
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

Introducing	functions
C	is	a	procedural	programming	language,	meaning	that	its	primary	synchronous	control	flow	mechanism	is	the	procedure
call.

C	names	its	procedures	functions	(in	contrast,	Java	has	a	different	mechanism	-	methods).

In	Mathematics,	we	apply	a	function,	such	as	the	trigonometric	function	cos,	to	one	or	more	values.	
The	function	performs	an	evaluation,	and	returns	a	result.

In	many	programming	languages,	including	C,	we	call	or	invoke	a	function.	
We	evaluate	zero	or	more	expressions,	the	result	of	each	expression	is	copied	to	a	memory	location	where	the
function	can	receive	them	as	arguments,	the	function's	statements	are	executed	(often	involving	the	arguments),	and
a	result	is	returned	(unless	the	function	is	stuck	in	an	infinite-loop	or	exits	the	process!)

We've	already	seen	the	example	of	main()	-	the	function	that	all	C	programs	must	have,	which	we	might	write	in	different
ways:

#include	<stdio.h>
#include	<stdlib.h>

int	main(int	argc,	char	*argv[])
{
				//	check	the	number	of	arguments
				if(argc	!=	2)	{
							
								exit(EXIT_FAILURE);
				}
				else	{
							
								exit(EXIT_SUCCESS);
				}
				return	0;
}

#include	<stdio.h>
#include	<stdlib.h>

int	main(int	argc,	char	*argv[])
{
				int	result;

				//	check	the	number	of	arguments
				if(argc	!=	2)	{
							
								result	=	EXIT_FAILURE;
				}
				else	{
							
								result	=	EXIT_SUCCESS;
				}
				return	result;
}

The	operating	system	calls	main(),	passing	to	it	some	(command-line)	arguments,	main()	executes	some	statements,	and
returns	to	the	operating	system	a	result	-	usually	EXIT_SUCCESS	or	EXIT_FAILURE.

	

CITS2002	Systems	Programming,	Lecture	4,	p1,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

Why	do	we	require	functions?
The	need	for,	and	use	of,	main()	should	be	clear.	However,	there's	5	other	primary	motivations	for	using	functions:

1.	 Functions	allow	us	to	group	together	statements	that	have	a	strongly	related	purpose	-	statements,	in	combination,
performing	a	single	task.

We	prefer	to	keep	such	statements	together,	providing	them	with	a	name	(as	for	variables),	so	that	we	may	refer	to
the	statements,	and	call	them,	collectively.

This	provides	both	convenience	and	readability.

2.	 We	often	have	sequences	of	statements	that	appear	several	times	throughout	larger	programs.

The	repeated	sequences	may	be	identical,	or	very	similar	(differing	only	in	a	very	few	statements).	We	group	together
these	similar	statement	sequences,	into	a	named	function,	so	that	we	may	call	the	function	more	than	once	and	have
it	perform	similarly	for	each	call.

Historically,	we'd	identify	and	group	similar	statements	into	functions	to	minimize	the	total	memory	required	to
hold	the	(repeated)	statements.
Today,	we	use	functions	not	just	to	save	memory,	but	to	enhance	the	robustness	and	readability	of	our	code
(both	good	Software	Engineering	techniques).

3.	 From	the	Systems	Programming	perspective,	the	operating	system	kernel	employs	functions	as	well-defined	entry
points	from	user-written	code	into	the	kernel.

Such	functions	are	named	system	calls.

4.	 Functions	provide	a	convenient	mechanism	to	package	and	distribute	code.	We	can	distribute	code	that	may	be	called
by	other	people's	code,	without	providing	them	with	a	complete	program.

We	frequently	use	libraries	for	this	purpose.

5.	 And,	in	sufficiently	advanced	operating	systems,	multiple	running	processes	can	share	a	single	instance	of	a	function,
such	as	printf()	-	provided	that	the	function's	code	cannot	be	modified	by	any	process,	and	the	function	makes
references	to	each	process's	distinct	data	and	the	parameters	passed	to	the	function.

Libraries	of	such	functions	are	often	termed	shared	libraries.

	

CITS2002	Systems	Programming,	Lecture	4,	p2,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Where	do	we	find	functions?

1.	 We've	already	begun	writing	our	own	functions,	in	the	same	file	as	main(),	to	simplify	our	code	and	to	make	it	easier
to	read.

2.	 Soon,	we'll	write	our	own	functions	in	other,	multiple	files,	and	call	them	from	our	main	file.

3.	 Collections	of	related	functions	are	termed	libraries	of	functions.

The	most	prominent	example,	that	we've	already	seen,	is	C's	standard	library	-	a	collection	of	frequently	required
functions	that	must	be	provided	by	a	standards'	conforming	C	compiler.

In	our	programming,	so	far,	we've	already	called	library	functions	such	as:

printf(),		atoi(),		and		exit().

4.	 Similarly,	there	are	many	task-specific	3rd-party	libraries.	They	are	not	required	to	come	with	your	C	compiler,	but
may	be	downloaded	or	purchased	-	from	Lecture	1	-

Application	domain (a	sample	of)	3rd-party	libraries
operating	system	services	
(files,	directories,	processes,	inter-process
communication)

OS-specific	libraries,	e.g.	glibc,	System32,	Cocoa

web-based	programming libcgi,	libxml,	libcurl

data	structures	and	algorithms the	generic	data	structures	library	(GDSL)

GUI	and	graphics	development OpenGL,	GTK,	Qt,	wxWidgets,	UIKit,	Win32,
Tcl/Tk

image	processing	(GIFs,	JPGs,	etc) GD,	libjpeg,	libpng

networking Berkeley	sockets,	AT&T's	TLI

security,	cryptography openssl,	libmp

scientific	computing NAG,	Blas3,	GNU	scientific	library	(gsl)

concurrency,	parallel	and	GPU	programming OpenMP,	CUDA,	OpenCL,	openLinda	
(thread	support	is	defined	in	C11,	but	not	in	C99)

	

CITS2002	Systems	Programming,	Lecture	4,	p3,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

The	role	of	function	main()
In	general,	small	programs,	even	if	just	written	in	a	single	file,	will	have	several	functions.

We	will	no	longer	place	all	of	our	statements	in	the	main()	function.

main()	should	be	constrained	to:

receive	and	check	the	program's	command-line	arguments,

report	errors	detected	with	command-line	arguments,	and	then	call	exit(EXIT_FAILURE),

call	functions	from	main(),	typically	passing	information	requested	and	provided	by	the	command-line	arguments,
and

finally	call	exit(EXIT_SUCCESS)	if	all	went	well.

And,	in	a	forthcoming	lecture,	the	following	will	make	more	sense:

All	error	messages	printed	to	the	stderr	stream.

All	'normal'	output	printed	to	the	stdout	stream	(if	not	to	a	requested	file).

	

CITS2002	Systems	Programming,	Lecture	4,	p4,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

The	datatype	of	a	function
There	are	two	distinct	categories	of	functions	in	C:

1.	 functions	whose	role	is	to	just	perform	a	task,	and	to	then	return	control	to	the	statement	(pedantically,	the	expression)	that	called
it.

Such	functions	often	have	side-effects,	such	as	performing	some	output,	or	modifying	a	global	variable	so	that	other	statements
may	access	that	modified	value.

These	functions	don't	return	a	specific	value	to	the	caller,	are	termed	void	functions,	and	we	casually	say	that	they	"return	void".

2.	 functions	whose	role	is	to	calculate	a	value,	and	to	return	that	value	for	use	in	the	expressions	that	called	them.	The	single	value
returned	will	have	a	type,	such	as	int,	char,	bool,	or	float.	These	functions	may	also	have	side-effects.

#include	<stdio.h>
#include	<stdlib.h>

void	output(char	ch,	int	n)								
{
				for(int	i=1	;	i<=n	;	i=i+1)	{
								printf("%c",	ch);
				}
}

int	main(int	argc,	char	*argv[])
{
				output('	',	19);
				output('*',		1);
				output('\n',	1);

				return	0;
}

#include	<stdio.h>
#include	<stdlib.h>

extern	double	sqrt(double	x);

float	square(float	x)
{
				return	x	*	x;
}

int	main(int	argc,	char	*argv[])
{
				if(argc	>	2)	{
						float	a,	b,	sum;

						a			=	atof(argv[1]);
						b			=	atof(argv[2]);

						sum	=	square(a)	+	square(b);
						printf("hypotenuse	=	%f\n",
													sqrt(sum));
				}
				return	0;
}

#include	<stdio.h>
#include	<stdlib.h>
#include	<math.h>

float	square(float	x)
{
				return	x	*	x;
}

int	main(int	argc,	char	*argv[])
{
				if(argc	>	2)	{
						float	a,	b,	sum;

						a			=	atof(argv[1]);
						b			=	atof(argv[2]);

						sum	=	square(a)	+	square(b);
						printf("hypotenuse	=	%f\n",
													sqrt(sum));
				}
				return	0;
}

In	the	2nd	example	we	have	provided	a	function	prototype	to	declare	sqrt()	as	an	external	function	-	it	is	defined	externally	to	this	source
file.

In	the	3rd	example,	we're	being	more	correct,	by	#includ-ing	the	<math.h>	header	file	-	instructing	the	C	compiler	find	the	correct
prototype	for	sqrt()	on	this	system.

In	the	2nd	and	3rd	cases	we	must	compile	the	examples	with:		cc	[EXTRAOPTIONS]	-o	program	program.c	-lm	

to	instruct	the	linker	to	search	the	math	library	for	any	missing	code	(we	require	the	sqrt()	function).

	

CITS2002	Systems	Programming,	Lecture	4,	p5,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

Passing	parameters	to	functions
The	examples	we've	already	seen	show	how	parameters	are	passed	to	functions:

a	sequence	of	expressions	are	separated	by	commas,	as	in:

a	=	average3(12	*	45,	238,	x	-	981);

each	of	these	expressions	has	a	datatype.	In	the	above	example,	each	of	the	expressions	in	an	int.
when	the	function	is	called,	the	expressions	are	evaluated,	and	the	value	of	each	expression	is	assigned	to	the
parameters	of	the	function:

float	average3(int	x,	int	y,	int	z)
{
				return	(x	+	y	+	z)	/	3.0;
}

during	the	execution	of	the	function,	the	parameters	are	local	variables	of	the	function.

They	have	been	initialized	with	the	calling	values	(x	=	12	*	45	...),	and	the	variables	exist	while	the	function	is
executing.	
They	"disappear"	when	the	function	returns.

Quite	often,	functions	require	no	parameters	to	execute	correctly.	We	declare	such	functions	with:

void	backup_files(void)												
{
			
}

and	we	just	call	the	functions	without	any	parameters:	backup_files();

	

CITS2002	Systems	Programming,	Lecture	4,	p6,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Very	common	mistakes	with	parameter	passing
Some	common	misunderstandings	about	how	parameters	work	often	result	in	incorrect	code	
(even	a	number	of	textbooks	make	these	mistakes!):

The	order	of	evaluation	of	parameters	is	not	defined	in	C.	For	example,	in	the	code:

int	square(int	a)
{
				printf("calculating	the	square	of	%i\n",	a);
				return	a	*	a;
}

void	sum(int	x,	int	y)
{
				printf("sum	=	%i\n",	x	+	y);
}

....

			
				sum(square(3),	square(4));

are	we	hoping	the	output	to	be:

				calculating	the	square	of	3					//	the	output	on	PowerPC	Macs
				calculating	the	square	of	4
				sum	=	25

or

				calculating	the	square	of	4					//	the	output	on	Intel	Macs
				calculating	the	square	of	3
				sum	=	25

Do	not	assume	that	function	parameters	are	evaluated	left-to-right.	The	compiler	will	probably	choose	the	order	of
evaluation	which	produces	the	most	efficient	code,	and	this	will	vary	on	different	processor	architectures.

(A	common	mistake	is	to	place	auto-incrementing	of	variables	in	parameters.)

	

CITS2002	Systems	Programming,	Lecture	4,	p7,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

Very	common	mistakes	with	parameter	passing,	continued

Another	common	mistake	is	to	assume	that	function	arguments	and	parameters	must	have	the	same	names	to	work
correctly.

Some	novice	programmers	think	that	the	matching	of	names	is	how	the	arguments	are	evaluated,	and	how
arguments	are	bound	to	parameters.	
For	example,	consider	the	code:

int	sum3(int	a,	int	b,	int	c)
{
				return	a	+	b	+	c;
}

....

				int	a,	b,	c;

				a	=	1;
				b	=	4;
				c	=	9;
				printf("%i\n",	sum3(c,	a,	b));

Here,	the	arguments	are	not	"shuffled"	until	the	names	match.

It	is	not	the	case	that	arguments	must	have	the	same	names	as	the	parameters	they	are	bound	to.	
Similarly,	the	names	of	variables	passed	as	arguments	are	not	used	to	"match"	arguments	to	parameters.

If	you	ever	get	confused	by	this,	remember	that	arithmetic	expressions,	such	as	2*3	+	1,	do	not	have	names,	and	yet
they	are	still	valid	arguments	to	functions.

	

CITS2002	Systems	Programming,	Lecture	4,	p8,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

Very	common	mistakes	with	parameter	passing,	continued

While	not	an	example	of	an	error,	you	will	sometimes	see	code	such	as:

								return	x;

and	sometimes:

								return(x);

While	both	are	correct,	the	parentheses	in	the	2nd	example	are	unnecessary.

return	is	not	a	function	call,	it	is	a	statement,	and	so	does	not	need	parentheses	around	the	returned	value.

However	-	at	any	point	when	writing	code,	use	extra	parentheses	if	they	enhance	the	readability	of	your
code.

	

CITS2002	Systems	Programming,	Lecture	4,	p9,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

The	static	keyword

The	static	keyword	in	C11	plays	two	very	distinct	roles:

When	appearing	before	a	global	variable	or	(global)	function	definition,	static	signifies	that	the	variable	or	function
is	only	visible	from	within	that	file.	If	a	C11	program	is	written	in	multiple	source-code	files,	code	within	the	'other'
files	cannot	'see'	the	static	variable	or	function.	This	enables	global	variables	and	functions	to	be	hidden	from	'other'
files,	and	their	names	to	re-used	by	'other'	files.

When	appearing	before	a	local	variable	within	a	function,	static	signifies	that	the	variable	retains	its	value	between
calls	to	the	function.	A	typical	use	is	to	count	the	number	of	times	a	function	has	been	called	(provided	that	the
variable	has	been	initialised!)

#include	<stdio.h>
#include	<stdlib.h>

//		myfunction	IS	ONLY	VISIBLE	WITHIN	THIS	FILE,	AND	IS	CALLED	BY	main
static	void	myfunction(void)
{
				static	int	count	=	1;				//		retains	its	value	between	function	calls
				int								local	=	0;				//		is	re-initialised	on	each	function	call

				printf("count=%i		local=%i\n",	count,	local);
				++count;
				++local;
}

//		main	IS	NOT	DECLARED	AS	static	BECAUSE	THE	OPERATING	SYSTEM	MUST	BE	ABLE	TO	CALL	IT
int	main(int	argc,	char	*argv[])
{
				for(int	i=0	;	i	<	5	;	++i)	{
								myfunction();
				}
				exit(EXIT_SUCCESS);
}

When	compiled	and	executed	will	produce:

count=1		local=0
count=2		local=0
count=3		local=0
count=4		local=0
count=5		local=0

C	has	long	been	criticised	for	using	the	static	keyword	for	two	distinct	roles	-	maybe	the	addition	of	'private'	would	have
helped??

[The	static	keyword	is	also	used	in	Java	and	C++,	but	has	even	more	complicated	meanings	in	those	languages]

	

CITS2002	Systems	Programming,	Lecture	4,	p10,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://stackoverflow.com/questions/413898/what-does-the-static-keyword-do-in-a-class
https://stackoverflow.com/questions/15235526/the-static-keyword-and-its-various-uses-in-c

CITS2002	Systems	Programming		

←	prev 11 	CITS2002 	CITS2002	schedule 	

Functions	receiving	a	variable	number	of	arguments
To	conclude	our	introduction	to	functions	and	parameter	passing,	
we	consider	functions	such	as	printf()	which	may	receive	a	variable	number	of	arguments!

We've	carefully	introduced	the	concepts	that	functions	receive	strongly	typed	parameters,	that	a	fixed	number	of	function
arguments	in	the	call	are	bound	to	the	parameters,	and	that	parameters	are	then	considered	as	local	variables.

But,	consider	the	perfectly	legal	code:

#include	<stdio.h>

		int			i	=	238;
		float	x	=	1.6;

		printf("i	is	%i,	x	is	%f\n",	i,	x);
	
		printf("this	function	call	only	has	a	single	argument\n");		
	
		printf("x	is	%f,	i	is	%i,	and	x	is	still	%f\n",	x,	i,	x);		

In	these	cases,	the	first	argument	is	always	a	string,	but	the	number	and	datatype	of	the	provided	arguments	keeps
changing.

printf()	is	one	of	a	small	set	of	standard	functions	that	permits	this	apparent	inconsistency.	It	should	be	clear	that	the	format
specifiers	of	the	first	argument	direct	the	expected	type	and	number	of	the	following	arguments.

Fortunately,	within	the	ISO-C11	specification,	our	cc	compiler	is	permitted	to	check	our	format	strings,	and	warn	us	(at
compile	time)	if	the	specifiers	and	arguments	don't	"match".

prompt>	cc	-o	try	try.c
try.c:9:20:	warning:	format	specifies	type	'int'	but	the	argument	has	type	'char	*'
						[-Wformat]
				printf("%i\n",	"hello");
												~~					^~~~~~~
												%s
1	warning	generated.

	

CITS2002	Systems	Programming,	Lecture	4,	p11,	31st	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Introducing functions
	Why do we require functions?
	Where do we find functions?
	The role of function main()
	The datatype of a function
	Passing parameters to functions
	Very common mistakes with parameter passing
	Very common mistakes with parameter passing, continued
	Very common mistakes with parameter passing, continued
	The static keyword
	Functions receiving a variable number of arguments

