ﬂ!:ﬂl‘ THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

1 next — @ CITS2002 & CITS2002 schedule

An Overview of Computer Hardware

Any study of operating systems requires a basic understanding of the components of a computer system.

Although the variety of computer system configurations is forever changing, as (new) component types employ different
standards for their interconnection, it is still feasible to discuss a simple computer model, and to discuss components' roles
in operating systems.

Central Traditionally, we consider four main structural components:
Processing Secondary
Unit Storage e The Central Processing Unit, or CPU, undertakes arithmetic and logical

| | B computation, and directs most input and output services from memory
= and peripherals. There may be multiple processors in a system, each
| | executing the (same, single) operating system or user/application

Main Peripheral programs.
Memory Devices

e Main Memory, or RAM (Random Access Memory) is used to store both
instructions and data. Processors read and write items of memory both at
the direction of programs (for data), and as an artifact of running programs
(for instructions).

e Secondary Storage and Peripheral Devices, (or input/output modules)
and their I/O controllers, move data to and from the other components
usually to provide longer-term, persistent storage of data (disks, tapes),

e A communications bus, or system bus, connects the processor(s), main
memory, and I/O devices together, providing a "highway" on which data
may travel between the components. Typically only one component may
control the bus at once, and bus arbitration decides which that will be.

Excellent, albeit expensive, computer organisation texts

. | Computer Organization and Computer
0l Desion) Croanizaton:
THE HARDWARE/SOFTWAR INTERFACE “V”PS Editiom: " Basic Processor
L . | The Hardware/Software Structure,
nterface, — James Gil de
by David A. Patterson and John

o Computer Systems:

A Programmer's
Perspective,
Randal Bryant and
& David O'Hallaron,

C;hputer Systems

Lamadrid, e October 2015,

' L. Hennessy. Chapman and = 1120pp, ISBN
Morgan Kaufmann Publishers, Hall/CRC, 1 1292101768.
6th edition, 2021. Published February

23, 2018,
372pp, ISBN
9781498799515.

CITS2002 Systems Programming, Lecture 6, p1, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://www.amazon.com.au/Computer-Organization-Design-Hardware-Interface/dp/0128201096/ref=sr_1_7?dchild=1&keywords=computer+organization&qid=1628404019&sr=8-7
https://www.crcpress.com/Computer-Organization-Basic-Processor-Structure/Gil-de-Lamadrid/p/book/9781498799515
https://www.amazon.com.au/Computer-Systems-Programmers-Perspective-Global

|:lgng|| THE UNIVERSITY OF

1 ”AUSTREE& CITS2002 Systems Programming

«— prev 2 next » ©CITS2002 @ CITS2002 schedule

Basic Computer Components

Many OS textbooks (often in their 1st or 2nd chapters) outline a traditional computer model, in which the CPU, main memory, and I/O devices are all interconnected by a single system bus

(figures are taken from Stallings' website).

CpPU Main memory Instruction and data fetching
System . v))
b : ; e The CPU fetches a copy of the contents of uniquely-addressed memory locations, by
us identifying the required location in its MAR (Memory Address Register).
‘ PC ‘ ‘ MAR ‘ Instruction : . P
- ¢ Depending on why the CPU requested the memory's value, it executes the contents as an
Instruction . . .
: instruction, or operates on the contents as data.
‘ IR ‘ ‘ MBR ‘ Instruction
. e Similarly, the CPU locates data from, or for, distinct locations in the 1/0O devices using its 1/O-
a AR (Address Register).
/O AR *
Data
/O BR e ;
Data Role of operating systems
Daid The role of the OS in managing the flow of data to and from its CPU and I/O devices, made very
o challenging by the wide variety of devices.
I/O module . 2=2 The OS attempts to attain maximum throughput of its computation and data transfer.
n—1
Processor scheduling attempts to keep the (expensive) processor busy at all times, by interleaving
computation and communication.
While waiting for a slow device to complete its I/O transfer, the CPU may be able to undertake other
0 PC = Program counter activities, such as performing some computation or managing faster 1/0.
. IR = Instruction register
B f-fe " MAR = Memory address register
HHen MBR = Memory buffer register Fetch stage Execute stage Interrupt stage

I/O AR = Input/output address register
I/JOBR = Input/output buffer register

Interrupts
disabled

Check for
(START) .Febch nf:xt) Execufc o ‘l.u[m"mpt;
instruction nstruction Interrupts initiate interrupt
enabled handler

CITS2002 Systems Programming, Lecture 6, p2, 7th August 2024

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://williamstallings.com/OperatingSystems/OS9e-Student/

e mm| THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

%uz? AUSTRALIA

«— prev 3 next — ®CITS2002 @ CITS2002 schedule

Processor Registers

As well as special logic to perform arithmetic and logic functions, the processor houses a small number of very fast memory
locations, termed processor registers.

¢ Data in registers can be read and written very rapidly (with a typical access time of 0.5-3ns). If the required data is
available in registers, rather than main memory, program execution may proceed 10-500X faster.

¢ Different types of processors have varying number of registers, For example, some processors have very few (3-16),
some have many (32-100s).

¢ The number of general-purpose CPU registers, and the width of each register (measured in bits, e.g. 64-bit registers),
contribute to the power and speed of a CPU.

e Processors place constraints on how some registers are used. Some processors expect certain types of data to

reside in specific registers. For example, some registers may be expected to hold integer operands for integer
arithmetic instructions, whereas some registers may be reserved for holding floating-point data.

The Role of Processor Registers

All data to be processed by the CPU must first be copied into registers - the CPU cannot, for example, add together two
integers residing in RAM.

Data must first be copied into registers; the operation (e.g. addition) is then performed on the registers and the result left in
a register, and that result (possibly) copied back to RAM.

Registers are also often used to hold a memory address, and the register's contents used to indicate which item from RAM
to fetch.

The transfer of data to and from registers is completely transparent to users (even to programmers).

Generally, we only employ assembly language programs to manipulate registers directly. In compiled high-level languages,
such as C, the compiler translates high-level operations into low-level operations that access registers.

CITS2002 Systems Programming, Lecture 6, p3, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

mmm THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 4 next —» @ CITS2002 @ CITS2002 schedule

Register types

Registers are generally of two types:

User-accessible registers -
are accessible to programs, and may usually be read from and written to under program control. Programs written in an
assembly language, either by a human programmer or generated by a compiler for a high-level language, are able to
read and write these registers using specific instructions understood by the processor which usually accept the names
of the registers as operands.

The user-accessible registers are further of two types:

o Data registers hold values before the execution of certain instructions, and hold the results after executing
certain instructions.

o Address registers hold the addresses (not contents) of memory locations used in the execution of a program,
e.g.

o the memory address register (MAR)holds the address of memory to be read or written;
o the memory buffer register (MBR)holds the memory's data just read, or just about to be written;
o index registers hold an integer offset from which of memory references are made; and

o a stack pointer (SP) holds the address of a dedicated portion of memory holding temporary data and other
memory addresses.

Control and status registers -
hold data that the processor itself maintains in order to execute programs, e.g. the instruction register(IR) holds the
current instruction being executed, and the program counter (PC) holds the memory address of thenext instruction to
be executed.

Special registers reflect the status of the processor. The processor status word (PSW) reflects whether or not the
processor may be interrupted by 1/O devices and whether privileged instructions may be executed, and it uses
condition bits to reflect the status of recently executed operations.

In order evaluate results, and to determine if branching should occur, the PSW may record -

e whether an arithmetic operation overflowed,

e whether an arithmetic operation performed a carry,

whether a division by zero was attempted,

whether the last comparison instruction succeeded or failed.

CITS2002 Systems Programming, Lecture 6, p4, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

‘:qnnm‘ THE UNIVERSITY OF

ERN

Ny N AUSTEALIA CITS2002 Systems Programming

«— prev 5 next — @ CITS2002 @ CITS2002 schedule

The Memory Hierarchy

The role of memory is to hold instructions and data until they are requested by the processor (or, some devices). While it is easy to make a case for as much memory
as possible, having too much can be wasteful (financially) if it is not all required.

We also expect memory to be able to provide the necessary data, as quickly as possible, when called upon. Unfortunately, there is a traditional trade-off between
cost, capacity, and access time:

o the faster the access time, the greater the cost per bit,

o the greater the capacity, the smaller the cost per bit and, the greater the capacity, the slower the access time.

Block transfer

Lo: ‘Word transfer —_—
Smaller, Regs CPU registers hold words retrieved from —
faster, cache memory.
and L1: L1 cache
i (SRAM) L1 cache holds cache lines retrieved i
CPU Cache
(’;zr?g:) from the L2 cache Main memory
devices L1123 L2 cache Fast Slow
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache (a) Single cache
(SRAM)
L3 cache holds cache lines
Larger, retrieved from memory.
slower, . .
and L4: Main memory
cheaper (DRAM) . y
(per byte) Main memory holds disk
storage blocks retrieved from local cpu > Levell |[[—>| Level2 || Level3 [—>{ Main
devices! disks |«— (L1) cache | f«= (L2) cache | |=— (L3) cache | <= memory
L5: Local secondary storage
(local disks)
Local disks hold files Fastest Fast Less Slow
retrieved from disks on fast
remote network servers.
Lé: Remote secondary storage

(distributed file systems, Web servers)
(b) Three-level cache organization

CITS2002 Systems Programming, Lecture 6, p5, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

ﬂ.ﬂl‘ THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

u AUSTRALIA

«— prev 6 next - @ CITS2002 @ CITS2002 schedule

The Memory Hierarchy, continued

The solution taken is not to rely on a single, consistent form of memory, but instead to have a memory hierarchy, constrained by
requirements and cost.

Access- . Managed
Memory time Capacity | Technology by
Registers| 0.5-3ns 1-4KB %u’\jtgrsn compiler
Level-1 8KE. Core 0 Core 1 Core 2 Core 3
cache 0.4-4ns 256KB SRAM hardware
(on-chip) 32kBI&D | |32KkBI&D | |32kBI&D | |32kB1&D
Level-2 L1 caches L1 caches L1 caches L1 caches

256KB-
cache 4-8ns 8MB SRAM hardware
(on-chip) 256 kB 256 kB 256 kB 256 kB
] 3 AMB L2 cache L2 cache L2 cache L2 cache
evel- -
cache 6-16ns 64MB SRAM hardware VB
Main) L3 cache
~ 64MB- operating
?l;i\”,\‘/‘l’)ry 10-60ns | 15gGg |PRAM system b7 e Quickpath
controllers interconnect
. 3M-10M| 128MB- . operating Iy y

hard disk ns | 24,000GB magnetic system) :
solid- \ 3x8B @ 1.33 GT/s 4x20b @ 6.4 GT/s
state disk ﬂ\f'\"' 18 01060%% DRAM/SRAM | 9Perating
(SSD) ns|18, system

For example, a contemporary laptop or home computer system may include:

¢ a modest amount of cache memory (1MB) to deliver data as quickly as possible to the processor,
e alarger main memory (8GB) to store entire programs and less-frequently required data, and
¢ long term, persistent storage in the form of a hard disk (1TB), or SSD (256GB).

CITS2002 Systems Programming, Lecture 6, p6, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 7 next — ®CITS2002 @ CITS2002 schedule

The Range of I/0 Device Data Rates

Gigabit ethernet

Graphics display

Hard disk

Ethernet

o
Opticl i | S S S
o

Scanner

Laser printer

Floppy disk

Modem

Mouse

Keyboard

10! 10% 10° 10* 10° 100 107 10% 10°
Data Rate (bps)

See also Wikipedia's List of interface bit rates.

CITS2002 Systems Programming, Lecture 6, p7, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://en.wikipedia.org/wiki/List_of_device_bit_rates

e mm| THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 8 next — ®CITS2002 @ CITS2002 schedule

Units of data: bits, bytes, and words

e The basic building block is the bit (binary digit), which can contain a single piece of binary data (true/false, zero/one,
high/low, etc.).

Although processors provide instructions to set and compare single bits, it is rarely the most efficient method of
manipulating data.

¢ Bits are organised into larger groupings to store values encoded in binary bits. The most basic grouping is the byte:
the smallest normally addressable quantum of main memory (which can be different from the minimum amount of
memory fetched at one time).

In modern computers, a byte is almost always an 8-bit byte, but history has seen computers with 7-, 8-, 9-, 12-, and
16-bit bytes.

¢ A word is the default data size for a processor. The word size is chosen by the processor's designer and reflects
some basic hardware issues (such as the width of internal or external buses).

The most common word sizes are 32 and 64 bits; historically words have ranged from 16 to 60 bits.

¢ |tis very common to speak of a processor's wordsize, such as a 32-bit or 64-bit processor.
However, different sources will confuse whether this means the size of a single addressable memory location, or the
default unit of integer arithmetic.

Some processors require that data be aligned, that is, 2-byte quantities must start on byte addresses that are
multiples of two; 4-byte quantities must start on byte addresses that are multiples of four; etc.

Some processors allow data to be unaligned, but this can result in slower execution as the processor may have to
align the data itself.

CITS2002 Systems Programming, Lecture 6, p8, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 9 next — ®CITS2002 @ CITS2002 schedule

On the interpretation of data

We have seen that computer systems store their data as bits, and group bits together as bytes and words.

However, it is important to realise that the processor can interpret a sequence of bits only in context: on its own, a
sequence of bits means nothing.

A single 32-bit pattern could refer to:

o 4 ASCII characters,

e a 32-bit integer,

e 2 x 16-bit integers,

¢ 1 floating point value,

o the address of a memory location, or
¢ an instruction to be executed.

No meaning is stored along with each bit pattern: it is up to the processor to apply somecontext to the sequence to ascribe
it some meaning.

For example, a sequence of integers may form a sequence of valid processor instructions that could be meaningfully
executed; a sequence of processor instructions can always be interpreted as a vector of, say, integers and can thus be
added together.

Critical errors occur when a bit sequence is interpreted in the wrong context. If a processor attempts to execute a
meaningless sequence of instructions, a processor fault will generally result: Linux announces this as a "bus error". Similar
faults occur when instructions expect data on aligned data boundaries, but are presented with unaligned addresses.

CITS2002 Systems Programming, Lecture 6, p9, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

N2 %%%EEEIE CITS2002 Systems Programming

«— prev 10 © CITS2002 @ CITS2002 schedule

On the interpretation of data, continued

As an example of how bytes may be interpreted in different ways, consider the first few hundred bytes of the disk file /bin/Is.
We know this to be a program, and we expect the operating system to interpret its contents to be a program, and request
the processor to execute its contents (a mixture of instructions and data).

However, another program could read the bytes from /bin/Is and interpret them in other ways, e.g. as 32-bit integers:

prompt> od -i /bin/ls

0000000 1179403647 65793 0 0
0000020 196610 1 134518416 52
0000040 66628 0 2097204 2621447
0000060 1638426 6 52 134512692
0000100 134512692 224 224 5
0000120 4 3 276 134512916
0000140 134512916 19 19 4
0000160 1 1 0 134512640

or as octal (8-bit) bytes:

prompt> od -b /bin/ls

0000000 177 105 114 106 001 001 001 000 00O 0OOO 00O 000 00O 00O 0OCO 00O
0000020 002 000 003 000 001 00O 000 000 220 226 004 010 064 000 000 000
0000040 104 004 001 000 00O OO0 000 000 O64 00O 040 000 007 000 050 000
0000060 032 000 031 000 006 000 000 000 O64 000 000 000 064 200 004 010
0000100 064 200 004 010 340 000 000 000 340 000 000 000 005 000 000 00O
0000120 004 000 000 000 003 00O 000 000 024 001 000 000 024 201 004 010
0000140 024 201 004 010 023 000 000 000 023 000 000 000 004 000 00O 00O
0000160 001 000 000 000 0OO1 OO0 00O 000 OO0 0OOO 00O 000 000 200 004 010

or as ASCII characters:

prompt> od -c /bin/ls

0000000 177 E L F 001 001 001 N0 \NO \NO NO NO \NO \NO \O \O
0000020 002 \O 003 \O 001 \O \O \O 220 226 004 \b 4 N0 \O \O
0000040 D 004 001 \O \O \O \O \O 4 \O N0 \a \O (\O
0000060 032 \O 031 \O 006 \O \O \O 4 N0 \O \O 4 200 004 \b
0000100 4 200 004 \b 340 \O \O \O 340 \O \O \O 005 \O \O \O
0000120 004 \O \O \O 003 \O \O \O 024 001 \O \O 024 201 004 \b
0000140 024 201 004 \b 023 \O \O \O 023 \O \O \O 004 \O \O \O
0000160 001 \NO \NO \O 001 \NO \NO \NO \NO \O \O \O \O 200 004 \b

And each interpretation could be correct, depending on context.

CITS2002 Systems Programming, Lecture 6, p10, 7th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	An Overview of Computer Hardware
	Excellent, albeit expensive, computer organisation texts
	Basic Computer Components
	Instruction and data fetching
	Role of operating systems
	Processor Registers
	The Role of Processor Registers
	Register types
	The Memory Hierarchy
	The Memory Hierarchy, continued
	The Range of I/O Device Data Rates
	Units of data: bits, bytes, and words
	On the interpretation of data
	On the interpretation of data, continued

