
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

Introducing	arrays
As	programs	become	more	complex,	we	notice	that	they	require	more	variables,	and	thus	more	variable	names	to	hold	all
necessary	values.	
We	could	define:

				int	x1,	x2,	x3,	x4,	x5.....	;

but	referring	to	them	in	our	programs	will	quickly	become	unwieldy,	and	their	actual	names	may	be	trying	to	tell	us
something.

In	particular,	our	variables	are	often	related	to	one	another	-	they	hold	data	having	a	physical	significance,	and	the	data
value	held	in	one	variable	is	related	to	the	data	in	another	variable.

For	example,	consider	a	2-dimensional	field,	where	each	square	metre	of	the	field	may	be	identified	by	its	rows	and	column
coordinates.	We	may	record	each	square's	altitude,	or	temperature,	or	its	number	of	ants:

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

Like	most	languages,	C	provides	a	simple	data	structure,	termed	an	array,	to	store	and	access	data	where	the	data	items
themselves	are	closely	related.

Depending	on	the	context,	different	problem	domains	will	describe	different	kinds	of	arrays	with	different	names:

1-dimensional	arrays	are	often	termed	vectors,
2-dimensional	arrays	are	often	termed	matrices	(as	in	our	example,	above),
3-dimensional	arrays	are	often	termed	volumes,	and	so	on.

We'll	start	with	the	simple	1-dimensional	arrays.

	

CITS2002	Systems	Programming,	Lecture	5,	p1,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

1-dimensional	arrays
C	provides	support	for	1-dimensional	arrays	by	allowing	us	to	identify	the	required	data	using	a	single	index	into	the	array.

Syntactically,	we	use	square-brackets	to	identify	that	the	variable	is	an	array,	and	use	an	integer	expression	inside	the	array
to	identify	which	"part"	of	it	we're	requiring.

In	all	cases,	an	array	is	only	a	single	variable,	with	one	or	more	elements.

Consider	the	following	code:

#define		N			20

int			myarray[N];
int			evensum;

evensum	=	0;
for(int	i=0	;	i	<	N	;	++i)	{
				myarray[i]	=	i	*	2;																																		
				evensum						=	evensum	+	myarray[i];
}

What	do	we	learn	from	this	example?

We	declare	our	1-dimensional	arrays	with
square	brackets,	and	indicate	the
maximum	number	of	elements	within	those
brackets.

A	fixed,	known	value	(here	N,	with	the
value	20)	is	used	to	specify	the	number	of
elements	of	the	array.

We	access	elements	of	the	array	by
providing	the	array's	name,	and	an	integer
index	into	the	array.

Elements	of	an	array	may	be	used	in	the
same	contexts	as	basic	(scalar)	variables.
Here	myarray	is	used	on	both	the	left-hand
and	right-hand	sides	of	assignment
statements.

We	may	also	pass	array	elements	as
arguments	to	functions,	and	return	their
values	from	functions.

Array	indicies	start	"counting"	from	0	(not
from	1).

Because	our	array	consists	of	N
integers,	and	indicies	begin	at	zero,	the
highest	valid	index	is	actually	N-1.

	

CITS2002	Systems	Programming,	Lecture	5,	p2,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Initializing	1-dimensional	arrays
Like	all	variables,	arrays	should	be	initialized	before	we	try	to	access	their	elements.	We	can:

initialize	the	elements	at	run-time,	by	executing	statements	to	assign	values	to	the	elements:

#define		N			5

int			myarray[N];

....

				for(int	i=0	;	i	<	N	;	++i)	{
								myarray[i]	=	i;
				}

we	may	initialize	the	values	at	compile-time,	by	telling	the	compiler	what	values	to	initially	store	in	the	memory
represented	by	the	array.	We	use	curly-brackets	(braces)	to	provide	the	initial	values:

#define		N			5

int			myarray[N]	=	{	0,	1,	2,	3,	4	};

we	may	initialize	the	values	at	compile-time,	by	telling	the	compiler	what	values	to	initially	store	in	the	memory
represented	by	the	array,	and	having	the	compiler	determine	the	number	of	elements	in	the	array(!).

int			myarray[]	=	{	0,	1,	2,	3,	4	};

#define		N			(sizeof(myarray)	/	sizeof(myarray[0]))

or,	we	may	initialize	just	the	first	few	values	at	compile-time,	and	have	the	compiler	initialize	the	rest	with	zeroes:

#define		HUGE			10000

int			myarray[HUGE]	=	{	4,	5	};

	

CITS2002	Systems	Programming,	Lecture	5,	p3,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Variable-length	arrays
All	of	the	examples	of	1-dimensional	arrays	we've	seen	have	the	array's	size	defined	at	compile	time:

#define		N			5

int			global_array[N];
....

				for(int	i=0	;	i	<	N	;	++i)	{
								int			array_in_block[100];
							
				}

As	the	compiler	knows	the	exact	amount	of	memory	required,	it	may	generate	more	efficient	code	(in	both	space	and	time)
and	more	secure	code.

More	generally,	an	array's	size	may	not	be	known	until	run-time.	These	arrays	are	termed	variable-length	arrays,	or
variable-sized	arrays.	However,	once	defined,	their	size	cannot	be	changed.

In	all	cases,	variable-length	arrays	may	be	defined	in	a	function	and	passed	to	another.	However,	because	the	size	is	not
known	until	run-time,	the	array's	size	must	be	passed	as	well.	It	is	not	possible	to	determine	an	array's	size	from	its	name.

void	function2(int	array_size,	char	vla[])
{
				for(int	i=0	;	i	<	array_size	;	++i)	{
								//	access	vla[i]	...
							
				}
}

void	function1(void)
{
				int	size	=	read	an	integer	from	keyboard	or	a	file;

				char	vla[size];

				function2(size,	vla);
}

Variable-length	arrays	were	first	defined	in	the	C99	standard,	but	then	made	optional	in	C11	-	primarily	because	of	their
inefficient	implementation	on	embedded	devices.	Modern	Linux	operating	system	kernels	are	now	free	of	variable-length
arrays.

	

CITS2002	Systems	Programming,	Lecture	5,	p4,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kills-The-VLA

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Strings	are	1-dimensional	arrays	of	characters
In	contrast	to	some	other	programming	languages,	C	does	not	have	a	basic	datatype	for	strings.

However,	C	compilers	provide	some	basic	support	for	strings	by	considering	strings	to	simply	be	arrays	of	characters.

We've	already	seen	this	support	when	calling	the	printf()	function:

			printf("I'm	afraid	I	can't	do	that	Dave\n");

The	double	quotation	characters	simply	envelope	the	characters	to	be	treated	as	a	sequence	of	characters.

In	addition,	a	standards'	conforming	C	compiler	is	required	to	also	provide	a	large	number	of	string-handling	functions	in	its
standard	C	library.	Examples	include:	

#include		<string.h>

//	which	declares	many	functions,	including:

		int	strlen(char	string[]);																									//	to	determine	the	length	of	a	string

		int	strcmp(char	str1[],		char	str2[]);													//	to	determine	if	two	strings	are	equal

		char	*strcpy(char	destination[],		char	source[]);		//	to	make	a	copy	of	a	string

In	reality	these	functions	are	not	"really"	managing	strings	as	a	basic	datatype,	but	are	just	managing	arrays	of	characters.

	

CITS2002	Systems	Programming,	Lecture	5,	p5,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

Initializing	character	arrays
As	we've	just	seen	with	1-dimensional	arrays	of	integers,	C	also	provides	facility	to	initialize	character	arrays.

All	of	the	following	examples	are	valid:

char	greeting[5]	=	{	'h',	'e',	'l',	'l',	'o'	};

char	today[6]				=	"Monday";

char	month[]					=	"August";

The	3rd	of	these	is	the	most	interesting.	
We	have	not	specified	the	size	of	the	array	month	ourselves,	but	have	permitted	the	compiler	to	count	and	allocate	the
required	size.

	

CITS2002	Systems	Programming,	Lecture	5,	p6,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Strings	are	terminated	by	a	special	character
Unlike	other	arrays	in	C,	the	support	for	character	arrays	is	extended	by	treating	one	character,	the	null	byte,	as	having
special	significance.	
We	may	specify	the	null	byte,	as	in	the	example:

			array[3]	=	'\0';

The	null	byte	is	used	to	indicate	the	end	of	a	character	sequence,	and	it	exists	at	the	end	of	all	strings	that	are	defined
within	double-quotes.

Inside	the	computer's	memory	we	have:

h e l l o \0

Of	note,	when	dealing	with	strings:

the	string	requires	6	bytes	of	memory	to	be	stored	correctly,	but
functions	such	as	strlen(),	which	calculate	the	string's	length,	will
report	it	as	5.

There	is	no	inconsistency	here	-	just	something	to	watch	out	for.

Because	the	null	byte	has	special	significance,	and	because	we	may	think	of	strings	and	character	arrays	as	the	same
thing,	we	can	manipulate	the	contents	of	strings	by	changing	the	array	elements.	Consider:

h e l l o 	 w o r l d \0

If	we	execute	the	statement:

			array[5]	=	'\0';

the	space	between	the	two	words	is	replaced	by	the	null	byte.	
The	result	is	that	the	array	still	occupies	12	bytes	of	storage,	but	if	we	tried	to	print	it	out,	we	would	only	get	hello.

	

CITS2002	Systems	Programming,	Lecture	5,	p7,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

Copying	strings
As	strings	are	so	important,	the	standard	C	library	provides	many	functions	to	examine	and	manipulate	strings.	
However,	C	provides	no	basic	string	datatype,	so	we	often	need	to	treat	strings	as	array	of	characters.

Consider	these	implementations	of	functions	to	copy	one	string	into	another:

//	DETERMINE	THE	STRING	LENGTH,	THEN	USE	A	BOUNDED	LOOP

void	my_strcpy(char	destination[],	char	source[])
{
				int	length	=	strlen(source);

				for(int	i	=	0	;	i	<	length	;	++i)	{
								destination[i]	=	source[i];
				}
				destination[length]	=	'\0';
}

//	DO	NOT	WRITE	STRING-PROCESSING	LOOPS	THIS	WAY

void	my_strcpy(char	destination[],	char	source[])					
{
				int	i;

				for(i	=	0	;	i	<	strlen(source)	;	++i)	{
								destination[i]	=	source[i];
				}
				destination[i]	=	'\0';
}

//	USE	AN	UNBOUNDED	LOOP,	COPYING	UNTIL	THE	NULL-BYTE		

void	my_strcpy(char	destination[],	char	source[])
{
				int		i	=	0;

				while(source[i]	!=	'\0')	{
								destination[i]	=	source[i];
								i	=	i+1;
				}
				destination[i]	=	'\0';
}

//	USE	AN	UNBOUNDED	LOOP,	COPYING	UNTIL	THE	NULL-BYTE	

void	my_strcpy(char	destination[],	char	source[])
{
				int		i	=	0;

				do	{
								destination[i]	=	source[i];
								i	=	i+1;
				}	while(source[i-1]	!=	'\0');
}

	

CITS2002	Systems	Programming,	Lecture	5,	p8,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

Formatting	our	results	into	character	arrays
There	are	many	occasions	when	we	wish	our	"output"	to	be	written	to	a	character	array,	rather	than	to	the	screen.

Fortunately,	we	need	to	learn	very	little	-	we	now	call	standard	function	sprintf,	rather	than	printf,	to	perform	our
formatting.

#include		<stdio.h>

char	chess_outcome[64];

if(winner	==	WHITE)	{
				sprintf(chess_outcome,	"WHITE	with	%i",	nwhite_pieces);
}
else	{
				sprintf(chess_outcome,	"BLACK	with	%i",	nblack_pieces);
}
printf("The	winner:	%s\n",	chess_outcome);

We	must	be	careful,	now,	not	to	exceed	the	maximum	length	of	the	array	receiving	the	formatted	printing.	
Thus,	we	prefer	functions	which	ensure	that	not	too	many	characters	are	copied:

char	chess_outcome[64];

//		FORMAT,	AT	MOST,	A	KNOWN	NUMBER	OF	CHARACTERS
if(winner	==	WHITE)	{
				snprintf(chess_outcome,	64,	"WHITE	with	%i",	nwhite_pieces);
}

//		OR,	GREATLY	PREFERRED:
if(winner	==	WHITE)	{
				snprintf(chess_outcome,	sizeof(chess_outcome),	"WHITE	with	%i",	nwhite_pieces);
}

	

CITS2002	Systems	Programming,	Lecture	5,	p9,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

Identifying	related	data
Let's	consider	the	2012	1st	project	for	CITS1002.

The	goal	of	the	project	was	to	manage	the	statistics	of	AFL	teams	throughout	the	season,	calculating	their	positions	on	the
premiership	ladder	at	the	end	of	each	week.

Let's	consider	the	significant	global	variables	in	its	sample	solution:

//		DEFINE	THE	LIMITS	ON	PROGRAM'S	DATA-STRUCTURES
#define	MAX_TEAMS															24
#define	MAX_TEAMNAME_LEN								30
....

//		DEFINE	A	2-DIMENSIONAL	ARRAY	HOLDING	OUR	UNIQUE	TEAMNAMES
char				teamname[MAX_TEAMS][MAX_TEAMNAME_LEN+1];								//	+1	for	null-byte

//		STATISTICS	FOR	EACH	TEAM,	INDEXED	BY	EACH	TEAM'S	'TEAM	NUMBER'
int					played		[MAX_TEAMS];
int					won					[MAX_TEAMS];
int					lost				[MAX_TEAMS];
int					drawn			[MAX_TEAMS];
int					bfor				[MAX_TEAMS];
int					bagainst[MAX_TEAMS];
int					points		[MAX_TEAMS];
....

//		PRINT	EACH	TEAM'S	RESULTS,	ONE-PER-LINE,	IN	NO	SPECIFIC	ORDER
				for(int	t=0	;	t<nteams	;	++t)	{
								printf("%s	%i	%i	%i	%i	%i	%i	%.2f	%i\n",	//	%age	to	2	decimal-places
																teamname[t],
																played[t],	won[t],	lost[t],	drawn[t],
																bfor[t],	bagainst[t],
																(100.0	*	bfor[t]	/	bagainst[t]),						//	calculate	percentage
																points[t]);
				}

It's	clear	that	the	variables	are	all	strongly	related,	but	that	we're	naming	and	accessing	them	as	if	they	are	independent.

	

CITS2002	Systems	Programming,	Lecture	5,	p10,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://teaching.csse.uwa.edu.au/units/CITS2002/past-projects/p2012-1/summary.php
https://en.wikipedia.org/wiki/2012_AFL_season#Ladder

CITS2002	Systems	Programming		

←	prev 11 next	→ 	CITS2002 	CITS2002	schedule 	

Defining	structures
Instead	of	storing	and	identifying	related	data	as	independent	variables,	we	prefer	to	"collect"	it	all	into	a	single	structure.

C	provides	a	mechanism	to	bring	related	data	together,	structures,	using	the	struct	keyword.

We	can	now	define	and	gather	together	our	related	data	with:

//		DEFINE	AND	INITIALIZE	ONE	VARIABLE	THAT	IS	A	STRUCTURE
struct	{
				char				*name;			//	a	pointer	to	a	sequence	of	characters
				int					red;					//	in	the	range	0..255
				int					green;
				int					blue;
}	rgb_colour	=	{
				"DodgerBlue",
					30,
				144,
				255
};

We	now	have	a	single	variable	(named	rgb_colour)	that	is	a	structure,	and	at	its	point	of	definition	we	have	initialised	each
of	its	4	fields.

	

CITS2002	Systems	Programming,	Lecture	5,	p11,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 12 next	→ 	CITS2002 	CITS2002	schedule 	

Defining	an	array	of	structures
Returning	to	our	AFL	project	example,	we	can	now	define	and	gather	together	its	related	data	with:

//		DEFINE	THE	LIMITS	ON	PROGRAM'S	DATA-STRUCTURES
#define	MAX_TEAMS															24
#define	MAX_TEAMNAME_LEN								30
....

struct	{
				char				teamname[MAX_TEAMNAME_LEN+1];								//	+1	for	null-byte

//		STATISTICS	FOR	THIS	TEAM,	INDEXED	BY	EACH	TEAM'S	'TEAM	NUMBER'
				int					played;
				int					won;
				int					lost;
				int					drawn;
				int					bfor;
				int					bagainst;
				int					points;
}	team[MAX_TEAMS];				//		DEFINE	A	1-DIMENSIONAL	ARRAY	NAMED	team

We	now	have	a	single	(1-dimensional)	array,	each	element	of	which	is	a	structure.	
We	often	term	this	an	array	of	structures.

Each	element	of	the	array	has	a	number	of	fields,	such	as	its	teamname	(a	whole	array	of	characters)	and	an	integer
number	of	points.

	

CITS2002	Systems	Programming,	Lecture	5,	p12,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 13 next	→ 	CITS2002 	CITS2002	schedule 	

Accessing	the	fields	of	a	structure
Now,	when	referring	to	individual	items	of	data,	we	need	to	first	specify	which	team	we're	interested	in,	and	then	which	field
of	that	team's	structure.

We	use	a	single	dot	('.'	or	fullstop)	to	separate	the	variable	name	from	the	field	name.

The	old	way,	with	independent	variables:

//		PRINT	EACH	TEAM'S	RESULTS,	ONE-PER-LINE,	IN	NO	SPECIFIC	ORDER
for(int	t=0	;	t<nteams	;	++t)	{
				printf("%s	%i	%i	%i	%i	%i	%i	%.2f	%i\n",	//	%age	to	2	decimal-places						
												teamname[t],
												played[t],	won[t],	lost[t],	drawn[t],
												bfor[t],	bagainst[t],
												(100.0	*	bfor[t]	/	bagainst[t]),						//	calculate	percentage
												points[t]);
}

The	new	way,	accessing	fields	within	each	structure:

//		PRINT	EACH	TEAM'S	RESULTS,	ONE-PER-LINE,	IN	NO	SPECIFIC	ORDER
for(int	t=0	;	t<nteams	;	++t)	{
				printf("%s	%i	%i	%i	%i	%i	%i	%.2f	%i\n",	//	%age	to	2	decimal-places
												team[t].teamname,
												team[t].played,	team[t].won,	team[t].lost,	team[t].drawn,
												team[t].bfor,	team[t].bagainst,
												(100.0	*	team[t].bfor	/	team[t].bagainst),						//	calculate	percentage
												team[t].points);
}

While	it	requires	more	typing(!),	it's	clear	that	the	fields	all	belong	to	the	same	structure	(and	thus	team).	
Moreover,	the	names	teamname,	played,	may	now	be	used	as	"other"	variables	elsewhere.

	

CITS2002	Systems	Programming,	Lecture	5,	p13,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 14 	CITS2002 	CITS2002	schedule 	

Accessing	system	information	using	structures
Operating	systems	(naturally)	maintain	a	lot	of	(related)	information,	and	keep	that	information	in	structures.

So	that	the	information	about	the	structures	(the	datatypes	and	names	of	the	structure's	fields)	can	be	known	by	both	the
operating	system	and	users'	programs,	these	structures	are	defined	in	system-wide	header	files	-	typically	in	/usr/include
and	/usr/include/sys.

For	example,	consider	how	an	operating	system	may	represent	time	on	a	computer:

#include	<stdio.h>
#include	<sys/time.h>

//	A	value	accurate	to	the	nearest	microsecond	but	also	has	a	range	of	years						
struct	timeval	{
				int		tv_sec;							//	Seconds
				int		tv_usec;						//	Microseconds
};

Note	that	the	structure	has	now	been	given	a	name,	and	we	can	now	define	multiple	variables	having	this	named	datatype
(in	our	previous	example,	the	structure	would	be	described	as	anonymous).

We	can	now	request	information	from	the	operating	system,	with	the	information	returned	to	us	in	structures:

#include	<stdio.h>
#include	<sys/time.h>

				struct	timeval		start_time;
				struct	timeval		stop_time;

				gettimeofday(&start_time,	NULL);
				printf("program	started	at	%i.06%i\n",
																			(int)start_time.tv_sec,	(int)start_time.tv_usec);

			
				perform_work();
			

				gettimeofday(&stop_time,	NULL);
				printf("program	stopped	at	%i.06%i\n",
																			(int)stop_time.tv_sec,	(int)stop_time.tv_usec);

Here	we	are	passing	the	structure	by	address,	with	the	&	operator,	so	that	the	gettimeofday()	function	can	modify	the	fields
of	our	structure.

(we're	not	passing	a	meaningful	pointer	as	the	second	parameter	to	gettimeofday(),	as	we're	not	interested	in	timezone
information)

	

CITS2002	Systems	Programming,	Lecture	5,	p14,	5th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Introducing arrays
	1-dimensional arrays
	Initializing 1-dimensional arrays
	Variable-length arrays
	Strings are 1-dimensional arrays of characters
	Initializing character arrays
	Strings are terminated by a special character
	Copying strings
	Formatting our results into character arrays
	Identifying related data
	Defining structures
	Defining an array of structures
	Accessing the fields of a structure
	Accessing system information using structures

