,	it	executes	the	contents	as	an
instruction,	or	operates	on	the	contents	as	 data.

Similarly,	the	CPU	locates	data	from,	or	for,	distinct	locations	in	the	I/O	devices	using	its	I/O-
AR	(Address	Register).

	

Role	of	operating	systems
The	role	of	the	OS	in	managing	the	flow	of	data	to	and	from	its	CPU	and	I/O	devices,	made	very
challenging	by	the	wide	variety	of	devices.

The	OS	attempts	to	attain	maximum	throughput	of	its	computation	and	data	transfer.

Processor	scheduling	attempts	to	keep	the	(expensive)	processor	busy	at	all	times,	by	 interleaving
computation	and	communication.

While	waiting	for	a	slow	device	to	complete	its	I/O	transfer,	the	CPU	may	be	able	to	undertake	other
activities,	such	as	performing	some	computation	or	managing	faster	I/O.	

	

CITS2002	Systems	Programming,	Lecture	6,	p2,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://williamstallings.com/OperatingSystems/OS9e-Student/

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Processor	Registers
As	well	as	special	logic	to	perform	arithmetic	and	logic	functions,	the	processor	houses	a	small	number	of	very	fast	memory
locations,	termed	processor	registers.

Data	in	registers	can	be	read	and	written	very	rapidly	(with	a	typical	access	time	of	0.5-3ns).	If	the	required	data	is
available	in	registers,	rather	than	main	memory,	program	execution	may	proceed	10-500X	faster.

Different	types	of	processors	have	varying	number	of	registers,	For	example,	some	processors	have	very	few	(3-16),
some	have	many	(32-100s).

The	number	of	general-purpose	CPU	registers,	and	the	width	of	each	register	(measured	in	bits,	e.g.	64-bit	registers),
contribute	to	the	power	and	speed	of	a	CPU.

Processors	place	constraints	on	how	some	registers	are	used.	Some	processors	expect	certain	types	of	data	to
reside	in	specific	registers.	For	example,	some	registers	may	be	expected	to	hold	integer	operands	for	integer
arithmetic	instructions,	whereas	some	registers	may	be	reserved	for	holding	floating-point	data.

	

The	Role	of	Processor	Registers
All	data	to	be	processed	by	the	CPU	must	first	be	copied	into	registers	-	the	CPU	cannot,	for	example,	add	together	two
integers	residing	in	RAM.

Data	must	first	be	copied	into	registers;	the	operation	(e.g.	addition)	is	then	performed	on	the	registers	and	the	result	left	in
a	register,	and	that	result	(possibly)	copied	back	to	RAM.

Registers	are	also	often	used	to	hold	a	memory	address,	and	the	register's	contents	used	to	indicate	which	item	from	RAM
to	fetch.

The	transfer	of	data	to	and	from	registers	is	completely	transparent	to	users	(even	to	programmers).

Generally,	we	only	employ	assembly	language	programs	to	manipulate	registers	directly.	In	compiled	high-level	languages,
such	as	C,	the	compiler	translates	high-level	operations	into	low-level	operations	that	access	registers.

	

CITS2002	Systems	Programming,	Lecture	6,	p3,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Register	types
Registers	are	generally	of	two	types:

User-accessible	registers	-
are	accessible	to	programs,	and	may	usually	be	read	from	and	written	to	under	program	control.	Programs	written	in	an
assembly	language,	either	by	a	human	programmer	or	generated	by	a	compiler	for	a	high-level	language,	are	able	to
read	and	write	these	registers	using	specific	instructions	understood	by	the	processor	which	usually	accept	the	names
of	the	registers	as	operands.

The	user-accessible	registers	are	further	of	two	types:

Data	registers	hold	values	before	the	execution	of	certain	instructions,	and	hold	the	results	after	executing
certain	instructions.

Address	registers	hold	the	addresses	(not	contents)	of	memory	locations	used	in	the	execution	of	a	program,
e.g.

the	memory	address	register	(MAR)	holds	the	address	of	memory	to	be	read	or	written;
the	memory	buffer	register	(MBR)	holds	the	memory's	data	just	read,	or	just	about	to	be	written;
index	registers	hold	an	integer	offset	from	which	of	memory	references	are	made;	and
a	stack	pointer	(SP)	holds	the	address	of	a	dedicated	portion	of	memory	holding	temporary	data	and	other
memory	addresses.

Control	and	status	registers	-
hold	data	that	the	processor	itself	maintains	in	order	to	execute	programs,	e.g.	the	instruction	register(IR)	holds	the
current	instruction	being	executed,	and	the	program	counter	(PC)	holds	the	memory	address	of	the	next	instruction	to
be	executed.

Special	registers	reflect	the	status	of	the	processor.	The	processor	status	word	(PSW)	reflects	whether	or	not	the
processor	may	be	interrupted	by	I/O	devices	and	whether	privileged	instructions	may	be	executed,	and	it	uses
condition	bits	to	reflect	the	status	of	recently	executed	operations.

In	order	evaluate	results,	and	to	determine	if	branching	should	occur,	the	PSW	may	record	-

whether	an	arithmetic	operation	overflowed,
whether	an	arithmetic	operation	performed	a	carry,
whether	a	division	by	zero	was	attempted,
whether	the	last	comparison	instruction	succeeded	or	failed.

	

CITS2002	Systems	Programming,	Lecture	6,	p4,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

The	Memory	Hierarchy
The	role	of	memory	is	to	hold	instructions	and	data	until	they	are	requested	by	the	processor	(or,	some	devices).	While	it	is	easy	to	make	a	case	for	as	much	memory
as	possible,	having	too	much	can	be	wasteful	(financially)	if	it	is	not	all	required.

We	also	expect	memory	to	be	able	to	provide	the	necessary	data,	as	quickly	as	possible,	when	called	upon.	Unfortunately,	there	is	a	traditional	trade-off	between
cost,	capacity,	and	access	time:

the	faster	the	access	time,	the	greater	the	cost	per	bit,

the	greater	the	capacity,	the	smaller	the	cost	per	bit	and,	the	greater	the	capacity,	the	slower	the	access	time.

	

CITS2002	Systems	Programming,	Lecture	6,	p5,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

The	Memory	Hierarchy,	continued
The	solution	taken	is	not	to	rely	on	a	single,	consistent	form	of	memory,	but	instead	to	have	a	memory	hierarchy,	constrained	by
requirements	and	cost.

Memory Access-
time Capacity Technology Managed

by

Registers 0.5-3ns 1-4KB custom
CMOS compiler

Level-1
cache
(on-chip)

0.4-4ns 8KB-
256KB SRAM hardware

Level-2
cache
(on-chip)

4-8ns 256KB-
8MB SRAM hardware

Level-3
cache 6-16ns 4MB-

64MB SRAM hardware

Main
memory
(RAM)

10-60ns 64MB-
128GB DRAM operating

system

hard	disk 3M-10M
ns

128MB-
24,000GB magnetic operating

system

solid-
state	disk
(SSD)

0.5M-
1M	ns

16GB-
18,000GB DRAM/SRAM operating

system

For	example,	a	contemporary	laptop	or	home	computer	system	may	include:

a	modest	amount	of	cache	memory	(1MB)	to	deliver	data	as	quickly	as	possible	to	the	processor,
a	larger	main	memory	(8GB)	to	store	entire	programs	and	less-frequently	required	data,	and
long	term,	persistent	storage	in	the	form	of	a	hard	disk	(1TB),	or	SSD	(256GB).

	

CITS2002	Systems	Programming,	Lecture	6,	p6,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

The	Range	of	I/O	Device	Data	Rates

See	also	Wikipedia's	List	of	interface	bit	rates.

	

CITS2002	Systems	Programming,	Lecture	6,	p7,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://en.wikipedia.org/wiki/List_of_device_bit_rates

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

Units	of	data:	bits,	bytes,	and	words

The	basic	building	block	is	the	bit	(binary	digit),	which	can	contain	a	single	piece	of	binary	data	(true/false,	zero/one,
high/low,	etc.).

Although	processors	provide	instructions	to	set	and	compare	single	bits,	it	is	rarely	the	most	efficient	method	of
manipulating	data.

Bits	are	organised	into	larger	groupings	to	store	values	encoded	in	binary	bits.	The	most	basic	grouping	is	the	byte:
the	smallest	normally	addressable	quantum	of	main	memory	(which	can	be	different	from	the	minimum	amount	of
memory	fetched	at	one	time).

In	modern	computers,	a	byte	is	almost	always	an	8-bit	byte,	but	history	has	seen	computers	with	7-,	8-,	9-,	12-,	and
16-bit	bytes.

A	word	is	the	default	data	size	for	a	processor.	The	word	size	is	chosen	by	the	processor's	designer	and	reflects
some	basic	hardware	issues	(such	as	the	width	of	internal	or	external	buses).

The	most	common	word	sizes	are	32	and	64	bits;	historically	words	have	ranged	from	16	to	60	bits.

It	is	very	common	to	speak	of	a	processor's	wordsize,	such	as	a	32-bit	or	64-bit	processor.	
However,	different	sources	will	confuse	whether	this	means	the	size	of	a	single	addressable	memory	location,	or	the
default	unit	of	integer	arithmetic.

Some	processors	require	that	data	be	aligned,	that	is,	2-byte	quantities	must	start	on	byte	addresses	that	are
multiples	of	two;	4-byte	quantities	must	start	on	byte	addresses	that	are	multiples	of	four;	etc.

Some	processors	allow	data	to	be	unaligned,	but	this	can	result	in	slower	execution	as	the	processor	may	have	to
align	the	data	itself.

	

CITS2002	Systems	Programming,	Lecture	6,	p8,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

On	the	interpretation	of	data
We	have	seen	that	computer	systems	store	their	data	as	bits,	and	group	bits	together	as	bytes	and	words.

However,	it	is	important	to	realise	that	the	processor	can	interpret	a	sequence	of	bits	only	in	context:	on	its	own,	a
sequence	of	bits	means	nothing.

A	single	32-bit	pattern	could	refer	to:

4	ASCII	characters,
a	32-bit	integer,
2	x	16-bit	integers,
1	floating	point	value,
the	address	of	a	memory	location,	or
an	instruction	to	be	executed.

No	meaning	is	stored	along	with	each	bit	pattern:	it	is	up	to	the	processor	to	apply	some	context	to	the	sequence	to	ascribe
it	some	meaning.

For	example,	a	sequence	of	integers	may	form	a	sequence	of	valid	processor	instructions	that	could	be	meaningfully
executed;	a	sequence	of	processor	instructions	can	always	be	interpreted	as	a	vector	of,	say,	integers	and	can	thus	be
added	together.

Critical	errors	occur	when	a	bit	sequence	is	interpreted	in	the	wrong	context.	If	a	processor	attempts	to	execute	a
meaningless	sequence	of	instructions,	a	processor	fault	will	generally	result:	Linux	announces	this	as	a	"bus	error".	Similar
faults	occur	when	instructions	expect	data	on	aligned	data	boundaries,	but	are	presented	with	unaligned	addresses.

	

CITS2002	Systems	Programming,	Lecture	6,	p9,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 	CITS2002 	CITS2002	schedule 	

On	the	interpretation	of	data,	continued
As	an	example	of	how	bytes	may	be	interpreted	in	different	ways,	consider	the	first	few	hundred	bytes	of	the	disk	file	/bin/ls.
We	know	this	to	be	a	program,	and	we	expect	the	operating	system	to	interpret	its	contents	to	be	a	program,	and	request
the	processor	to	execute	its	contents	(a	mixture	of	instructions	and	data).

However,	another	program	could	read	the	bytes	from	/bin/ls	and	interpret	them	in	other	ways,	e.g.	as	32-bit	integers:

prompt>	od	-i	/bin/ls
0000000		1179403647							65793											0											0
0000020						196610											1			134518416										52
0000040							66628											0					2097204					2621447
0000060					1638426											6										52			134512692
0000100			134512692									224									224											5
0000120											4											3									276			134512916
0000140			134512916										19										19											4
0000160											1											1											0			134512640
.......

or	as	octal	(8-bit)	bytes:

prompt>	od	-b	/bin/ls
0000000	177	105	114	106	001	001	001	000	000	000	000	000	000	000	000	000
0000020	002	000	003	000	001	000	000	000	220	226	004	010	064	000	000	000
0000040	104	004	001	000	000	000	000	000	064	000	040	000	007	000	050	000
0000060	032	000	031	000	006	000	000	000	064	000	000	000	064	200	004	010
0000100	064	200	004	010	340	000	000	000	340	000	000	000	005	000	000	000
0000120	004	000	000	000	003	000	000	000	024	001	000	000	024	201	004	010
0000140	024	201	004	010	023	000	000	000	023	000	000	000	004	000	000	000
0000160	001	000	000	000	001	000	000	000	000	000	000	000	000	200	004	010
.......

or	as	ASCII	characters:

prompt>	od	-c	/bin/ls
0000000	177			E			L			F	001	001	001		\0		\0		\0		\0		\0		\0		\0		\0		\0
0000020	002		\0	003		\0	001		\0		\0		\0	220	226	004		\b			4		\0		\0		\0
0000040			D	004	001		\0		\0		\0		\0		\0			4		\0						\0		\a		\0			(\0
0000060	032		\0	031		\0	006		\0		\0		\0			4		\0		\0		\0			4	200	004		\b
0000100			4	200	004		\b	340		\0		\0		\0	340		\0		\0		\0	005		\0		\0		\0
0000120	004		\0		\0		\0	003		\0		\0		\0	024	001		\0		\0	024	201	004		\b
0000140	024	201	004		\b	023		\0		\0		\0	023		\0		\0		\0	004		\0		\0		\0
0000160	001		\0		\0		\0	001		\0		\0		\0		\0		\0		\0		\0		\0	200	004		\b
.......

And	each	interpretation	could	be	correct,	depending	on	context.

	

CITS2002	Systems	Programming,	Lecture	6,	p10,	7th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	An Overview of Computer Hardware
	Excellent, albeit expensive, computer organisation texts
	Basic Computer Components
	Instruction and data fetching
	Role of operating systems
	Processor Registers
	The Role of Processor Registers
	Register types
	The Memory Hierarchy
	The Memory Hierarchy, continued
	The Range of I/O Device Data Rates
	Units of data: bits, bytes, and words
	On the interpretation of data
	On the interpretation of data, continued

